Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 443, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778263

RESUMEN

BACKGROUND: The latitudinal diversity gradient (LDG), characterized by an increase in species richness from the poles to the equator, is one of the most pervasive biological patterns. However, inverse LDGs, in which species richness peaks in extratropical regions, are also found in some lineages and their causes remain unclear. Here, we test the roles of evolutionary time, diversification rates, and niche conservatism in explaining the inverse LDG of Potentilla (ca. 500 species). We compiled the global distributions of ~ 90% of Potentilla species, and reconstructed a robust phylogenetic framework based on whole-plastome sequences. Next, we analyzed the divergence time, ancestral area, diversification rate, and ancestral niche to investigate the macroevolutionary history of Potentilla. RESULTS: The genus originated in the Qinghai-Tibet Plateau during the late Eocene and gradually spread to other regions of the Northern Hemisphere posterior to the late Miocene. Rapid cooling after the late Pliocene promoted the radiating diversification of Potentilla. The polyploidization, as well as some cold-adaptive morphological innovations, enhanced the adaptation of Potentilla species to the cold environment. Ancestral niche reconstruction suggests that Potentilla likely originated in a relatively cool environment. The species richness peaks at approximately 45 °N, a region characterized by high diversification rates, and the environmental conditions are similar to the ancestral climate niche. Evolutionary time was not significantly correlated with species richness in the latitudinal gradient. CONCLUSIONS: Our results suggest that the elevated diversification rates in middle latitude regions and the conservatism in thermal niches jointly determined the inverse LDG in Potentilla. This study highlights the importance of integrating evolutionary and ecological approaches to explain the diversity pattern of biological groups on a global scale.


Asunto(s)
Biodiversidad , Filogenia , Potentilla , Potentilla/genética , Potentilla/fisiología , Ecosistema , Evolución Biológica
2.
Mol Phylogenet Evol ; 190: 107956, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898296

RESUMEN

Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.


Asunto(s)
Genoma Mitocondrial , Genoma de Plastidios , Potentilla , Rosaceae , Filogenia , Potentilla/genética , Rosaceae/genética , Plastidios/genética
3.
Chemosphere ; 342: 140194, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717914

RESUMEN

Potentilla sericea is resistant and tolerates rough management. It is an excellent garden groundcover for ecological restoration and soil consolidation for slope protection. Polyamines have functions such as promoting tissue growth and physiological resistance, while spermine synthase catalyzes the production of spermine. The PsSPMS gene from Potentilla sericea was cloned and transformed into Arabidopsis thaliana to study the response of transgenic Arabidopsis thaliana to cadmium stress. The results showed that the contents of spermidine, spermine as well as glutathione were higher in PsSPMS overexpressing Arabidopsis thaliana than the control, while the contents of putrescine were less than the control. Net photosynthetic rate, stomatal conductance, chlorophyll content, water use efficiency, electron transfer rate, PSII-related parameters, proline content, superoxide dismutase, and glutathione reductase activities were higher in PsSPMS overexpressing Arabidopsis thaliana than the control, while malondialdehyde, superoxide anion, and hydrogen peroxide contents were lower than the control. Correlation analysis showed significant differences between the indicators (P < 0.05 and P < 0.01). Expression of AtSPMS, AtSPD3, AtGSH2 and AtGR in transgenic Arabidopsis thaliana was higher than that of the control. Therefore, this study provides a genetic reference for the cultivation of cadmium-tolerant plants through genetic engineering and lays the foundation for further research on cadmium-tolerant Potentilla sericea.


Asunto(s)
Arabidopsis , Potentilla , Espermina/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Arabidopsis/metabolismo , Potentilla/genética , Potentilla/metabolismo , Espermina Sintasa/genética , Espermina Sintasa/metabolismo , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas
4.
Molecules ; 28(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985754

RESUMEN

The tuberous roots of Potentilla anserina (Pan) are an edible and medicinal resource in Qinghai-Tibetan Plateau, China. The triterpenoids from tuberous roots have shown promising anti-cancer, hepatoprotective, and anti-inflammatory properties. In this study, we carried out phylogenetic analysis of squalene synthases (SQSs), squalene epoxidases (SQEs), and oxidosqualene cyclases (OSCs) in the pathway of triterpenes. In total, 6, 26, and 20 genes of SQSs, SQEs, and OSCs were retrieved from the genome of Pan, respectively. Moreover, 6 SQSs and 25 SQEs genes expressed in two sub-genomes (A and B) of Pan. SQSs were not expanded after whole-genome duplication (WGD), and the duplicated genes were detected in SQEs. Twenty OSCs were divided into two clades of cycloartenol synthases (CASs) and ß-amyrin synthases (ß-ASs) by a phylogenetic tree, characterized with gene duplication and evolutionary divergence. We speculated that ß-ASs and CASs may participate in triterpenes synthesis. The data presented act as valuable references for future studies on the triterpene synthetic pathway of Pan.


Asunto(s)
Transferasas Intramoleculares , Potentilla , Triterpenos , Farnesil Difosfato Farnesil Transferasa/genética , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Filogenia , Potentilla/genética , Escualeno , Triterpenos/metabolismo
5.
New Phytol ; 235(3): 1246-1259, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35460285

RESUMEN

During our initial phylogenetic study of the monocot genus Erythronium (Liliaceae), we observed peculiar eudicot-type internal transcribed spacer (ITS) sequences in a dataset derived from genomic DNA of Erythronium dens-canis. This raised the possibility of horizontal transfer of a eudicot alien ribosomal DNA (rDNA) into the Erythronium genome. In this work we aimed to support this hypothesis by carrying out genomic, molecular, and cytogenetic analyses. Genome skimming coupled by PacBio HiFi sequencing of a bacterial artificial chromosome clone derived from flow-sorted nuclei was used to characterise the alien 45S rDNA. Integration of alien rDNA in the recipient genome was further proved by Southern blotting and fluorescence in situ hybridization using specific probes. Alien rDNA, nested among Potentilla species in phylogenetic analysis, likely entered the Erythronium lineage in the common ancestor of E. dens-canis and E. caucasicum. Transferred eudicot-type rDNA preserved its tandemly arrayed feature on a single chromosome and was found to be transcribed in the monocot host, albeit much less efficiently than the native counterpart. This study adds a new example to the rarely documented nuclear-to-nuclear jumps of DNA between eudicots and monocots while holding the scientific community continually in suspense about the mode of DNA transfer.


Asunto(s)
Liliaceae , Potentilla , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Hibridación Fluorescente in Situ , Filogenia , Potentilla/genética
6.
Genes (Basel) ; 12(12)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946942

RESUMEN

Potentilla anserina is a perennial stoloniferous plant with edible tuberous roots in Rosaceae, served as important food and medicine sources for Tibetans in the Qinghai-Tibetan Plateau (QTP), China, over thousands of years. However, a lack of genome information hindered the genetic study. Here, we presented a chromosome-level genome assembly using single-molecule long-read sequencing, and the Hi-C technique. The assembled genome was 454.28 Mb, containing 14 chromosomes, with contig N50 of 2.14 Mb. A total of 46,495 protein-coding genes, 169.74 Mb repeat regions, and 31.76 Kb non-coding RNA were predicted. P. anserina diverged from Potentilla micrantha ∼28.52 million years ago (Mya). Furthermore, P. anserina underwent a recent tetraploidization ∼6.4 Mya. The species-specific genes were enriched in Starch and sucrose metabolism and Galactose metabolism pathways. We identified the sub-genome structures of P. anserina, with A sub-genome was larger than B sub-genome and closer to P. micrantha phylogenetically. Despite lacking significant genome-wide expression dominance, the A sub-genome had higher homoeologous gene expression in shoot apical meristem, flower and tuberous root. The resistance genes was contracted in P. anserina genome. Key genes involved in starch biosynthesis were expanded and highly expressed in tuberous roots, which probably drives the tuber formation. The genomics and transcriptomics data generated in this study advance our understanding of the genomic landscape of P. anserina, and will accelerate genetic studies and breeding programs.


Asunto(s)
Genoma/genética , Raíces de Plantas/genética , Potentilla/genética , China , Evolución Molecular , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Genómica/métodos , Filogenia , Tubérculos de la Planta/genética , Transcriptoma/genética
7.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3907-3914, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34472267

RESUMEN

To evaluate the therapeutic effect of Potentilla discolor on 2,4,6-trinitrobenzensulfonic acid(TNBS)-induced experimental ulcerative colitis(UC) in rats and to determine its therapeutic mechanism through mitochondrial autophagy, immune cells, and cytokines. A rat model of UC was established by TNBS-ethanol enema. Rats were divided into six groups: control, UC model, sulfasalazine(positive drug), and high-dose, moderate-dose, and low-dose ethanol extract groups. After 14-day continuous administration of the corresponding drugs, the disease activity index(DAI) and hematoxylin and eosin(HE) were evaluated. The morphological structure of mitochondria was observed by using transmission electron microscope(TEM), mitophagy-related mRNA expression was detected by using Real-time quantitative polymerase chain reaction(qRT-PCR), immune cell differentiation in rat serum was detected by using flow cytometry(FCM), and cytokine expression in colon tissues of rats was detected by protein microarray. The results showed that compared with the model group, each dose group of P. discolor could significantly reduce the DAI of UC model rats, and decrease the degree of inflammatory cells infiltration in the colon tissue of UC model rats. Meanwhile the expressions of T cells and Th cells in the serum increased significantly, the expression of Tc cells in the serum decreased significantly. Transmission electron microscope found that there was fusion of mitochondria and lysosomes in the colon tissue of the administration group. The expressions of mitochondrial autophagy related genes NF-κB, p62 and parkin were significantly increased in colon tissues. The results of protein chip showed that compared with the model group, the high dose group of P. discolor could significantly regulate the expression of cytokines. In conclusion, these results suggested that P. discolor improved TNBS-induced acute ulcerative colitis in rats by regulating the mitochondrial autophagy and the inflammatory factor expression.


Asunto(s)
Colitis Ulcerosa , Potentilla , Animales , Autofagia , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Colon , Mitocondrias , Potentilla/genética , Ratas
8.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668601

RESUMEN

Potentilla dickinsii var. glabrata and Spiraea insularis in the family Rosaceae are species endemic to Ulleung Island, Korea, the latter of which is listed as endangered. In this study, we characterized the complete plastomes of these two species and compared these with previously reported plastomes of other Ulleung Island endemic species of Rosaceae (Cotoneaster wilsonii, Prunus takesimensis, Rubus takesimensis, and Sorbus ulleungensis). The highly conserved complete plastomes of P. dickinsii var. glabrata and S. insularis are 158,637 and 155,524 base pairs with GC contents of 37% and 36.9%, respectively. Comparative phylogenomic analysis identified three highly variable intergenic regions (trnT-UGU/trnL-UAA, rpl32/trnL-UAG, and ndhF/rpl32) and one variable genic region (ycf1). Only 14 of the 75 protein-coding genes have been subject to strong purifying selection. Phylogenetic analysis of 23 representative plastomes within the Rosaceae supported the monophyly of Potentilla and the sister relationship between Potentilla and Fragaria and indicated that S. insularis is sister to a clade containing Cotoneaster, Malus, Pyrus, and Sorbus. The plastome resources generated in this study will contribute to elucidating the plastome evolution of insular endemic Rosaceae on Ulleung Island and also in assessing the genetic consequences of anagenetic speciation for various endemic lineages on the island.


Asunto(s)
Cloroplastos/genética , Genoma de Plastidios , Potentilla/genética , Spiraea/genética , Uso de Codones , Secuencia Conservada , Especiación Genética , Islas , Corea (Geográfico) , Funciones de Verosimilitud , Filogenia , Rosaceae/genética , Selección Genética , Especificidad de la Especie
9.
BMC Evol Biol ; 20(1): 38, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32183710

RESUMEN

BACKGROUND: Most cinquefoils (Potentilla L., Rosaceae) are polyploids, ranging from tetraploid (4x) to dodecaploid (12x), diploids being a rare exception. Previous studies based on ribosomal and chloroplast data indicated that Norwegian cinquefoil (P. norvegica L.) has genetic material from two separate clades within Potentilla; the Argentea and the Ivesioid clades - and thus a possible history of hybridization and polyploidization (allopolyploidy). In order to trace the putative allopolyploid origin of the species, sequence data from low-copy, biparentally inherited, nuclear markers were used. Specimens covering the circumpolar distribution of P. norvegica and its two subspecies were included, along with the morphologically similar P. intermedia. Potentilla species of low ploidy level known to belong to other relevant clades were also included. RESULTS: Gene trees based on three low-copy nuclear markers, obtained by Bayesian Inference and Maximum Likelihood analyses, showed slightly different topologies. This is likely due to genomic reorganizations following genome duplication, but the gene trees were not in conflict with a species tree of presumably diploid taxa obtained by Multispecies Coalescent analysis. The results show that both P. norvegica and P. intermedia are allopolyploids with a shared evolutionary history involving at least four parental lineages, three from the Argentea clade and one from the Ivesioid clade. CONCLUSIONS: This is the first time that reticulate evolution has been proven in the genus Potentilla, and shows the importance of continuing working with low-copy markers in order to properly resolve its evolutionary history. Several hybridization events between the Argentea and Ivesioid clades may have given rise to the species of Wolf's grex Rivales. To better estimate when and where these hybridizations occurred, other Argentea, Ivesioid and Rivales species should be included in future studies.


Asunto(s)
Evolución Molecular , Malezas/genética , Poliploidía , Potentilla/genética , Teorema de Bayes , Núcleo Celular/genética , Genes de Plantas , Marcadores Genéticos , Filogenia
10.
Am J Bot ; 106(6): 772-787, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31124143

RESUMEN

PREMISE: Divergent selection due to environmental heterogeneity can lead to local adaptation. However, the ecological and evolutionary processes of local adaptation that occurs across multiple regions are often unknown. Our previous studies reported on the ecotypic divergence within a local area of variation of Potentilla matsumurae, an alpine herb adapted to the fellfield-snowbed environment. Here we investigated large-scale geographic patterns of ecotypic differentiation in this species to infer local adaptation and selective forces across multiple regions. METHODS: We compiled information on the overall distributions of fellfield and snowbed habitats on the mountains in Japan across the distribution of the species. Next, we conducted common garden experiments to test the adaptive divergence of the fellfield-snowbed plants derived from multiple regions. Finally, we evaluated phylogeographic structures based on cpDNA and allozyme variations and inferred the evolutionary history of ecotype differentiation. RESULTS: The mosaic distribution of the fellfield-snowbed ecotypes across isolated mountaintops constitutes indirect evidence for habitat-specific natural selection. The significant difference in survivorship between the ecotypes observed in a controlled snow environment provides more substantial evidence of local selection. Phylogeographic structures support the hypothesis that ecotypic divergence events from fellfield to snowbed populations occurred independently in at least two distinct regions. CONCLUSIONS: Ecotypic divergence of P. matsumurae has occurred across a series of mountain sky islands. Local selection in snowy environments is a driving force that maintains the divergent ecotypes across multiple mountain regions and can contribute to the diversification of plants in heavy-snow regions.


Asunto(s)
Ecosistema , Ecotipo , Potentilla/fisiología , Selección Genética , ADN de Cloroplastos/análisis , Japón , Filogeografía , Potentilla/genética
11.
Mol Biol Rep ; 46(2): 1985-2002, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30706357

RESUMEN

Hydrogen peroxide (H2O2) is known to accumulate in plants during abiotic stress conditions and also acts as a signalling molecule. In this study, Arabidopsis thaliana transgenics overexpressing cytosolic CuZn-superoxide dismutase (PaSOD) from poly-extremophile high-altitude Himalayan plant Potentilla atrosanguinea, cytosolic ascorbate peroxidase (RaAPX) from Rheum australe and dual transgenics overexpressing both the genes were developed and analyzed under salt stress. In comparison to wild-type (WT) or single transgenics, the performance of dual transgenics under salt stress was better with higher biomass accumulation and cellulose content. We identified genes involved in cell wall biosynthesis, including nine cellulose synthases (CesA), seven cellulose synthase-like proteins together with other wall-related genes. RNA-seq analysis and qPCR revealed differential regulation of genes (CesA 4, 7 and 8) and transcription factors (MYB46 and 83) involved in secondary cell wall cellulose biosynthesis, amongst which most of the cellulose biosynthesis gene showed upregulation in single (PaSOD line) and dual transgenics at 100 mM salt stress. A positive correlation between cellulose content and H2O2 accumulation was observed in these transgenic lines. Further, cellulose content was 1.6-2 folds significantly higher in PaSOD and dual transgenic lines, 1.4 fold higher in RaAPX lines as compared to WT plants under stress conditions. Additionally, transgenics overexpressing PaSOD and RaAPX also displayed higher amounts of phenolics as compared to WT. The novelty of present study is that H2O2 apart from its role in signalling, it also provides mechanical strength to plants and aid in plant biomass production during salt stress by transcriptional activation of cellulose biosynthesis pathway. This modulation of the cellulose biosynthetic machinery in plants has the potential to provide insight into plant growth, morphogenesis and to create plants with enhanced cellulose content for biofuel use.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Celulosa/biosíntesis , Superóxido Dismutasa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ascorbato Peroxidasas/genética , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Celulosa/metabolismo , Expresión Génica Ectópica/genética , Regulación de la Expresión Génica de las Plantas/genética , Glucosiltransferasas , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Potentilla/genética , Potentilla/metabolismo , Rheum/genética , Rheum/metabolismo , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/genética , Factores de Transcripción/genética
12.
Gigascience ; 7(4): 1-14, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29659812

RESUMEN

Background: The genus Potentilla is closely related to that of Fragaria, the economically important strawberry genus. Potentilla micrantha is a species that does not develop berries but shares numerous morphological and ecological characteristics with Fragaria vesca. These similarities make P. micrantha an attractive choice for comparative genomics studies with F. vesca. Findings: In this study, the P. micrantha genome was sequenced and annotated, and RNA-Seq data from the different developmental stages of flowering and fruiting were used to develop a set of gene predictions. A 327 Mbp sequence and annotation of the genome of P. micrantha, spanning 2674 sequence contigs, with an N50 size of 335,712, estimated to cover 80% of the total genome size of the species was developed. The genus Potentilla has a characteristically larger genome size than Fragaria, but the recovered sequence scaffolds were remarkably collinear at the micro-syntenic level with the genome of F. vesca, its closest sequenced relative. A total of 33,602 genes were predicted, and 95.1% of bench-marking universal single-copy orthologous genes were complete within the presented sequence. Thus, we argue that the majority of the gene-rich regions of the genome have been sequenced. Conclusions: Comparisons of RNA-Seq data from the stages of floral and fruit development revealed genes differentially expressed between P. micrantha and F. vesca.The data presented are a valuable resource for future studies of berry development in Fragaria and the Rosaceae and they also shed light on the evolution of genome size and organization in this family.


Asunto(s)
Flores/genética , Fragaria/genética , Frutas/genética , Genoma de Planta , Potentilla/genética , Flores/crecimiento & desarrollo , Fragaria/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Filogenia , Potentilla/crecimiento & desarrollo , Análisis de Secuencia de ARN , Transcriptoma , Secuenciación Completa del Genoma
13.
Am J Bot ; 105(4): 700-710, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29608209

RESUMEN

PREMISE OF THE STUDY: Polyploids are predicted to have greater niche breadth and larger ranges than diploids because of higher ecological tolerances, self-compatibility, and increased genetic variation. However, empirical support for this prediction is mixed, and most studies compare diploids and polyploids, rather than accounting for quantitative variation in ploidy. We test the prediction that species of higher ploidy have greater range breadth and abiotic breadth than those of lower ploidy. METHODS: We estimate range breadth (latitudinal range, altitudinal range, and range size) and abiotic breadth (range in temperature, precipitation, and ultraviolet-B irradiance) for 109 species in the Potentilleae tribe of Rosaceae. We assess the contribution of ploidy to variation in range breadth, while accounting for shared evolutionary history and time of species divergence using phylogenetic comparative methods. KEY RESULTS: Ploidy varied widely among species from 2× to 12×. Phylogenetic relatedness explained little of the variation in ploidy, range breadth, and abiotic breadth. Transitions to higher ploidy were associated with reduced latitudinal and altitudinal ranges, smaller overall range size, and reduced abiotic breadth for temperature and UV-B. CONCLUSIONS: In contrast to predictions, this study shows that transitions to higher ploidy are associated with reduced range size and abiotic breadth. It also highlights the importance of considering continuous variation in ploidy when evaluating ecological correlates with ploidy. We discuss how genome duplication may contribute to the observed negative relationship between ploidy and range breadth.


Asunto(s)
Poliploidía , Potentilla/genética , Altitud , Clima , Demografía , Diploidia , Filogenia , Ploidias
14.
Evolution ; 70(11): 2616-2622, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27566693

RESUMEN

Divergence in reproductive traits between closely related species that co-occur contributes to speciation by reducing interspecific gene flow. In flowering plants, greater floral divergence in sympatry than allopatry may reflect reproductive character displacement (RCD) by means of divergent pollinator-mediated selection or mating system evolution. However, environmental filtering (EF) would prevail for floral traits under stronger selection by abiotic factors than pollination, and lead to sympatric taxa being more phenotypically similar. We determine whether floral UV pigmentation and size show signatures of RCD or EF using a biogeographically informed sister taxa comparison. We determine whether 35 sister pairs in the Potentilleae tribe (Rosaceae) are allopatric or sympatric and confirm that sympatric sisters experience more similar bioclimatic conditions, an assumption of the EF hypothesis. We test whether interspecific differences are greater in allopatry or sympatry while accounting for divergence time. For UV pigmentation, sympatric sisters are more phenotypically similar than allopatric ones. For flower size, sympatric sisters show increased divergence with time since speciation but allopatric ones do not. We conclude that floral UV pigmentation shows a signature of EF, whereas flower size shows a signature of RCD. Discordant results between the traits suggest that the dominant selective agent differs between them.


Asunto(s)
Flores/genética , Variación Genética , Potentilla/genética , Selección Genética , Simpatría , Ambiente , Evolución Molecular , Flores/anatomía & histología , Especiación Genética , Pigmentación/genética , Polinización
15.
Plant Mol Biol ; 87(6): 615-31, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25754733

RESUMEN

Abiotic stresses cause accumulation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) in plants. Sophisticated mechanisms are required to maintain optimum level of H2O2 that acts as signalling molecule regulating adaptive response to salt stress. CuZn-superoxide dismutase (CuZn-SOD) and ascorbate peroxidase (APX) constitute first line of defence against oxidative stress. In the present study, PaSOD and RaAPX genes from Potentilla atrosanguinea and Rheum australe, respectively were overexpressed individually as well as in combination in Arabidopsis thaliana. Interestingly, PaSOD and dual transgenic lines exhibit enhanced lignin deposition in their vascular bundles with altered S:G ratio under salt stress. RNA-seq analysis revealed that expression of PaSOD gene in single and dual transgenics positively regulates expression of lignin biosynthesis genes and transcription factors (NACs, MYBs, C3Hs and WRKY), leading to enhanced and ectopic deposition of lignin in vascular tissues with larger xylem fibres and alters S:G ratio, as well. In addition, transgenic plants exhibit growth promotion, higher biomass production and increased yield under salt stress as compared to wild type plants. Our results suggest that in dual transgenics, ROS generated during salt stress gets converted into H2O2 by SOD and its optimum level was maintained by APX. This basal level of H2O2 acts as messenger for transcriptional activation of lignin biosynthesis in vascular tissue, which provides mechanical strength to plants. These findings reveal an important role of PaSOD and RaAPX in enhancing salt tolerance of transgenic Arabidopsis via increased accumulation of compatible solutes and by regulating lignin biosynthesis.


Asunto(s)
Arabidopsis/fisiología , Ascorbato Peroxidasas/genética , Peróxido de Hidrógeno/metabolismo , Potentilla/enzimología , Rheum/enzimología , Superóxido Dismutasa/genética , Antioxidantes/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Ascorbato Peroxidasas/metabolismo , Vías Biosintéticas , Pared Celular/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Estrés Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Tallos de la Planta/fisiología , Plantas Modificadas Genéticamente , Potentilla/genética , Rheum/genética , Transducción de Señal , Cloruro de Sodio/farmacología , Superóxido Dismutasa/metabolismo , Transcriptoma , Transgenes
16.
Ann Bot ; 113(3): 477-87, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24284813

RESUMEN

BACKGROUND AND AIMS: Clonal growth is a common feature in flowering plants. As clone size increases, the selfing rate in self-compatible species is likely to increase due to more frequent geitono-pollination events (i.e. pollination among flowers within the same genet). This study investigated the breeding system of the marsh cinquefoil (Comarum palustre) and assessed spatial distribution of clones, clone size and architecture, and their effects on realized outcrossing rates. In addition, pollen dispersal was investigated in two patchy populations. METHODS: The species' breeding system was investigated under controlled conditions through hand pollinations (self- vs. cross-pollination). Using microsatellite markers, an assessment was made of the realized outcrossing rates and the genetic diversity in four natural populations, the clonal structure in two populations within five 15 × 15 m sampling plots following 0.5 × 0.5 m grids, and the pollen dispersal through paternity assignment tests in those two populations. KEY RESULTS: Comarum palustre is a self-compatible species but only presents a low rate of spontaneous self-pollination. The occurrence of inbreeding depression was not detected at the seed set stage (δ(SS) = 0.04). Clones were spatially clumped (A(C) = 0.60-0.80), with intermediate to no intermingling of the ramets (D(C) = 0.40-1.00). Genet size ranged from one to 171 ramets. Patchy populations had low outcrossing rates (t(m) = 0.33-0.46). Large clones showed lower outcrossing rates than small clones. Pollen dispersal mainly occurred within patches as only 1-7 % of the pollination events occurred between patches of >25 m separation. Seedling recruitment events were detected. CONCLUSIONS: Genet size together with distances between patches, through increasing geitono-pollination events, appeared to be important factors influencing realized outcrossing rates. The study also revealed seed flow allowing seedling recruitment, which may contribute to increasing the number of new patches, and potentially further enhance gene flow within populations.


Asunto(s)
Flujo Génico , Variación Genética , Polinización , Potentilla/fisiología , Cruzamiento , Células Clonales , Cruzamientos Genéticos , Demografía , Flores/genética , Genotipo , Repeticiones de Microsatélite/genética , Polen/genética , Potentilla/genética , Reproducción , Plantones/genética , Semillas/genética , Autofecundación , Humedales
17.
BMC Genomics ; 14: 670, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24083400

RESUMEN

BACKGROUND: Second generation sequencing has permitted detailed sequence characterisation at the whole genome level of a growing number of non-model organisms, but the data produced have short read-lengths and biased genome coverage leading to fragmented genome assemblies. The PacBio RS long-read sequencing platform offers the promise of increased read length and unbiased genome coverage and thus the potential to produce genome sequence data of a finished quality containing fewer gaps and longer contigs. However, these advantages come at a much greater cost per nucleotide and with a perceived increase in error-rate. In this investigation, we evaluated the performance of the PacBio RS sequencing platform through the sequencing and de novo assembly of the Potentilla micrantha chloroplast genome. RESULTS: Following error-correction, a total of 28,638 PacBio RS reads were recovered with a mean read length of 1,902 bp totalling 54,492,250 nucleotides and representing an average depth of coverage of 320× the chloroplast genome. The dataset covered the entire 154,959 bp of the chloroplast genome in a single contig (100% coverage) compared to seven contigs (90.59% coverage) recovered from an Illumina data, and revealed no bias in coverage of GC rich regions. Post-assembly the data were largely concordant with the Illumina data generated and allowed 187 ambiguities in the Illumina data to be resolved. The additional read length also permitted small differences in the two inverted repeat regions to be assigned unambiguously. CONCLUSIONS: This is the first report to our knowledge of a chloroplast genome assembled de novo using PacBio sequence data. The PacBio RS data generated here were assembled into a single large contig spanning the P. micrantha chloroplast genome, with a higher degree of accuracy than an Illumina dataset generated at a much greater depth of coverage, due to longer read lengths and lower GC bias in the data. The results we present suggest PacBio data will be of immense utility for the development of genome sequence assemblies containing fewer unresolved gaps and ambiguities and a significantly smaller number of contigs than could be produced using short-read sequence data alone.


Asunto(s)
Genoma del Cloroplasto/genética , Potentilla/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Composición de Base/genética , Secuencia de Bases , Bases de Datos Genéticas
18.
Ann Bot ; 112(6): 1159-68, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23960045

RESUMEN

BACKGROUND AND AIMS: Intraspecific reproductive differentiation into sexual and apomictic cytotypes of differing ploidy is a common phenomenon. However, mechanisms enabling the maintenance of both reproductive modes and integrity of cytotypes in sympatry are as yet poorly understood. This study examined the association of sexual and apomictic seed formation with ploidy as well as gene flow towards sexuals within populations of purely polyploid Potentilla puberula. METHODS: The study is based on 22 populations representing various combinations of five polyploid cytotypes (tetraploid-octoploid) from East Tyrol, Austria. Embryo ploidy and the endosperm/embryo ploidy ratio obtained by a flow cytometric seed screen were used to infer reproductive modes of seed formation and to calculate the male and female genomic contributions to the embryo and endosperm. Self-incompatibility (SI) patterns were assessed and a new indirect approach was used to test for the occurrence of intercytotype matings based on the variation in the male genomic contribution to sexually derived embryos on the level of developed seed. KEY RESULTS: Tetraploids formed seeds almost exclusively via sexual reproduction, whereas penta- to octoploids were preferentially apomictic. Non-random distribution of reproductive modes within maternal plants further revealed a tendency to separate the sexual from the apomictic mode among individuals. Self-incompatibility of sexuals indicated functionality of the gametophytic SI system despite tetraploidy of the nuclear genome. We found no indication for significant cross-fertilization of tetraploids by the high polyploids. CONCLUSIONS: The study revealed a rare example of intraspecific differentiation into sexual and apomictic cytotypes at the polyploid level. The integrity of the sexual tetraploids was maintained due to reproductive isolation from the apomictic higher polyploids. Functionality of the gametophytic SI system suggested that the tetraploids are functional diploids.


Asunto(s)
Potentilla/fisiología , Apomixis , Austria , Cruzamiento , Endospermo/genética , Endospermo/fisiología , Citometría de Flujo , Flujo Génico , Genética de Población , Modelos Lineales , Polen/genética , Polen/fisiología , Polinización , Poliploidía , Potentilla/genética , Reproducción , Aislamiento Reproductivo , Semillas/genética , Semillas/fisiología , Autoincompatibilidad en las Plantas con Flores
19.
PLoS One ; 8(3): e58602, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23472211

RESUMEN

BACKGROUND: Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). CONCLUSIONS/SIGNIFICANCE: Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.


Asunto(s)
Raíces de Plantas/fisiología , Potentilla/genética , Potentilla/fisiología , Análisis de Varianza , Biomasa , Ambiente , Genotipo , Suelo , Factores de Tiempo
20.
Oecologia ; 172(2): 327-37, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23114427

RESUMEN

Game theoretical models predict that plant competition for light leads to reduced productivity of vegetation stands through selection for traits that maximize carbon gains of individuals. Using empirical results from a 5-year competition experiment with 10 genotypes of the clonal plant Potentilla reptans, we tested this prediction by analyzing the effects of the existing leaf area values on the carbon gain of the different genotypes and the consequent whole canopy carbon gain. We focused on specific leaf area (SLA) due to its role in the trade-off between light capture area and photosynthetic capacity per unit area. By combining a canopy model based on measured leaf area and light profiles with a game theoretical approach, we analyzed how changes in the SLA affected genotypic and whole-stand carbon gain. This showed that all genotypes contributed to reduced stand productivity. The dominant genotype maximized its share of total carbon gain, resulting in lower than maximal absolute gain. Other genotypes did not maximize their share. Hypothetical mutants of the dominant genotype were not able to achieve a higher carbon gain. Conversely, in other genotypes, some mutations did result in increased carbon gain. Hence, genotypic differences in the ability to maximize performance may determine genotype frequency. It shows how genotypic selection may result in lower carbon gains of the whole vegetation, and of the individual genotypes it consists of, through similar mechanisms as those that lead to the tragedy of the commons.


Asunto(s)
Modelos Biológicos , Hojas de la Planta/metabolismo , Potentilla/genética , Carbono , Frecuencia de los Genes , Genotipo , Luz , Mutación , Fotosíntesis , Hojas de la Planta/genética , Potentilla/metabolismo , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA