RESUMEN
OBJECTIVE: To analyze the laboratory phenotype and genetic variants of two consanguineous Chinese pedigrees affected with Hereditary prokallikrein (PK) and High molecular weight kininogen (HMWK) deficiency and explore their molecular pathogenesis. METHODS: A PK deficiency pedigree (10 individuals from 4 generations) and a HMWK deficiency pedigree (6 individuals from 3 generations) which were admitted to the First Affiliated Hospital of Wenzhou Medical University on December 3, 2021 and June 16, 2022, respectively were selected as the study subjects. Clinical data of the two pedigrees were collected, and the related coagulation indexes of the probands and their family members were determined. Genomic DNA of the two pedigrees was extracted from peripheral blood samples. All of the exons and flanking sequences of the KLKB1 and KNG1 genes of the probands were analyzed by direct sequencing. And the corresponding sites were sequenced among other family members. Bioinformatic software was used to analyze the conservation of variation sites and the effect of variant on the protein function. RESULTS: The plasma PK activity of proband 1, a 29-year-old female, and her brother were extremely low (< 1.0%). Proband 2 was a 66-year-old male with extremely low plasma HMWK activity (< 1.0%). Genetic sequencing revealed that the proband 1 and her brother had both harbored a homozygous c.417_418insCATTCTTA (p.Arg140Hisfs*3) insertional variant in exon 5 of the KLKB1 gene. Proband 2 had harbored a homozygous c.460C>A (p.Pro154Thr) missense variant in exon 4 of the KNG1 gene. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variants were respectively rated as pathogenic (PVS1+PM2_Supporting+PM4) and likely pathogenic (PS4+PM2_Supporting+PP3+PP4). CONCLUSION: The c.417_418insCATTCTTA (p.Arg140Hisfs*3) variant of the KLKB1 gene and the c.460C>A (p.Pro154Thr) variant of the KNG1 gene probably underlay the decreased PK and HMWK activities in the two pedigrees, respectively.
Asunto(s)
Quininógeno de Alto Peso Molecular , Precalicreína , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos de la Coagulación Sanguínea , China , Consanguinidad , Pueblos del Este de Asia/genética , Quininógeno de Alto Peso Molecular/deficiencia , Quininógeno de Alto Peso Molecular/genética , Quininógenos , Linaje , Precalicreína/genética , Precalicreína/deficienciaRESUMEN
BACKGROUND AND PURPOSE: Psoriasis is an autoimmune inflammatory skin disease, featuring microvascular abnormalities and elevated levels of bradykinin. Contact activation of Factor XII can initiate the plasma kallikrein-kinin cascade, producing inflammation and angioedema. The role of Factor XII in psoriasis is unknown. EXPERIMENTAL APPROACH: The effects of deficiency of Factor XII or its enzymatic substrate, prekallikrein, were examined in the imiquimod-induced mouse model of psoriasis. Skin microcirculation was assessed using intravital confocal microscopy and laser Doppler flowmeter. A novel antibody blocking Factor XII activation was evaluated for psoriasis prevention. KEY RESULTS: Expression of Factor XII was markedly up-regulated in human and mouse psoriatic skin. Genetic deletion of Factor XII or prekallikrein, attenuated imiquimod-induced psoriatic lesions in mice. Psoriatic induction increased skin microvascular blood perfusion, causing vasodilation, hyperpermeability and angiogenesis. It also promoted neutrophil-vascular interaction, inflammatory cytokine release and enhanced Factor XII / prekallikrein enzymatic activity with elevated bradykinin. Factor XII or prekallikrein deficiency ameliorated these microvascular abnormalities and abolished bradykinin increase. Antagonism of bradykinin B2 receptors reproduced the microvascular protection of Factor XII / prekallikrein deficiency, attenuated psoriatic lesions, and prevented protection by Factor XII / prekallikrein deficiency against psoriasis. Furthermore, treatment of mice with Factor XII antibody alleviated experimentally induced psoriasis and suppressed microvascular inflammation. CONCLUSION AND IMPLICATIONS: Activation of Factor XII promoted psoriasis via prekallikrein-dependent formation of bradykinin, which critically mediated psoriatic microvascular inflammation. Inhibition of contact activation represents a novel therapeutic strategy for psoriasis.
Asunto(s)
Factor XII , Precalicreína , Psoriasis , Animales , Femenino , Humanos , Masculino , Ratones , Aminoquinolinas/farmacología , Bradiquinina/farmacología , Modelos Animales de Enfermedad , Factor XII/metabolismo , Factor XII/antagonistas & inhibidores , Factor XII/genética , Imiquimod , Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Precalicreína/metabolismo , Psoriasis/metabolismo , Psoriasis/inducido químicamente , Psoriasis/patología , Piel/irrigación sanguínea , Piel/metabolismo , Piel/patología , Piel/efectos de los fármacosRESUMEN
Prolylcarboxypeptidase (PRCP, PCP, Lysosomal Pro-X-carboxypeptidase, Angiotensinase C) controls angiotensin- and kinin-induced cell signaling. Elevation of PRCP appears to be activated in chronic inflammatory diseases [cardiovascular disease (CVD), diabetes] in proportion to severity. Vascular endothelial cell senescence and mitochondrial dysfunction have consistently been shown in models of CVD in aging. Cellular senescence, a driver of age-related dysfunction, can differentially alter the expression of lysosomal enzymes due to lysosomal membrane permeability. There is a lack of data demonstrating the effect of age-related dysfunction on the expression and function of PRCP. To explore the changes in PRCP, the PRCP-dependent prekallikrein (PK) pathway was characterized in early- and late-passage human pulmonary artery endothelial cells (HPAECs). Detailed kinetic analysis of cells treated with high molecular weight kininogen (HK), a precursor of bradykinin (BK), and PK revealed a mechanism by which senescent HPAECs activate the generation of kallikrein upon the assembly of the HK-PK complex on HPAECs in parallel with an upregulation of PRCP and endothelial nitric oxide (NO) synthase (eNOS) and NO formation. The NO production and expression of both PRCP and eNOS increased in early-passage HPAECs and decreased in late-passage HPAECs. Low activity of PRCP in late-passage HPAECs was associated with rapid decreased telomerase reverse transcriptase mRNA levels. We also found that, with an increase in the passage number of HPAECs, reduced PRCP altered the respiration rate. These results indicated that aging dysregulates PRCP protein expression, and further studies will shed light into the complexity of the PRCP-dependent signaling pathway in aging.
Asunto(s)
Biomarcadores , Carboxipeptidasas , Senescencia Celular , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Biomarcadores/metabolismo , Carboxipeptidasas/metabolismo , Carboxipeptidasas/genética , Precalicreína/metabolismo , Precalicreína/genética , Bradiquinina/farmacología , Bradiquinina/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/citología , Células Cultivadas , Quininógeno de Alto Peso Molecular/metabolismo , Transducción de Señal , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Calicreínas/metabolismo , Calicreínas/genéticaRESUMEN
INTRODUCTION: Hereditary angioedema (HAE) is a rare genetic disorder characterized by recurrent edema and predominantly caused by the dysregulation of the kinin-kallikrein system. AREAS COVERED: This manuscript presents the results of preclinical and early clinical trials of newer drugs targeting the dysregulated kinin-kallikrein system. ATN-249 is an oral drug that has shown promising results in preclinical and Phase I studies, and good tolerability in the prophylactic treatment of attacks. KVD900 is also an oral agent developed for the on-demand treatment of HAE attacks. It has shown positive results in Phase I/II studies, with rapid absorption. The third drug, IONIS-PKKRx, is an antisense oligonucleotide targeting plasma prekallikrein mRNA. It has shown a dose-dependent reduction of plasma prekallikrein levels and proenzyme activation in Phase I/II studies, and has shown promising results. STAR-0215 is a long acting anti-activated kallikrein monoclonal antibody. A Phase 1a single ascending dose trial evaluated its safety, pharmacokinetics, and pharmacodynamics. Lastly, NTLA-2002 is an investigational gene-editing therapy. EXPERT OPINION: The targeted treatment of the dysregulated kinin-kallikrein system with specific inhibitors is promising for the prevention of angioedema attacks. Ongoing phase III studies will provide further insight into the efficacy and long-term safety of these novel therapies, potentially expanding treatment options for HAE treatment.
Asunto(s)
Angioedema , Angioedemas Hereditarios , Calicreínas , Humanos , Angioedema/tratamiento farmacológico , Angioedemas Hereditarios/tratamiento farmacológico , Proteína Inhibidora del Complemento C1/uso terapéutico , Calicreínas/antagonistas & inhibidores , Cininas , Precalicreína , Pirazoles , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como AsuntoRESUMEN
BACKGROUND: Factor (F)XI can be activated by proteases, including thrombin and FXIIa. The interactions of these enzymes with FXI are transient in nature and therefore difficult to study. OBJECTIVES: To identify the binding interface between thrombin and FXI and understand the dynamics underlying FXI activation. METHODS: Crosslinking mass spectrometry was used to localize the binding interface of thrombin on FXI. Molecular dynamics simulations were applied to investigate conformational changes enabling thrombin-mediated FXI activation after binding. The proposed trajectory of activation was examined with nanobody 1C10, which was previously shown to inhibit thrombin-mediated activation of FXI. RESULTS: We identified a binding interface of thrombin located on the light chain of FXI involving residue Pro520. After this initial interaction, FXI undergoes conformational changes driven by binding of thrombin to the apple 1 domain in a secondary step to allow migration toward the FXI cleavage site. The 1C10 binding site on the apple 1 domain supports this proposed trajectory of thrombin. We validated the results with known mutation sites on FXI. As Pro520 is conserved in prekallikrein (PK), we hypothesized and showed that thrombin can bind PK, even though it cannot activate PK. CONCLUSION: Our investigations show that the activation of FXI is a multistaged procedure. Thrombin first binds to Pro520 in FXI; thereafter, it migrates toward the activation site by engaging the apple 1 domain. This detailed analysis of the interaction between thrombin and FXI paves a way for future interventions for bleeding or thrombosis.
Asunto(s)
Factor XI , Simulación de Dinámica Molecular , Unión Proteica , Trombina , Trombina/metabolismo , Trombina/química , Humanos , Factor XI/metabolismo , Factor XI/química , Sitios de Unión , Multimerización de Proteína , Mutación , Conformación Proteica , Coagulación Sanguínea , Precalicreína/metabolismo , Precalicreína/química , Subunidades de Proteína/metabolismo , Activación Enzimática , Factor XIa/metabolismo , Factor XIa/químicaRESUMEN
BACKGROUND: In plasma, high molecular weight kininogen (HK) is either free or bound to prekallikrein (PK) or factor (F) XI (FXI). During contact activation, HK is thought to anchor PK and FXI to surfaces, facilitating their conversion to the proteases plasma kallikrein and FXIa. Mice lacking HK have normal hemostasis but are resistant to injury-induced arterial thrombosis. OBJECTIVES: To identify amino acids on the HK-D6 domain involved in PK and FXI binding and study the importance of the HK-PK and HK-FXI interactions to coagulation. METHODS: Twenty-four HK variants with alanine replacements spanning residues 542-613 were tested in PK/FXI binding and activated partial thromboplastin time clotting assays. Surface-induced FXI and PK activation in plasma were studied in the presence or absence of HK. Kng1-/- mice lacking HK were supplemented with human or murine HK and tested in an arterial thrombosis model. RESULTS: Overlapping binding sites for PK and FXI were identified in the HK-D6 domain. HK variants with defects only in FXI binding corrected the activated partial thromboplastin time of HK-deficient plasma poorly compared to a variant defective only in PK-binding. In plasma, HK deficiency appeared to have a greater deleterious effect on FXI activation than PK activation. Human HK corrected the defect in arterial thrombus formation in HK-deficient mice poorly due to a specific defect in binding to mouse FXI. CONCLUSION: Clinical observations indicate FXI is required for hemostasis, while HK is not. Yet, the HK-FXI interaction is required for contact activation-induced clotting in vitro and in vivo suggesting an important role in thrombosis and perhaps other FXI-related activities.
Asunto(s)
Quininógeno de Alto Peso Molecular , Trombosis , Animales , Humanos , Ratones , Quininógeno de Alto Peso Molecular/metabolismo , Factor XI/metabolismo , Precalicreína/metabolismo , Coagulación SanguíneaRESUMEN
BACKGROUND: Hereditary angioedema (HAE) is a potentially fatal disease characterized by unpredictable, recurrent, often disabling swelling attacks. In a randomized phase 2 study, donidalorsen reduced HAE attack frequency and improved patient quality-of-life (ISIS721744-CS2, NCT04030598). We report the 2-year interim analysis of the phase 2 open-label extension (OLE) study (ISIS 721744-CS3, NCT04307381). METHODS: In the OLE, the on-treatment study period consisted of fixed (weeks 1-13, donidalorsen 80 mg subcutaneously every 4 weeks [Q4W]) and flexible (weeks 17-105, donidalorsen 80 mg Q4W, 80 mg every 8 weeks [Q8W], or 100 mg Q4W) dosing periods. The primary outcome was incidence and severity of treatment-emergent adverse events (TEAEs). The secondary outcomes included efficacy, pharmacodynamic, and quality-of-life assessments. RESULTS: Seventeen patients continued in the OLE study. No serious TEAEs or TEAEs leading to treatment discontinuation were reported. Mean monthly HAE attack rate was 96% lower than the study run-in baseline rate (mean, 0.06/month; 95% confidence interval [CI], 0.02-0.10; median, 0.04 on-treatment vs. mean, 2.70/month; 95% CI, 1.94-3.46; median, 2.29 at baseline). Mean monthly attack rate for Q8W dosing (n = 8) was 0.29 (range, 0.0-1.7; 95% CI, -0.21 to 0.79; median, 0.00). Mean plasma prekallikrein and D-dimer concentrations decreased, and Angioedema Quality of Life Questionnaire total score improved from baseline to week 105 with donidalorsen. CONCLUSION: The 2-year interim results of this phase 2 OLE study of donidalorsen in patients with HAE demonstrated no new safety signals; donidalorsen was well tolerated. There was durable efficacy with a 96% reduction in HAE attacks.
Asunto(s)
Angioedemas Hereditarios , Oligonucleótidos , Humanos , Angioedemas Hereditarios/tratamiento farmacológico , Precalicreína , Calidad de Vida , Resultado del Tratamiento , Proteína Inhibidora del Complemento C1/uso terapéuticoRESUMEN
BACKGROUND: Ischemic stroke (IS) is more common every year, the condition is serious, and have a poor prognosis. New, efficient, and safe therapeutic targets are desperately needed as early treatment especially prevention and reperfusion is the key to lowering the occurrence of poorer prognosis. Generally circulating proteins are attractive therapeutic targets, this study aims to identify potential pharmacological targets among plasma and cerebrospinal fluid (CSF) proteins for the prevention and treatment of IS using a multicenter Mendelian randomization (MR) approach. METHODS: First, the genetic instruments of 734 plasma and 151 CSF proteins were assessed for causative connections with IS from MEGASTROKE consortium by MR to identify prospective therapeutic targets. Then, for additional validation, plasma proteins from the deCODE consortium and the Fenland consortium, as well as IS GWAS data from the FinnGen cohort, the ISGC consortium and UK biobank, were employed. A thorough evaluation of the aforementioned possible pharmacological targets was carried out using meta-analysis. The robustness of MR results was then confirmed through sensitivity analysis using several techniques, such as bidirectional MR analysis, Steiger filtering, and Bayesian colocalization. Finally, methods like Protein-Protein Interaction (PPI) Networking were utilized to investigate the relationship between putative drug targets and therapeutic agents. RESULTS: The authors discovered three proteins that may function as promising therapeutic targets for IS and meet the Bonferroni correction ( P <0.05/885=5.65×10 -5 ). Prekallikrein (OR=0.41, 95% CI: 0.27-0.63, P =3.61×10 -5 ), a protein found in CSF, has a 10-fold protective impact in IS, while the plasma proteins SWAP70 (OR=0.85, 95% CI: 0.80-0.91, P =1.64×10 -6 ) and MMP-12 (OR=0.92, 95% CI: 0.89-0.95, P =4.49×10 -6 ) of each SD play a protective role in IS. Prekallikrein, MMP-12, SWAP70 was replicated in the FinnGen cohort and ISGC database. MMP-12 (OR=0.93, 95% CI: 0.91-0.94, P <0.001), SWAP70 (OR=0.92, 95% CI: 0.90-0.94, P <0.001), and prekallikrein (OR=0.53, 95% CI: 0.33-0.72, P <0.001) may all be viable targets for IS, according to the combined meta-analysis results. Additionally, no evidence of reverse causality was identified, and Bayesian colocalization revealed MMP-12 (PPH 4 =0.995), SWAP70 (PPH 4 =0.987), and prekallikrein (PPH 4 =0.894) shared the same variant with IS, supporting the robustness of the aforementioned causation. Prekallikrein and MMP-12 were associated with the target protein of the current treatment of IS. Among them, Lanadelumab, a new drug whose target protein is a prekallikrein, may be a promising new drug for the treatment of IS. CONCLUSION: The prekallikrein, MMP-12, and SWAP70 are causally associated with the risk of IS. Moreover, MMP-12 and prekallikrein may be treated as promising therapeutic targets for medical intervention of IS.
Asunto(s)
Accidente Cerebrovascular Isquémico , Proteoma , Humanos , Teorema de Bayes , Metaloproteinasa 12 de la Matriz , Análisis de la Aleatorización Mendeliana , Precalicreína , Estudios Multicéntricos como AsuntoRESUMEN
Hereditary angioedema (HAE) is typically caused by a deficiency of the protease inhibitor C1 inhibitor (C1INH). The absence of C1INH activity on plasma kallikrein and factor XIIa leads to overproduction of the vasoactive peptide bradykinin, with resulting angioedema. As the primary site of C1INH and prekallikrein production, the liver is recognized as an important therapeutic target in HAE, leading to the development of hepatic-focused treatment strategies such as GalNAc-conjugated antisense technology and gene modification. This report reviews currently available data on hepatic-focused interventions for HAE that have advanced into human trials. Donidalorsen is an investigational GalNAc3-conjugated antisense oligonucleotide that binds to prekallikrein mRNA in the liver and reduces the expression of prekallikrein. Phase 2 data with subcutaneous donidalorsen demonstrated a significant reduction in HAE attack rate compared with placebo. Phase 3 trials are underway. ADX-324 is a GalNAc3-conjugated short-interfering RNA being investigated in HAE. BMN 331 is an investigational AAV5-based gene therapy vector that expresses wild-type human C1INH and is targeted to hepatocytes. A single intravenous dose of BMN 331 is intended to replace the defective SERPING1 gene and enable patients to produce functional C1INH. A first-in-human phase 1/2 study is ongoing with BMN 331. NTLA-2002 is an investigational in vivo clustered regularly interspaced short palindromic repeats/Cas9-based therapy designed to knock out the prekallikrein-coding KLKB1 gene in hepatocytes; a phase 1/2 study is ongoing. Findings from these and other ongoing studies are highly anticipated with the expectation of expanding the array of treatment options in HAE.
Asunto(s)
Angioedemas Hereditarios , Humanos , Angioedemas Hereditarios/genética , Angioedemas Hereditarios/prevención & control , Bradiquinina/uso terapéutico , Bradiquinina/metabolismo , Proteína Inhibidora del Complemento C1/uso terapéutico , Hígado/metabolismo , PrecalicreínaRESUMEN
Background High plasma prekallikrein was reported to be associated with increased risks of stroke, but the causality for these associations remains unclear. We aimed to investigate the associations of genetically predicted plasma prekallikrein concentrations with all-cause stroke, ischemic stroke, 3 ischemic stroke subtypes, and intracerebral hemorrhage (ICH) using a 2-sample Mendelian randomization approach. Methods and Results Seven independent prekallikrein-related single-nucleotide polymorphisms were identified as genetic instruments for prekallikrein based on a genome-wide association study with 1000 European individuals. The summary statistics for all-cause stroke, ischemic stroke, and ischemic stroke subtypes were obtained from the Multiancestry Genome-wide Association Study of Stroke Consortium with 40 585 cases and 406 111 controls of European ancestry. The summary statistics for ICH were obtained from the ISGC (International Stroke Genetics Consortium) with 1545 ICH cases and 1481 controls of European ancestry. In the main analysis, the inverse-variance weighted method was applied to estimate the associations of plasma prekallikrein concentrations with all-cause stroke, ischemic stroke, ischemic stroke subtypes, and ICH. Genetically predicted high plasma prekallikrein levels were significantly associated with elevated risks of all-cause stroke (odds ratio [OR] per SD increase, 1.04 [95% CI, 1.02-1.06]; P=5.44×10-5), ischemic stroke (OR per SD increase, 1.05 [95% CI, 1.03-1.07]; P=1.42×10-5), cardioembolic stroke (OR per SD increase, 1.08 [95% CI, 1.03-1.12]; P=3.75×10-4), and small vessel stroke (OR per SD increase, 1.11 [95% CI, 1.06-1.17]; P=3.02×10-5). However, no significant associations were observed for genetically predicted prekallikrein concentrations with large artery stroke and ICH. Conclusions This Mendelian randomization study found that genetically predicted high plasma prekallikrein concentrations were associated with increased risks of all-cause stroke, ischemic stroke, cardioembolic stroke, and small vessel stroke, indicating that prekallikrein might have a critical role in the development of stroke.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Embólico , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Precalicreína/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular Isquémico/complicaciones , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: We examined how prekallikrein (PK) activation on human microvascular endothelial cells (HMVECs) is regulated by the ambient concentration of C1 inhibitor (C1INH) and prolylcarboxypeptidase (PRCP). OBJECTIVE: We sought to examine the specificity of PK activation on HMVECs by PRCP and the role of C1INH to regulate it, high-molecular-weight kininogen (HK) cleavage, and bradykinin (BK) liberation. METHODS: Investigations were performed on cultured HMVECs. Immunofluorescence, enzymatic activity assays, immunoblots, small interfering RNA knockdowns, and cell transfections were used to perform these studies. RESULTS: Cultured HMVECs constitutively coexpressed PK, HK, C1INH, and PRCP. PK activation on HMVECs was modulated by the ambient C1INH concentration. In the absence of C1INH, forming PKa on HMVECs cleaved 120-kDa HK completely to a 65-kDa H-chain and a 46-kDa L-chain in 60 minutes. In the presence of 2 µM C1INH, only 50% of the HK became cleaved. C1INH concentrations (0.0-2.5 µM) decreased but did not abolish BK liberated from HK by activated PK. Factor XII did not activate when incubated with HMVECs alone for 1 hour. However, if incubated in the presence of HK and PK, factor XII became activated. The specificity of PK activation on HMVECs by PRCP was shown by several inhibitors to each enzyme. Furthermore, PRCP small interfering RNA knockdowns magnified C1INH inhibitory activity on PK activation, and PRCP transfections reduced C1INH inhibition at any given concentration. CONCLUSIONS: These combined studies indicated that on HMVECs, PK activation and HK cleavage to liberate BK were modulated by the local concentrations of C1INH and PRCP.
Asunto(s)
Factor XII , Precalicreína , Humanos , Células Endoteliales , Bradiquinina/farmacología , Quininógeno de Alto Peso Molecular , ARN Interferente Pequeño/genéticaRESUMEN
BACKGROUND: Recent evidence has revealed that circulating coagulation factor prekallikrein (PK), an important part of the kallikrein-kinin system, regulates cholesterol metabolism, but the association between serum PK and lipid levels is unclear. METHODS: This cross-sectional study included 256 subjects (aged from 1 month to 90 years) who underwent physical examinations at the First People's Hospital of Huaihua, China. After overnight fasting, serum was collected for PK and lipid testing. Spearman correlation analysis and multivariable logistic regression analysis were used to analyze the association of PK level with lipid levels and the likelihood risk of hyperlipidemia. The possible threshold value of PK was calculated according to the receiver operating characteristic (ROC) curve. RESULTS: The median serum PK level was 280.9 µg/mL (IQR 168.0, 377.0), and this level changed with age but not sex. The serum PK level was positively correlated with the serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. A nonlinear relationship was observed between serum PK and high-density lipoprotein cholesterol (HDL-C) levels. The serum PK level was positively correlated with HDL-C when its level was lower than 240 µg/mL and negatively correlated with HDL-C when its level was higher than 240 µg/mL. The regression analysis demonstrated that an elevated serum PK level was significantly associated with the likelihood risk of hypercholesterolemia and hypertriglyceridemia. The ROC curve showed that the possible threshold values of serum PK for hypercholesterolemia and hypertriglyceridemia occurrences were 344.9 µg/mL and 305.7 µg/mL, respectively. CONCLUSIONS: Elevated serum PK levels were significantly associated with the likelihood of hypercholesterolemia and hypertriglyceridemia, and the possible threshold values of PK levels were 344.9 µg/mL and 305.70 µg/mL, respectively, suggesting that higher PK levels may be a risk factor for cardiovascular diseases.
Asunto(s)
Pueblos del Este de Asia , Hiperlipidemias , Precalicreína , Humanos , HDL-Colesterol , Estudios Transversales , Hipercolesterolemia/sangre , Hiperlipidemias/sangre , Hipertrigliceridemia/sangre , Precalicreína/análisis , Triglicéridos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más AñosRESUMEN
BACKGROUND: High-molecular weight kininogen (HK) circulates in plasma as a complex with zymogen prekallikrein (PK). HK is both a substrate and a cofactor for activated plasma kallikrein, and the principal exosite interactions occur between PK N-terminal apple domains and the C-terminal D6 domain of HK. OBJECTIVES: To determine the structure of the complex formed between PK apple domains and an HKD6 fragment and compare this with the coagulation factor XI (FXI)-HK complex. METHODS: We produced recombinant FXI and PK heavy chains (HCs) spanning all 4 apple domains. We cocrystallized PKHC (and subsequently FXIHC) with a 31-amino acid synthetic peptide spanning HK residues Ser565-Lys595 and determined the crystal structure. We also analyzed the full-length FXI-HK complex in solution using hydrogen deuterium exchange mass spectrometry. RESULTS: The 2.3Å PKHC-HK peptide crystal structure revealed that the HKD6 sequence WIPDIQ (Trp569-Gln574) binds to the apple 1 domain and HK FNPISDFPDT (Phe582-Thr591) binds to the apple 2 domain with a flexible intervening sequence resulting in a bent double conformation. A second 3.2Å FXIHC-HK peptide crystal structure revealed a similar interaction with the apple 2 domain but an alternate, straightened conformation of the HK peptide where residues LSFN (Leu579-Asn583) interacts with a unique pocket formed between the apple 2 and 3 domains. HDX-MS of full length FXI-HK complex in solution confirmed interactions with both apple 2 and apple 3. CONCLUSIONS: The alternate conformations and exosite binding of the HKD6 peptide likely reflects the diverging relationship of HK to the functions of PK and FXI.
Asunto(s)
Factor XI , Quininógeno de Alto Peso Molecular , Humanos , Quininógeno de Alto Peso Molecular/metabolismo , Factor XI/metabolismo , Precalicreína/metabolismo , Peso Molecular , Sitios de Unión , Quininógenos/química , Péptidos/químicaRESUMEN
BACKGROUND: Human serum albumin (HSA) is the most abundant plasma protein and is sensitive to glycation in vivo. The chronic hyperglycemic conditions in patients with diabetes mellitus (DM) induce a nonenzymatic Maillard reaction that denatures plasma proteins and forms advanced glycation end products (AGEs). HSA-AGE is a prevalent misfolded protein in patients with DM and is associated with factor XII activation and downstream proinflammatory kallikrein-kinin system activity without any associated procoagulant activity of the intrinsic pathway. OBJECTIVES: This study aimed to determine the relevance of HSA-AGE toward diabetic pathophysiology. METHODS: The plasma obtained from patients with DM and euglycemic volunteers was probed for activation of FXII, prekallikrein (PK), and cleaved high-molecular-weight kininogen by immunoblotting. Constitutive plasma kallikrein activity was determined via chromogenic assay. Activation and kinetic modulation of FXII, PK, FXI, FIX, and FX via in vitro-generated HSA-AGE were explored using chromogenic assays, plasma-clotting assays, and an in vitro flow model using whole blood. RESULTS: Plasma obtained from patients with DM contained increased plasma AGEs, activated FXIIa, and resultant cleaved cleaved high-molecular-weight kininogen. Elevated constitutive plasma kallikrein enzymatic activity was identified, which positively correlated with glycated hemoglobin levels, representing the first evidence of this phenomenon. HSA-AGE, generated in vitro, triggered FXIIa-dependent PK activation but limited the intrinsic coagulation pathway activation by inhibiting FXIa and FIXa-dependent FX activation in plasma. CONCLUSION: These data indicate a proinflammatory role of HSA-AGEs in the pathophysiology of DM via FXII and kallikrein-kinin system activation. A procoagulant effect of FXII activation was lost through the inhibition of FXIa and FIXa-dependent FX activation by HSA-AGEs.
Asunto(s)
Calicreínas , Calicreína Plasmática , Humanos , Calicreínas/metabolismo , Calicreína Plasmática/metabolismo , Cininas , Factor XIIa/metabolismo , Quininógeno de Alto Peso Molecular/metabolismo , Precalicreína/metabolismo , Albúminas , Productos Finales de Glicación AvanzadaRESUMEN
BACKGROUND: During plasma contact activation, factor XII (FXII) binds to surfaces through its heavy chain and undergoes conversion to the protease FXIIa. FXIIa activates prekallikrein and factor XI (FXI). Recently, we showed that the FXII first epidermal growth factor-1 (EGF1) domain is required for normal activity when polyphosphate is used as a surface. OBJECTIVES: The aim of this study was to identify amino acids in the FXII EGF1 domain required for polyphosphate-dependent FXII functions. METHODS: FXII with alanine substitutions for basic residues in the EGF1 domain were expressed in HEK293 fibroblasts. Wild-type FXII (FXII-WT) and FXII containing the EGF1 domain from the related protein Pro-HGFA (FXII-EGF1) were positive and negative controls. Proteins were tested for their capacity to be activated, and to activate prekallikrein and FXI, with or without polyphosphate, and to replace FXII-WT in plasma clotting assays and a mouse thrombosis model. RESULTS: FXII and all FXII variants were activated similarly by kallikrein in the absence of polyphosphate. However, FXII with alanine replacing Lys73, Lys74, and Lys76 (FXII-Ala73,74,76) or Lys76, His78, and Lys81 (FXII-Ala76,78,81) were activated poorly in the presence of polyphosphate. Both have <5% of normal FXII activity in silica-triggered plasma clotting assays and have reduced binding affinity for polyphosphate. Activated FXIIa-Ala73,74,76 displayed profound defects in surface-dependent FXI activation in purified and plasma systems. FXIIa-Ala73,74,76 reconstituted FXII-deficient mice poorly in an arterial thrombosis model. CONCLUSION: FXII Lys73, Lys74, Lys76, and Lys81 form a binding site for polyanionic substances such as polyphosphate that is required for surface-dependent FXII function.
Asunto(s)
Factor XII , Trombosis , Humanos , Animales , Ratones , Factor XII/metabolismo , Precalicreína/metabolismo , Polifosfatos , Células HEK293 , Factor XI/metabolismo , Factor XIIa/metabolismoRESUMEN
BACKGROUND: Severe high-molecular-weight kininogen (HK) deficiency is a poorly studied autosomal recessive contact system defect caused by pathogenic, biallelic KNG1 variants. AIM: We performed the first comprehensive analysis of diagnostic, clinical, genetic, and epidemiological aspects of HK deficiency. METHODS: We collected clinical information and blood samples from a newly detected HK-deficient individual and from published cases identified by a systematic literature review. Activity and antigen levels of coagulation factors were determined. Genetic analyses of KNG1 and KLKB1 were performed by Sanger sequencing. The frequency of HK deficiency was estimated considering truncating KNG1 variants from GnomAD. RESULTS: We identified 48 cases of severe HK deficiency (41 families), of these 47 have been previously published (n = 19 from gray literature). We genotyped 3 cases and critically appraised 10 studies with genetic data. Ten HK deficiency-causing variants (one new) were identified. All of them were truncating mutations, whereas the only known HK amino acid substitution with a relevant phenotype instead causes hereditary angioedema. Conservative estimates suggest an overall prevalence of severe HK deficiency of approximately one case per 8 million population, slightly higher in Africans. Individuals with HK deficiency appeared asymptomatic and had decreased levels of prekallikrein and factor XI, which could lead to misdiagnosis. CONCLUSION: HK deficiency is a rare condition with only few known pathogenic variants. It has an apparently good prognosis but is prone to misdiagnosis. Our understanding of its clinical implications is still limited, and an international prekallikrein and HK deficiency registry is being established to fill this knowledge gap.
Asunto(s)
Quininógeno de Alto Peso Molecular , Precalicreína , Quininógeno de Alto Peso Molecular/genética , Quininógeno de Alto Peso Molecular/metabolismo , Precalicreína/genética , Precalicreína/metabolismo , Prevalencia , Factores de Coagulación SanguíneaRESUMEN
BACKGROUND: Titanium (Ti) and its alloys are widely used in manufacturing medical devices because of their strength and resistance to corrosion. Although Ti compounds are considered compatible with blood, they appear to support plasma contact activation and may be thrombogenic. OBJECTIVES: The objective of this study was to compare Ti and titanium nitride (TiN) with known activators of contact activation (kaolin and silica) in plasma-clotting assays and to assess binding and activation of factor XII, (FXII), factor XI (FXI), prekallikrein, and high-molecular-weight kininogen (HK) with Ti/TiN. METHODS: Ti-based nanospheres and foils were compared with kaolin, silica, and aluminum in plasma-clotting assays. Binding and activation of FXII, prekallikrein, HK, and FXI to surfaces was assessed with western blots and chromogenic assays. RESULTS: Using equivalent surface amounts, Ti and TiN were comparable with kaolin and superior to silica, for inducing coagulation and FXII autoactivation. Similar to many inducers of contact activation, Ti and TiN are negatively charged; however, their effects on FXII are not neutralized by the polycation polybrene. Antibodies to FXII, prekallikrein, or FXI or coating Ti with poly-L-arginine blocked Ti-induced coagulation. An antibody to FXII reduced FXII and PK binding to Ti, kallikrein generation, and HK cleavage. CONCLUSION: Titanium compounds induce contact activation with a potency comparable with that of kaolin. Binding of FXII with Ti shares some features with FXII binding to soluble polyanions but may have unique features. Inhibitors targeting FXII or FXI may be useful in mitigating Ti-induced contact activation in patients with titanium-based implants that are exposed to blood.
Asunto(s)
Caolín , Precalicreína , Humanos , Factor XI/metabolismo , Factor XII/metabolismo , Precalicreína/metabolismo , TitanioRESUMEN
Protection from the toxicity of nerve agents is achieved by pretreatment with human butyrylcholinesterase (BChE). Current methods for purifying large quantities of BChE from frozen Cohn fraction IV-4 produce 99% pure enzyme, but the yield is low (21%). Our goal was to simplify the purification procedure and increase the yield. Butyrylcholinesterase was extracted from frozen Cohn fraction IV-4 in 10 volumes of water pH 6. The filtered extract was pumped onto a Hupresin affinity column. The previously utilized anion exchange chromatography step was omitted. Solvent and detergent reagents used to inactivate lipid enveloped virus, bacteria and protozoa did not bind to Hupresin. BChE was eluted with 0.1 M tetramethylammonium bromide in 20 mM sodium phosphate pH 8.0. BChE protein was concentrated on a Pellicon tangential flow filtration system and demonstrated to be highly purified by mass spectrometry. A high pump rate produced protein aggregates, but a low pump rate caused minimal turbidity. Possible contamination by prekallikrein and prekallikrein activator was examined by LC-MS/MS and by a chromogenic substrate assay for kallikrein activity. Prekallikrein and kallikrein were not detected by mass spectrometry in the 99% pure BChE. The chromogenic assay indicated kallikrein activity was less than 9 mU/mL. This new, 1-step chromatography protocol on Hupresin increased the yield of butyrylcholinesterase by 200%. The new method significantly reduces production costs by optimizing yield of 99% pure butyrylcholinesterase.
Asunto(s)
Butirilcolinesterasa , Precalicreína , Humanos , Butirilcolinesterasa/química , Cromatografía Liquida , Cromatografía de Afinidad/métodos , Espectrometría de Masas en TándemRESUMEN
A dysregulated plasma contact system is involved in various pathological conditions, such as hereditary angioedema, Alzheimer disease, and sepsis. We previously showed that the 3E8 anti-high molecular weight kininogen (anti-HK) antibody blocks HK cleavage and bradykinin generation in human plasma ex vivo. Here, we show that 3E8 prevented not only HK cleavage but also factor XI (FXI) and prekallikrein (PK) activation by blocking their binding to HK in mouse plasma in vivo. 3E8 also inhibited contact system-induced bradykinin generation in vivo. Interestingly, FXII activation was also inhibited, likely because of the ability of 3E8 to block the positive feedback activation of FXII by kallikrein (PKa). In human plasma, 3E8 also blocked PK and FXI binding to HK and inhibited both thrombotic (FXI activation) and inflammatory pathways (PK activation and HK cleavage) of the plasma contact system activation ex vivo. Moreover, 3E8 blocked PKa binding to HK and dose-dependently inhibited PKa cleavage of HK. Our results reveal a novel strategy to inhibit contact system activation in vivo, which may provide an effective method to treat human diseases involving contact system dysregulation.