Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant J ; 109(4): 844-855, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34807484

RESUMEN

l-Tyrosine is an essential amino acid for protein synthesis and is also used in plants to synthesize diverse natural products. Plants primarily synthesize tyrosine via TyrA arogenate dehydrogenase (TyrAa or ADH), which are typically strongly feedback inhibited by tyrosine. However, two plant lineages, Fabaceae (legumes) and Caryophyllales, have TyrA enzymes that exhibit relaxed sensitivity to tyrosine inhibition and are associated with elevated production of tyrosine-derived compounds, such as betalain pigments uniquely produced in core Caryophyllales. Although we previously showed that a single D222N substitution is primarily responsible for the deregulation of legume TyrAs, it is unknown when and how the deregulated Caryophyllales TyrA emerged. Here, through phylogeny-guided TyrA structure-function analysis, we found that functionally deregulated TyrAs evolved early in the core Caryophyllales before the origin of betalains, where the E208D amino acid substitution in the active site, which is at a different and opposite location from D222N found in legume TyrAs, played a key role in the TyrA functionalization. Unlike legumes, however, additional substitutions on non-active site residues further contributed to the deregulation of TyrAs in Caryophyllales. The introduction of a mutation analogous to E208D partially deregulated tyrosine-sensitive TyrAs, such as Arabidopsis TyrA2 (AtTyrA2). Moreover, the combined introduction of D222N and E208D additively deregulated AtTyrA2, for which the expression in Nicotiana benthamiana led to highly elevated accumulation of tyrosine in planta. The present study demonstrates that phylogeny-guided characterization of key residues underlying primary metabolic innovations can provide powerful tools to boost the production of essential plant natural products.


Asunto(s)
Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis , Plantas/genética , Plantas/metabolismo , Tirosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Betalaínas/biosíntesis , Caryophyllales/genética , Caryophyllales/metabolismo , Fabaceae , Complejos Multienzimáticos/clasificación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo
2.
Microb Cell Fact ; 19(1): 143, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32664999

RESUMEN

BACKGROUND: Resveratrol is a plant secondary metabolite with diverse, potential health-promoting benefits. Due to its nutraceutical merit, bioproduction of resveratrol via microbial engineering has gained increasing attention and provides an alternative to unsustainable chemical synthesis and straight extraction from plants. However, many studies on microbial resveratrol production were implemented with the addition of water-insoluble phenylalanine or tyrosine-based precursors to the medium, limiting in the sustainable development of bioproduction. RESULTS: Here we present a novel coculture platform where two distinct metabolic background species were modularly engineered for the combined total and de novo biosynthesis of resveratrol. In this scenario, the upstream Escherichia coli module is capable of excreting p-coumaric acid into the surrounding culture media through constitutive overexpression of codon-optimized tyrosine ammonia lyase from Trichosporon cutaneum (TAL), feedback-inhibition-resistant 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase (aroGfbr) and chorismate mutase/prephenate dehydrogenase (tyrAfbr) in a transcriptional regulator tyrR knockout strain. Next, to enhance the precursor malonyl-CoA supply, an inactivation-resistant version of acetyl-CoA carboxylase (ACC1S659A,S1157A) was introduced into the downstream Saccharomyces cerevisiae module constitutively expressing codon-optimized 4-coumarate-CoA ligase from Arabidopsis thaliana (4CL) and resveratrol synthase from Vitis vinifera (STS), and thus further improve the conversion of p-coumaric acid-to-resveratrol. Upon optimization of the initial inoculation ratio of two populations, fermentation temperature, and culture time, this co-culture system yielded 28.5 mg/L resveratrol from glucose in flasks. In further optimization by increasing initial net cells density at a test tube scale, a final resveratrol titer of 36 mg/L was achieved. CONCLUSIONS: This is first study that demonstrates the use of a synthetic E. coli-S. cerevisiae consortium for de novo resveratrol biosynthesis, which highlights its potential for production of other p-coumaric-acid or resveratrol derived biochemicals.


Asunto(s)
Técnicas de Cocultivo/métodos , Ácidos Cumáricos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Resveratrol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Aciltransferasas/genética , Amoníaco-Liasas/genética , Amoníaco-Liasas/metabolismo , Arabidopsis/enzimología , Basidiomycota/enzimología , Corismato Mutasa/genética , Corismato Mutasa/metabolismo , Codón/genética , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Escherichia coli/crecimiento & desarrollo , Fermentación , Genes Fúngicos , Genes de Plantas , Ingeniería Genética , Microbiología Industrial , Malonil Coenzima A/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Tirosina/metabolismo , Vitis/enzimología
3.
Plant J ; 101(3): 637-652, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31626358

RESUMEN

Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So-called MBW ternary complexes involving R2R3-MYB and basic helix-loop-helix (bHLH) transcription factors along with WD-repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis.


Asunto(s)
Arabidopsis/genética , Vías Biosintéticas , Flavonoides/metabolismo , Prefenato Deshidrogenasa/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Prefenato Deshidrogenasa/genética , Proteínas Represoras/genética
4.
Plant J ; 97(5): 901-922, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30457178

RESUMEN

l-Tyrosine is an essential aromatic amino acid required for the synthesis of proteins and a diverse array of plant natural products; however, little is known on how the levels of tyrosine are controlled in planta and linked to overall growth and development. Most plants synthesize tyrosine by TyrA arogenate dehydrogenases, which are strongly feedback-inhibited by tyrosine and encoded by TyrA1 and TyrA2 genes in Arabidopsis thaliana. While TyrA enzymes have been extensively characterized at biochemical levels, their in planta functions remain uncertain. Here we found that TyrA1 suppression reduces seed yield due to impaired anther dehiscence, whereas TyrA2 knockout leads to slow growth with reticulate leaves. The tyra2 mutant phenotypes were exacerbated by TyrA1 suppression and rescued by the expression of TyrA2, TyrA1 or tyrosine feeding. Low-light conditions synchronized the tyra2 and wild-type growth, and ameliorated the tyra2 leaf reticulation. After shifting to normal light, tyra2 transiently decreased tyrosine and subsequently increased aspartate before the appearance of the leaf phenotypes. Overexpression of the deregulated TyrA enzymes led to hyper-accumulation of tyrosine, which was also accompanied by elevated aspartate and reticulate leaves. These results revealed that TyrA1 and TyrA2 have distinct and overlapping functions in flower and leaf development, respectively, and that imbalance of tyrosine, caused by altered TyrA activity and regulation, impacts growth and development of Arabidopsis. The findings provide critical bases for improving the production of tyrosine and its derived natural products, and further elucidating the coordinated metabolic and physiological processes to maintain tyrosine levels in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas/metabolismo , Tirosina/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Homeostasis , Oxidorreductasas/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Regulación hacia Arriba
5.
Sci Rep ; 8(1): 17256, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467357

RESUMEN

L-Tyrosine-derived specialized metabolites perform many important functions in plants, and have valuable applications in human health and nutrition. A necessary step in the overproduction of specialised tyrosine-derived metabolites in planta is the manipulation of primary metabolism to enhance the availability of tyrosine. Here, we utilise a naturally occurring de-regulated isoform of the key enzyme, arogenate dehydrogenase, to re-engineer the interface of primary and specialised metabolism, to boost the production of tyrosine-derived pigments in a heterologous plant host. Through manipulation of tyrosine availability, we report a 7-fold increase in the production of tyrosine-derived betalain pigments, with an upper range of 855 mg·kg-1·FW, which compare favourably to many in vitro and commercial sources of betalain pigments. Since the most common plant pathway for tyrosine synthesis occurs via arogenate, the de-regulated arogenate dehydrogenase isoform is a promising route for enhanced production of tyrosine-derived pharmaceuticals in diverse plant hosts.


Asunto(s)
Beta vulgaris/crecimiento & desarrollo , Betalaínas/metabolismo , Nicotiana/crecimiento & desarrollo , Prefenato Deshidrogenasa/metabolismo , Metabolismo Basal , Beta vulgaris/genética , Beta vulgaris/metabolismo , Ingeniería Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prefenato Deshidrogenasa/genética , Isoformas de Proteínas/metabolismo , Metabolismo Secundario , Nicotiana/genética , Nicotiana/metabolismo , Tirosina/metabolismo
6.
New Phytol ; 217(2): 896-908, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28990194

RESUMEN

Diverse natural products are synthesized in plants by specialized metabolic enzymes, which are often lineage-specific and derived from gene duplication followed by functional divergence. However, little is known about the contribution of primary metabolism to the evolution of specialized metabolic pathways. Betalain pigments, uniquely found in the plant order Caryophyllales, are synthesized from the aromatic amino acid l-tyrosine (Tyr) and replaced the otherwise ubiquitous phenylalanine-derived anthocyanins. This study combined biochemical, molecular and phylogenetic analyses, and uncovered coordinated evolution of Tyr and betalain biosynthetic pathways in Caryophyllales. We found that Beta vulgaris, which produces high concentrations of betalains, synthesizes Tyr via plastidic arogenate dehydrogenases (TyrAa /ADH) encoded by two ADH genes (BvADHα and BvADHß). Unlike BvADHß and other plant ADHs that are strongly inhibited by Tyr, BvADHα exhibited relaxed sensitivity to Tyr. Also, Tyr-insensitive BvADHα orthologs arose during the evolution of betalain pigmentation in the core Caryophyllales and later experienced relaxed selection and gene loss in lineages that reverted from betalain to anthocyanin pigmentation, such as Caryophyllaceae. These results suggest that relaxation of Tyr pathway regulation increased Tyr production and contributed to the evolution of betalain pigmentation, highlighting the significance of upstream primary metabolic regulation for the diversification of specialized plant metabolism.


Asunto(s)
Betalaínas/biosíntesis , Vías Biosintéticas/genética , Caryophyllales/genética , Evolución Molecular , Pigmentación/genética , Tirosina/metabolismo , Antocianinas/metabolismo , Beta vulgaris/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Filogenia , Plastidios/enzimología , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Spinacia oleracea/enzimología , Spinacia oleracea/genética
7.
J Agric Food Chem ; 65(50): 11054-11064, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29121768

RESUMEN

Tocopherols composed of four isoforms (α, ß, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.


Asunto(s)
Glycine max/genética , Proteínas de Plantas/genética , Tocoferoles/metabolismo , Transcripción Genética , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Genotipo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Semillas/química , Semillas/enzimología , Semillas/genética , Semillas/metabolismo , Glycine max/química , Glycine max/enzimología , Glycine max/metabolismo , Tocoferoles/química , Transferasas/genética , Transferasas/metabolismo , Tirosina Transaminasa/genética , Tirosina Transaminasa/metabolismo
8.
Biotechnol Lett ; 39(7): 977-982, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28299546

RESUMEN

OBJECTIVE: To identify new enzymatic bottlenecks of L-tyrosine pathway for further improving the production of L-tyrosine and its derivatives. RESULT: When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l-1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l-1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain. CONCLUSION: Combinatorial metabolic engineering provides a new strategy for further improvement of L-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.


Asunto(s)
Antiinfecciosos/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Prefenato Deshidrogenasa/metabolismo , Propionatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo , Ácidos Cumáricos , Expresión Génica , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Liasas de Fósforo-Oxígeno/genética , Prefenato Deshidrogenasa/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Biochim Biophys Acta Proteins Proteom ; 1865(3): 312-320, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28025081

RESUMEN

Biosynthesis of l-tyrosine (l-Tyr) is directed by the interplay of two enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which is then converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD). This work reports the first characterization of the independently expressed PD domain of bifunctional CM-PD from the crenarchaeon Ignicoccus hospitalis and the first functional studies of both full-length CM-PD and the PD domain from the bacterium Haemophilus influenzae. All proteins were hexa-histidine tagged, expressed in Escherichia coli and purified. Expression and purification of I. hospitalis CM-PD generated a degradation product identified as a PD fragment lacking the protein's first 80 residues, Δ80CM-PD. A comparable stable PD domain could also be generated by limited tryptic digestion of this bifunctional enzyme. Thus, Δ80CM-PD constructs were prepared in both organisms. CM-PD and Δ80CM-PD from both organisms were dimeric and displayed the predicted enzymatic activities and thermal stabilities in accord with their hyperthermophilic and mesophilic origins. In contrast with H. influenzae PD activity which was NAD+-specific and displayed >75% inhibition with 50µM l-Tyr, I. hospitalis PD demonstrated dual cofactor specificity with a preference for NADP+ and an insensitivity to l-Tyr. These properties are consistent with a model of the I. hospitalis PD domain based on the previously reported structure of the H. influenzae homolog. Our results highlight the similarities and differences between the archaeal and bacterial TyrA proteins and reveal that the PD activity of both prokaryotes can be successfully mapped to a functionally independent unit.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desulfurococcaceae/metabolismo , Haemophilus influenzae/metabolismo , Complejos Multienzimáticos/metabolismo , Prefenato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Corismato Mutasa/metabolismo , Escherichia coli/metabolismo , Histidina/metabolismo , NAD/metabolismo , NADP/metabolismo , Tirosina/metabolismo
10.
Plant Physiol ; 172(2): 1045-1060, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27540109

RESUMEN

During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cotiledón/metabolismo , Homeostasis , Prefenato Deshidrogenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Arabidopsis/genética , Cromatografía Liquida , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Células del Mesófilo/metabolismo , Células del Mesófilo/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación , Fenilalanina/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Prefenato Deshidrogenasa/genética , Proteoma/genética , Proteoma/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Espectrometría de Masas en Tándem
11.
Extremophiles ; 20(4): 503-14, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27290727

RESUMEN

Biosynthesis of L-tyrosine (L-Tyr) and L-phenylalanine (L-Phe) is directed by the interplay of three enzymes. Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate, which can be either converted to hydroxyphenylpyruvate by prephenate dehydrogenase (PD) or to phenylpyruvate by prephenate dehydratase (PDT). This work reports the first characterization of a trifunctional PD-CM-PDT from the smallest hyperthermophilic archaeon Nanoarchaeum equitans and a bifunctional CM-PD from its host, the crenarchaeon Ignicoccus hospitalis. Hexa-histidine tagged proteins were expressed in Escherichia coli and purified by affinity chromatography. Specific activities determined for the trifunctional enzyme were 21, 80, and 30 U/mg for CM, PD, and PDT, respectively, and 47 and 21 U/mg for bifunctional CM and PD, respectively. Unlike most PDs, these two archaeal enzymes were insensitive to regulation by L-Tyr and preferred NADP(+) to NAD(+) as a cofactor. Both the enzymes were highly thermally stable and exhibited maximal activity at 90 °C. N. equitans PDT was feedback inhibited by L-Phe (Ki = 0.8 µM) in a non-competitive fashion consistent with L-Phe's combination at a site separate from that of prephenate. Our results suggest that PD from the unique symbiotic archaeal pair encompass a distinct subfamily of prephenate dehydrogenases with regard to their regulation and co-substrate specificity.


Asunto(s)
Proteínas Arqueales/metabolismo , Corismato Mutasa/metabolismo , Desulfurococcaceae/enzimología , Nanoarchaeota/enzimología , Prefenato Deshidratasa/metabolismo , Prefenato Deshidrogenasa/metabolismo , Aminoácidos Aromáticos/biosíntesis , Proteínas Arqueales/química , Proteínas Arqueales/genética , Corismato Mutasa/química , Corismato Mutasa/genética , Desulfurococcaceae/fisiología , Estabilidad de Enzimas , Calor , Nanoarchaeota/fisiología , Nitrosaminas/metabolismo , Prefenato Deshidratasa/química , Prefenato Deshidratasa/genética , Prefenato Deshidrogenasa/química , Prefenato Deshidrogenasa/genética , Especificidad por Sustrato , Simbiosis
12.
Nat Chem Biol ; 11(1): 52-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25402771

RESUMEN

L-Tyrosine (Tyr) and its plant-derived natural products are essential in both plants and humans. In plants, Tyr is generally assumed to be synthesized in the plastids via arogenate dehydrogenase (TyrA(a), also known also ADH), which is strictly inhibited by L-Tyr. Using phylogenetic and expression analyses, together with recombinant enzyme and endogenous activity assays, we identified prephenate dehydrogenases (TyrA(p)s, also known as PDHs) from two legumes, Glycine max (soybean) and Medicago truncatula. The identified PDHs were phylogenetically distinct from canonical plant ADH enzymes, preferred prephenate to arogenate substrate, localized outside of the plastids and were not inhibited by L-Tyr. The results provide molecular evidence for the diversification of primary metabolic Tyr pathway via an alternative cytosolic PDH pathway in plants.


Asunto(s)
Fabaceae/enzimología , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Tirosina/farmacología , Arabidopsis/enzimología , Genoma de Planta , Cinética , Medicago/enzimología , Datos de Secuencia Molecular , Filogenia , Prefenato Deshidrogenasa/efectos de los fármacos , Glycine max/enzimología
13.
BMC Biotechnol ; 14: 30, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24766677

RESUMEN

BACKGROUND: 2-phenylethanl (2-PE) and its derivatives are important chemicals, which are widely used in food materials and fine chemical industries and polymers and it's also a potentially valuable alcohol for next-generation biofuel. However, the biosynthesis of 2-PE are mainly biotransformed from phenylalanine, the price of which barred the production. Therefore, it is necessary to seek more sustainable technologies for 2-PE production. RESULTS: A new strain which produces 2-PE through the phenylpyruvate pathway was isolated and identified as Enterobacter sp. CGMCC 5087. The strain is able to use renewable monosaccharide as the carbon source and NH4Cl as the nitrogen source to produce 2-PE. Two genes of rate-limiting enzymes, chorismate mutase p-prephenate dehydratase (PheA) and 3-deoxy-d-arabino-heptulosonic acid 7-phosphate synthase (DAHP), were cloned from Escherichia coli and overexpressed in E. sp. CGMCC 5087. The engineered E. sp. CGMCC 5087 produces 334.9 mg L⁻¹ 2-PE in 12 h, which is 3.26 times as high as the wild strain. CONCLUSIONS: The phenylpyruvate pathway and the substrate specificity of 2-keto-acid decarboxylase towards phenylpyruvate were found in E. sp. CGMCC 5087. Combined with the low-cost monosaccharide as the substrate, the finding provides a novel and potential way for 2-PE production.


Asunto(s)
Enterobacter/metabolismo , Alcohol Feniletílico/metabolismo , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Cloruro de Amonio/metabolismo , Cromatografía de Gases , Escherichia coli/enzimología , Monosacáridos/metabolismo , Alcohol Feniletílico/análisis , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Especificidad por Sustrato
14.
Antonie Van Leeuwenhoek ; 103(6): 1209-19, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23479063

RESUMEN

A novel prephenate dehydrogenase gene designated pdhE-1 was cloned by sequence-based screening of a plasmid metagenomic library from uncultured alkaline-polluted microorganisms. The deduced amino acid sequence comparison and phylogenetic analysis indicated that PdhE-1 and other putative prephenate dehydrogenases were closely related. The putative prephenate dehydrogenase gene was subcloned into pETBlue-2 vector and overexpressed in Escherichia coli BL21(DE3) pLacI. The recombinant protein was purified to homogeneity. The maximum activity of the PdhE-1 protein occurred at pH 8.0 and 45 °C using prephenic acid as the substrate. The prephenate dehydrogenase had an apparent K m value of 0.87 mM, a V max value of 41.5 U/mg, a k cat value of 604.8/min and a k cat/K m value of 1.16 × 10(4)/mol/s. L-Tyrosine did not obviously inhibit the recombinant PdhE-1 protein. The identification of a metagnome-derived prephenate dehydrogenase provides novel material for studies and application of proteins involved in tyrosine biosynthesis.


Asunto(s)
Metagenoma , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Microbiología del Suelo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Biblioteca Genómica , Cinética , Datos de Secuencia Molecular , Filogenia , Prefenato Deshidrogenasa/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Tirosina/química , Tirosina/farmacología
15.
BMC Plant Biol ; 12: 162, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22963618

RESUMEN

BACKGROUND: Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. RESULTS: The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3-4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d'Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. CONCLUSIONS: Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data represent the first step towards the functional characterisation of important genes for the determination of olive fruit quality.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/metabolismo , Olea/metabolismo , Fenoles/metabolismo , Transcriptoma , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Frutas/genética , Perfilación de la Expresión Génica , Genes de Plantas , Glucósidos/genética , Glucósidos/metabolismo , Glucósidos Iridoides/metabolismo , Iridoides , Metabolómica/métodos , Olea/genética , Olea/crecimiento & desarrollo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/metabolismo , Aceites de Plantas/análisis , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Piranos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la Especie
16.
FEBS Lett ; 586(19): 3398-403, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22850113

RESUMEN

The T-protein is a single-polypeptide bi-functional enzyme composed of a chorismate mutase domain fused to a prephenate dehydrogenase domain (TyrA). We replaced the chorismate mutase domain with canonical or pseudo-Ca(2+)-binding motifs (EF-hand). Canonical-EF-hand-motifs differentiate from pseudo-EF-hand-motifs by experimenting a Ca(2+)-dependent conformational change. The Ca(2+)-free EF-hand-TyrA fusion-proteins showed TyrA activity at the T-protein level. Canonical-EF-hand-TyrA fusions showed a Ca(2+)-dependent loss of TyrA activity, but a pseudo-EF-hand-TyrA fusion showed high TyrA activity level in excess-Ca(2+) conditions. Because TyrA activity exhibits robust changes in response to Ca(2+)-dependent-EF-hand conformational alterations, TyrA could be a good Ca(2+)-reporter enzyme. A chimeric canonical/pseudo-EF-hand strategy is proposed to confer pseudo-EF-hand motifs with a Ca(2+)-dependent conformational change.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Calcio/metabolismo , Secuencia Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Prefenato Deshidrogenasa/química , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
17.
Protein Cell ; 2(9): 745-54, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21976064

RESUMEN

The aspartate kinase (AK) from Mycobacterium tuberculosis (Mtb) catalyzes the biosynthesis of aspartate family amino acids, including lysine, threonine, isoleucine and methionine. We determined the crystal structures of the regulatory subunit of aspartate kinase from Mtb alone (referred to as MtbAKß) and in complex with threonine (referred to as MtbAKß-Thr) at resolutions of 2.6 Å and 2.0 Å, respectively. MtbAKß is composed of two perpendicular non-equivalent ACT domains [aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase)] per monomer. Each ACT domain contains two α helices and four antiparallel ß strands. The structure of MtbAKß shares high similarity with the regulatory subunit of the aspartate kinase from Corynebacterium glutamicum (referred to as CgAKß), suggesting similar regulatory mechanisms. Biochemical assays in our study showed that MtbAK is inhibited by threonine. Based on crystal structure analysis, we discuss the regulatory mechanism of MtbAK.


Asunto(s)
Aspartato Quinasa/química , Mycobacterium tuberculosis/enzimología , Treonina/metabolismo , Secuencia de Aminoácidos , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Sitios de Unión , Clonación Molecular , Corynebacterium glutamicum/enzimología , Cristalización/métodos , Cristalografía por Rayos X , Activación Enzimática , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Lisina/farmacología , Datos de Secuencia Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Plásmidos/genética , Plásmidos/metabolismo , Prefenato Deshidrogenasa/metabolismo , Estructura Secundaria de Proteína , Treonina/farmacología
18.
J Ind Microbiol Biotechnol ; 38(11): 1845-52, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21512819

RESUMEN

L-3,4-dihydroxyphenylalanine (L-DOPA) is an aromatic compound employed for the treatment of Parkinson's disease. Metabolic engineering was applied to generate Escherichia coli strains for the production of L-DOPA from glucose by modifying the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and aromatic biosynthetic pathways. Carbon flow was directed to the biosynthesis of L-tyrosine (L-Tyr), an L-DOPA precursor, by transforming strains with compatible plasmids carrying genes encoding a feedback-inhibition resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, transketolase, the chorismate mutase domain from chorismate mutase-prephenate dehydratase from E. coli and cyclohexadienyl dehydrogenase from Zymomonas mobilis. The effects on L-Tyr production of PTS inactivation (PTS(-) gluc(+) phenotype), as well as inactivation of the regulatory protein TyrR, were evaluated. PTS inactivation caused a threefold increase in the specific rate of L-Tyr production (q( L-Tyr)), whereas inactivation of TyrR caused 1.7- and 1.9-fold increases in q( L-Tyr) in the PTS(+) and the PTS(-) gluc(+) strains, respectively. An 8.6-fold increase in L-Tyr yield from glucose was observed in the PTS(-) gluc(+) tyrR (-) strain. Expression of hpaBC genes encoding the enzyme 4-hydroxyphenylacetate 3-hydroxylase from E. coli W in the strains modified for L-Tyr production caused the synthesis of L-DOPA. One of such strains, having the PTS(-) gluc(+) tyrR (-) phenotype, displayed the best production parameters in minimal medium, with a specific rate of L-DOPA production of 13.6 mg/g/h, L-DOPA yield from glucose of 51.7 mg/g and a final L-DOPA titer of 320 mg/l. In a batch fermentor culture in rich medium this strain produced 1.51 g/l of L-DOPA in 50 h.


Asunto(s)
Escherichia coli/metabolismo , Glucosa/metabolismo , Levodopa/biosíntesis , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Corismato Mutasa/genética , Corismato Mutasa/metabolismo , Escherichia coli/genética , Ingeniería Metabólica , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Plásmidos , Prefenato Deshidratasa/genética , Prefenato Deshidratasa/metabolismo , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Transcetolasa/genética , Transcetolasa/metabolismo , Tirosina/biosíntesis , Zymomonas/enzimología
19.
J Exp Bot ; 61(13): 3663-73, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20558569

RESUMEN

In plants, the amino acids tyrosine and phenylalanine are synthesized from arogenate by arogenate dehydrogenase and arogenate dehydratase, respectively, with the relative flux to each being tightly controlled. Here the characterization of a maize opaque endosperm mutant (mto140), which also shows retarded vegetative growth, is described The opaque phenotype co-segregates with a Mutator transposon insertion in an arogenate dehydrogenase gene (zmAroDH-1) and this led to the characterization of the four-member family of maize arogenate dehydrogenase genes (zmAroDH-1-zmAroDH-4) which share highly similar sequences. A Mutator insertion at an equivalent position in AroDH-3, the most closely related family member to AroDH-1, is also associated with opaque endosperm and stunted vegetative growth phenotypes. Overlapping but differential expression patterns as well as subtle mutant effects on the accumulation of tyrosine and phenylalanine in endosperm, embryo, and leaf tissues suggest that the functional redundancy of this gene family provides metabolic plasticity for the synthesis of these important amino acids. mto140/arodh-1 seeds shows a general reduction in zein storage protein accumulation and an elevated lysine phenotype typical of other opaque endosperm mutants, but it is distinct because it does not result from quantitative or qualitative defects in the accumulation of specific zeins but rather from a disruption in amino acid biosynthesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Semillas , Zea mays/enzimología , Zea mays/genética , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Endospermo/enzimología , Endospermo/genética , Lisina/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Fenilalanina/biosíntesis , Fenilalanina/genética , Fenilalanina/metabolismo , Prefenato Deshidrogenasa/química , Semillas/enzimología , Semillas/genética , Semillas/metabolismo , Alineación de Secuencia , Tirosina/metabolismo , Zea mays/clasificación , Zea mays/metabolismo , Zeína/metabolismo
20.
Biotechnol Lett ; 32(8): 1117-21, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20364292

RESUMEN

To construct a Phe-producing Tyr(+) Escherichia coli strain, TyrA (chorismate mutase/prephenate dehydrogenase) activity was varied by engineering a proteolytically unstable protein. The tyrA in the E. coli BW25113 was altered to include ssrA-like tags. The tagged tyrA genes, which ensured different growth rates in M9 medium, were introduced into a Phe-producing strain to replace DeltatyrA. Strains with unstable TyrA-(A)ANDENYALAA proteins had a lower biomass yield and a higher Phe accumulation than strains generating the more stable TyrA-(A)ANDENYALDD. The Tyr/Phe ratio produced by the TyrA-tag strains was 10-fold less than that produced by the TyrA(wt) strain.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/biosíntesis , Tirosina/genética , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Clonación Molecular , Escherichia coli/crecimiento & desarrollo , Datos de Secuencia Molecular , Fenilalanina/análisis , Prefenato Deshidrogenasa/genética , Prefenato Deshidrogenasa/metabolismo , Factores de Tiempo , Tirosina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA