Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.467
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731866

RESUMEN

Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.


Asunto(s)
Hígado Graso , Trasplante de Hígado , Preservación de Órganos , Daño por Reperfusión , Donantes de Tejidos , Humanos , Daño por Reperfusión/prevención & control , Trasplante de Hígado/métodos , Trasplante de Hígado/efectos adversos , Preservación de Órganos/métodos , Hígado Graso/patología , Hígado/patología , Soluciones Preservantes de Órganos , Animales , Perfusión/métodos
2.
Exp Clin Transplant ; 22(4): 322-327, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38742326

RESUMEN

Lung transplant is an effective method of treating patients with end-stage respiratory diseases, but problems such as the imbalance between the number of donor organs and the number ofrecipients needing organs still play a leading role. From a transplant point of view, a multiorgan donor is considered of greatest efficiency, so that all organs that can potentially be used should be transplanted. The combination of the vast geographical territory of Russia, the shortage of actual donors, and the relatively small number of transplant centers has led to the need to transport donor lungs by air over long distances. There were already precedents in the world for remote preservation of donor organs for transplant. In this study, we have described the unique experience of remote evaluation of donor lungs with their subsequent air transportation and transplantation, which is the first such description in Russia to our knowledge. The donor lungs for lung transplant were brought from medical institutions of the Samara region to Moscow. During remote evaluation, all information was transmitted to the transplant center by providing access to the automated information system "Organ Donation," which was used at that time by the service and contained all information about a potential donor in real time. The 2 transplant candidates had end-stage cystic fibrosis and severe respiratory failure; both patients underwent organ implantation from donors located outside their regions. In conditions of shortages of donor organs, long-distance transportation is a reasonable, feasible, and safe procedure.


Asunto(s)
Trasplante de Pulmón , Preservación de Órganos , Donantes de Tejidos , Humanos , Trasplante de Pulmón/efectos adversos , Federación de Rusia , Preservación de Órganos/métodos , Donantes de Tejidos/provisión & distribución , Fibrosis Quística/cirugía , Masculino , Resultado del Tratamiento , Femenino , Adulto , Factores de Tiempo , Insuficiencia Respiratoria/cirugía , Obtención de Tejidos y Órganos
3.
Transpl Int ; 37: 12601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694492

RESUMEN

Controlled hypothermic storage (CHS) is a recent advance in lung transplantation (LTx) allowing preservation at temperatures higher than those achieved with traditional ice storage. The mechanisms explaining the benefits of CHS compared to conventional static ice storage (SIS) remain unclear and clinical data on safety and feasibility of lung CHS are limited. Therefore, we aimed to provide a focus review on animal experiments, molecular mechanisms, CHS devices, current clinical experience, and potential future benefits of CHS. Rabbit, canine and porcine experiments showed superior lung physiology after prolonged storage at 10°C vs. ≤4°C. In recent molecular analyses of lung CHS, better protection of mitochondrial health and higher levels of antioxidative metabolites were observed. The acquired insights into the underlying mechanisms and development of CHS devices allowed clinical application and research using CHS for lung preservation. The initial findings are promising; however, further data collection and analysis are required to draw more robust conclusions. Extended lung preservation with CHS may provide benefits to both recipients and healthcare personnel. Reduced time pressure between procurement and transplantation introduces flexibility allowing better decision-making and overnight bridging by delaying transplantation to daytime without compromising outcome.


Asunto(s)
Trasplante de Pulmón , Pulmón , Preservación de Órganos , Animales , Preservación de Órganos/métodos , Trasplante de Pulmón/métodos , Humanos , Porcinos , Pulmón/fisiología , Perros , Conejos , Criopreservación/métodos
4.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732257

RESUMEN

In transplantation, hypothermic machine perfusion (HMP) has been shown to be superior to static cold storage (SCS) in terms of functional outcomes. Ex vivo machine perfusion offers the possibility to deliver drugs or other active substances, such as Mesenchymal Stem Cells (MSCs), directly into an organ without affecting the recipient. MSCs are multipotent, self-renewing cells with tissue-repair capacities, and their application to ameliorate ischemia- reperfusion injury (IRI) is being investigated in several preclinical and clinical studies. The aim of this study was to introduce MSCs into a translational model of hypothermic machine perfusion and to test the efficiency and feasibility of this method. Methods: three rodent kidneys, six porcine kidneys and three human kidneys underwent HMP with 1-5 × 106 labelled MSCs within respective perfusates. Only porcine kidneys were compared to a control group of 6 kidneys undergoing HMP without MSCs, followed by mimicked reperfusion with whole blood at 37 °C for 2 h for all 12 kidneys. Reperfusion perfusate samples were analyzed for levels of NGAL and IL-ß by ELISA. Functional parameters, including urinary output, oxygen consumption and creatinine clearance, were compared and found to be similar between the MSC treatment group and the control group in the porcine model. IL-1ß levels were higher in perfusate and urine samples in the MSC group, with a median of 285.3 ng/mL (IQR 224.3-407.8 ng/mL) vs. 209.2 ng/mL (IQR 174.9-220.1), p = 0.51 and 105.3 ng/mL (IQR 71.03-164.7 ng/mL) vs. 307.7 ng/mL (IQR 190.9-349.6 ng/mL), p = 0.16, respectively. MSCs could be traced within the kidneys in all models using widefield microscopy after HMP. The application of Mesenchymal Stem Cells in an ex vivo hypothermic machine perfusion setting is feasible, and MSCs can be delivered into the kidney grafts during HMP. Functional parameters during mimicked reperfusion were not altered in treated kidney grafts. Changes in levels of IL-1ß suggest that MSCs might have an effect on the kidney grafts, and whether this leads to a positive or a negative outcome on IRI in transplantation needs to be determined in further experiments.


Asunto(s)
Trasplante de Riñón , Riñón , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Perfusión , Daño por Reperfusión , Animales , Porcinos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Riñón/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Perfusión/métodos , Humanos , Trasplante de Riñón/métodos , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Preservación de Órganos/métodos , Investigación Biomédica Traslacional , Masculino , Hipotermia Inducida/métodos
5.
Cryo Letters ; 45(3): 139-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709185

RESUMEN

It is some 50 years since the first published reports appeared of ex vivo preservation of organs for transplantation. Over the intervening decades, organ preservation strategies have become one essential component of world-wide clinical transplant services. In the formative years, translational research in organ hypothermic preservation was grappling with the questions about whether static or dynamic storage was preferable, and the practical implications of those choices. Those studies were also informing the newly expanding clinical transplant services. During the middle years, both preservation modalities were practiced by individual group choices. By the 2000s, the shift in donor demographics demanded a re-evaluation of organ preservation strategies, and now a new era of research and development is promoting adoption of new technologies. In this review we outline many important academic studies which have contributed to this successful history, and give profile to the increasing innovative approaches which are being evaluated for the future. Doi.org/10.54680/fr24310110112.


Asunto(s)
Criopreservación , Preservación de Órganos , Preservación de Órganos/métodos , Humanos , Criopreservación/métodos , Historia del Siglo XX , Trasplante de Órganos/métodos , Historia del Siglo XXI
6.
Transpl Int ; 37: 12659, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751771

RESUMEN

The main limitation to increased rates of lung transplantation (LT) continues to be the availability of suitable donors. At present, the largest source of lung allografts is still donation after the neurologic determination of death (brain-death donors, DBD). However, only 20% of these donors provide acceptable lung allografts for transplantation. One of the proposed strategies to increase the lung donor pool is the use of donors after circulatory-determination-of-death (DCD), which has the potential to significantly alleviate the shortage of transplantable lungs. According to the Maastricht classification, there are five types of DCD donors. The first two categories are uncontrolled DCD donors (uDCD); the other three are controlled DCD donors (cDCD). Clinical experience with uncontrolled DCD donors is scarce and remains limited to small case series. Controlled DCD donation, meanwhile, is the most accepted type of DCD donation for lungs. Although the DCD donor pool has significantly increased, it is still underutilized worldwide. To achieve a high retrieval rate, experience with DCD donation, adequate management of the potential DCD donor at the intensive care unit (ICU), and expertise in combined organ procurement are critical. This review presents a concise update of lung donation after circulatory-determination-of-death and includes a step-by-step protocol of lung procurement using abdominal normothermic regional perfusion.


Asunto(s)
Trasplante de Pulmón , Perfusión , Donantes de Tejidos , Obtención de Tejidos y Órganos , Humanos , Trasplante de Pulmón/métodos , Perfusión/métodos , Obtención de Tejidos y Órganos/métodos , Donantes de Tejidos/provisión & distribución , Muerte Encefálica , Preservación de Órganos/métodos , Muerte
7.
Artículo en Inglés | MEDLINE | ID: mdl-38716640

RESUMEN

In this video tutorial, we present a comprehensive step-by-step operative technique for a bilateral orthotopic lung transplant using a bilateral transverse thoracosternotomy in a patient with idiopathic pulmonary fibrosis lung disease. The donor lungs were exposed to extended cold static ischaemic storage at 10° C for the semi-elective operation.


Asunto(s)
Trasplante de Pulmón , Preservación de Órganos , Humanos , Trasplante de Pulmón/métodos , Preservación de Órganos/métodos , Fibrosis Pulmonar Idiopática/cirugía , Donantes de Tejidos , Masculino , Persona de Mediana Edad , Pulmón/cirugía , Recolección de Tejidos y Órganos/métodos
8.
Gastroenterol Clin North Am ; 53(2): 221-231, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719374

RESUMEN

Intestinal allotransplantation was first described in the 1960s and successfully performed in the 1980s. Since that time, less progress has been made in the preservation of the allograft before transplantation and static cold storage remains the current standard. Normothermic machine perfusion represents an opportunity to simultaneously preserve, assess, and recondition the organ for transplantation and improve the procurement radius for allografts. The substantial progress made in the field during the last 60 years, coupled with the success of the preclinical animal model of machine perfusion-preserved intestinal transplantation, suggest we are approaching the point of clinical application.


Asunto(s)
Aloinjertos , Intestinos , Preservación de Órganos , Preservación de Órganos/métodos , Humanos , Intestinos/trasplante , Animales , Perfusión/métodos , Trasplante Homólogo , Soluciones Preservantes de Órganos
9.
Nat Commun ; 15(1): 3818, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740760

RESUMEN

The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.


Asunto(s)
Riñón , Preservación de Órganos , Perfusión , Humanos , Riñón/metabolismo , Preservación de Órganos/métodos , Perfusión/métodos , Trasplante de Riñón , Masculino , Soluciones Preservantes de Órganos , Femenino , Persona de Mediana Edad , Sistema Libre de Células , Ciclo del Ácido Cítrico , Adulto , Nutrientes/metabolismo , Lipidómica/métodos , Anciano
10.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732014

RESUMEN

Fetal organs and organoids are important tools for studying organ development. Recently, porcine organs have garnered attention as potential organs for xenotransplantation because of their high degree of similarity to human organs. However, to meet the prompt demand for porcine fetal organs by patients and researchers, effective methods for producing, retrieving, and cryopreserving pig fetuses are indispensable. Therefore, in this study, to collect fetuses for kidney extraction, we employed cesarean sections to preserve the survival and fertility of the mother pig and a method for storing fetal kidneys by long-term cryopreservation. Subsequently, we evaluated the utility of these two methods. We confirmed that the kidneys of pig fetuses retrieved by cesarean section that were cryopreserved for an extended period could resume renal growth when grafted into mice and were capable of forming renal organoids. These results demonstrate the usefulness of long-term cryopreserved fetal pig organs and strongly suggest the effectiveness of our comprehensive system of pig fetus retrieval and fetal organ preservation, thereby highlighting its potential as an accelerator of xenotransplantation research and clinical innovation.


Asunto(s)
Criopreservación , Feto , Trasplante de Riñón , Riñón , Organoides , Animales , Criopreservación/métodos , Porcinos , Riñón/citología , Organoides/citología , Organoides/trasplante , Ratones , Trasplante de Riñón/métodos , Feto/citología , Femenino , Trasplante Heterólogo/métodos , Preservación de Órganos/métodos
11.
Front Immunol ; 15: 1365964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585271

RESUMEN

Ex-vivo lung perfusion (EVLP) has extended the number of transplantable lungs by reconditioning marginal organs. However, EVLP is performed at 37°C without homeostatic regulation leading to metabolic wastes' accumulation in the perfusate and, as a corrective measure, the costly perfusate is repeatedly replaced during the standard of care procedure. As an interesting alternative, a hemodialyzer could be placed on the EVLP circuit, which was previously shown to rebalance the perfusate composition and to maintain lung function and viability without appearing to impact the global gene expression in the lung. Here, we assessed the biological effects of a hemodialyzer during EVLP by performing biochemical and refined functional genomic analyses over a 12h procedure in a pig model. We found that dialysis stabilized electrolytic and metabolic parameters of the perfusate but enhanced the gene expression and protein accumulation of several inflammatory cytokines and promoted a genomic profile predicting higher endothelial activation already at 6h and higher immune cytokine signaling at 12h. Therefore, epuration of EVLP with a dialyzer, while correcting features of the perfusate composition and maintaining the respiratory function, promotes inflammatory responses in the tissue. This finding suggests that modifying the metabolite composition of the perfusate by dialysis during EVLP can have detrimental effects on the tissue response and that this strategy should not be transferred as such to the clinic.


Asunto(s)
Trasplante de Pulmón , Porcinos , Animales , Perfusión/métodos , Trasplante de Pulmón/métodos , Preservación de Órganos/métodos , Diálisis Renal , Pulmón/fisiología
12.
Zhonghua Wei Chang Wai Ke Za Zhi ; 27(4): 353-358, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38644240

RESUMEN

Neoadjuvant immunotherapy has achieved exciting efficacy with high clinical complete response (cCR) and pathologic complete response (pCR) rates and durable long-term effects. PD-1 checkpoint blockade-based immunotherapy has been highly successful in microsatellite instability high (MSI-H)/mismatch repair deficiency (dMMR) colorectal cancer and has been recommended as the first-line treatment for metastatic colorectal cancer by domestic and international guidelines. Several studies have shown that immunotherapy can be a potentially curable treatment for MSI-H rectal cancer and has even shown promise in organ preservation in colon cancer. In this study, we first clarified the feasibility of the watch-and-wait strategy after PD-1 checkpoint blockade treatment by indirect and direct evidence. Then from the assessment tools (including digital rectal examination, endoscopy, radiology, and lymph node assessment), the viable assessment methods of cCR for immunotherapy and related difficulties are proposed. Finally, the medication choices of immunotherapy, the treatment regimen, and the follow-up strategy are further discussed. We hope that neoadjuvant immunotherapy could be appropriately applied in MSI-H/dMMR colorectal cancer so that more patients can achieve organ preservation.


Asunto(s)
Neoplasias Colorrectales , Inmunoterapia , Inestabilidad de Microsatélites , Terapia Neoadyuvante , Humanos , Inmunoterapia/métodos , Neoplasias Colorrectales/terapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Preservación de Órganos/métodos , Reparación de la Incompatibilidad de ADN
13.
Circ Heart Fail ; 17(5): e010904, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38602105

RESUMEN

BACKGROUND: Heart transplant (HT) in recipients with left ventricular assist devices (LVADs) is associated with poor early post-HT outcomes, including primary graft dysfunction (PGD). As complicated heart explants in recipients with LVADs may produce longer ischemic times, innovations in donor heart preservation may yield improved post-HT outcomes. The SherpaPak Cardiac Transport System is an organ preservation technology that maintains donor heart temperatures between 4 °C and 8 °C, which may minimize ischemic and cold-induced graft injuries. This analysis sought to identify whether the use of SherpaPak versus traditional cold storage was associated with differential outcomes among patients with durable LVAD undergoing HT. METHODS: Global Utilization and Registry Database for Improved Heart Preservation-Heart (NCT04141605) is a multicenter registry assessing post-HT outcomes comparing 2 methods of donor heart preservation: SherpaPak versus traditional cold storage. A retrospective review of all patients with durable LVAD who underwent HT was performed. Outcomes assessed included rates of PGD, post-HT mechanical circulatory support use, and 30-day and 1-year survival. RESULTS: SherpaPak (n=149) and traditional cold storage (n=178) patients had similar baseline characteristics. SherpaPak use was associated with reduced PGD (adjusted odds ratio, 0.56 [95% CI, 0.32-0.99]; P=0.045) and severe PGD (adjusted odds ratio, 0.31 [95% CI, 0.13-0.75]; P=0.009), despite an increased total ischemic time in the SherpaPak group. Propensity matched analysis also noted a trend toward reduced intensive care unit (SherpaPak 7.5±6.4 days versus traditional cold storage 11.3±18.8 days; P=0.09) and hospital (SherpaPak 20.5±11.9 days versus traditional cold storage 28.7±37.0 days; P=0.06) lengths of stay. The 30-day and 1-year survival was similar between groups. CONCLUSIONS: SherpaPak use was associated with improved early post-HT outcomes among patients with LVAD undergoing HT. This innovation in preservation technology may be an option for HT candidates at increased risk for PGD. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04141605.


Asunto(s)
Insuficiencia Cardíaca , Trasplante de Corazón , Corazón Auxiliar , Preservación de Órganos , Sistema de Registros , Humanos , Masculino , Femenino , Persona de Mediana Edad , Preservación de Órganos/métodos , Estudios Retrospectivos , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/cirugía , Insuficiencia Cardíaca/mortalidad , Resultado del Tratamiento , Adulto , Anciano , Disfunción Primaria del Injerto , Factores de Tiempo
14.
Metabolomics ; 20(3): 44, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581549

RESUMEN

INTRODUCTION: Two main approaches (organ culture and hypothermia) for the preservation and storage of human donor corneas are globally adopted for corneal preservation before the transplant. Hypothermia is a hypothermic storage which slows down cellular metabolism while organ culture, a corneal culture performed at 28-37 °C, maintains an active corneal metabolism. Researchers, till now, have just studied the impact of organ culture on human cornea after manipulating and disrupting tissues. OBJECTIVES: The aim of the current work was to optimize an analytical procedure which can be useful for discovering biomarkers capable of predicting tissue health status. For the first time, this research proposed a preliminary metabolomics study on medium for organ culture without manipulating and disrupting the valuable human tissues which could be still used for transplantation. METHODS: In particular, the present research proposed a method for investigating changes in the medium, over a storage period of 20 days, in presence and absence of a human donor cornea. An untargeted metabolomics approach using UHPLC-QTOF was developed to deeply investigate the differences on metabolites and metabolic pathways and the influence of the presence of the cornea inside the medium. RESULTS: Differences in the expression of some compounds emerged from this preliminary metabolomics approach, in particular in medium maintained for 10 and 20 days in presence but also in the absence of cornea. A total of 173 metabolites have been annotated and 36 pathways were enriched by pathway analysis. CONCLUSION: The results revealed a valuable untargeted metabolomics approach which can be applied in organ culture metabolomics.


Asunto(s)
Hipotermia , Humanos , Preservación de Órganos/métodos , Metabolómica , Córnea , Técnicas de Cultivo de Órganos/métodos
15.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673737

RESUMEN

Heart transplantation with donation after circulatory death (DCD) provides excellent patient outcomes and increases donor heart availability. However, unlike conventional grafts obtained through donation after brain death, DCD cardiac grafts are not only exposed to warm, unprotected ischemia, but also to a potentially damaging pre-ischemic phase after withdrawal of life-sustaining therapy (WLST). In this review, we aim to bring together knowledge about changes in cardiac energy metabolism and its regulation that occur in DCD donors during WLST, circulatory arrest, and following the onset of warm ischemia. Acute metabolic, hemodynamic, and biochemical changes in the DCD donor expose hearts to high circulating catecholamines, hypoxia, and warm ischemia, all of which can negatively impact the heart. Further metabolic changes and cellular damage occur with reperfusion. The altered energy substrate availability prior to organ procurement likely plays an important role in graft quality and post-ischemic cardiac recovery. These aspects should, therefore, be considered in clinical protocols, as well as in pre-clinical DCD models. Notably, interventions prior to graft procurement are limited for ethical reasons in DCD donors; thus, it is important to understand these mechanisms to optimize conditions during initial reperfusion in concert with graft evaluation and re-evaluation for the purpose of tailoring and adjusting therapies and ensuring optimal graft quality for transplantation.


Asunto(s)
Trasplante de Corazón , Humanos , Trasplante de Corazón/métodos , Preservación de Órganos/métodos , Obtención de Tejidos y Órganos/métodos , Animales , Perfusión/métodos , Donantes de Tejidos , Metabolismo Energético
16.
Int Immunopharmacol ; 132: 111953, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599097

RESUMEN

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is an important cause of early dysfunction and exacerbation of immune rejection in transplanted hearts. The integrin-related protein CD47 exacerbates myocardial ischemia-reperfusion injury by inhibiting the nitric oxide signaling pathway through interaction with thrombospondin-1 (TSP-1). In addition, the preservation quality of the donor hearts is a key determinant of transplant success. Preservation duration beyond four hours is associated with primary graft dysfunction. We hypothesized that blocking the CD47-TSP-1 system would attenuate ischemia-reperfusion injury in the transplanted heart and, thus, improve the preservation of donor hearts. METHODS: We utilized a syngeneic mouse heart transplant model to assess the effect of CD47 monoclonal antibody (CD47mAb) to treat MIRI. Donor hearts were perfused with CD47mAb or an isotype-matched control immunoglobulin (IgG2a) and were implanted into the abdominal cavity of the recipients after being stored in histidine-tryptophan-ketoglutarate (HTK) solution at 4 °C for 4 h or 8 h. RESULTS: At both the 4-h and 8-h preservation time points, mice in the experimental group perfused with CD47mAb exhibited prolonged survival in the transplanted heart, reduced inflammatory response and oxidative stress, significantly decreased inflammatory cell infiltration, and fewer apoptosis-related biomarkers. CONCLUSION: The application of CD47mAb for the blocking of CD47 attenuates MIRI as well as improves the preservation and prognosis of the transplanted heart in a murine heart transplant model.


Asunto(s)
Antígeno CD47 , Trasplante de Corazón , Ratones Endogámicos C57BL , Animales , Antígeno CD47/antagonistas & inhibidores , Antígeno CD47/metabolismo , Antígeno CD47/inmunología , Ratones , Masculino , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Preservación de Órganos/métodos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/inmunología , Daño por Reperfusión Miocárdica/metabolismo , Trombospondina 1/metabolismo , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos
17.
Clin Transplant ; 38(4): e15297, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38545915

RESUMEN

INTRODUCTION: Normothermic regional perfusion (NRP) represents an innovative technology that improves the outcomes for liver and kidney recipients of donation after circulatory determination of death (DCD) organs but protocols for abdominal-only NRP (A-NRP) DCD are lacking in the US. METHODS: We describe the implementation and expansion strategies of a transplant-center-based A-NRP DCD program that has grown in volume, geographical reach, and donor acceptance parameters, presented as four eras. RESULTS: In the implementation era, two donors were attempted, and one liver graft was transplanted. In the local expansion era, 33% of attempted donors resulted in transplantation and 42% of liver grafts from donors who died within the functional warm ischemic time (fWIT) limit were transplanted. In the Regional Expansion era, 25% of attempted donors resulted in transplantation and 50% of liver grafts from donors who died within the fWIT limit were transplanted. In the Donor Acceptance Expansion era, 46% of attempted donors resulted in transplantation and 72% of liver grafts from donors who died within the fWIT limit were transplanted. Eight discarded grafts demonstrated a potential opportunity for utilization. CONCLUSION: The stepwise approach to building an A-NRP program described here can serve as a model for other transplant centers.


Asunto(s)
Preservación de Órganos , Obtención de Tejidos y Órganos , Humanos , Preservación de Órganos/métodos , Perfusión/métodos , Donantes de Tejidos , Muerte , Supervivencia de Injerto
18.
Clin Transplant ; 38(4): e15296, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38545928

RESUMEN

INTRODUCTION: Clinical success of donation after circulatory death (DCD) heart transplantation is leading to growing adoption of this technique. In comparison to procurement from a brain-dead donor, DCD requires additional resources. The economic impact of DCD heart transplantation from the hospital perspective is not well known. METHODS: We compared the financial data of patients who received DCD allografts to those who received a DBD organ at our institution from January 1, 2021 to December 31, 2022. We also compared the cost of ex-situ machine perfusion to in-situ organ perfusion employed during DCD recovery. RESULTS: We performed 58 DBD and 22 DCD heart-alone transplantations during the study period. Out of 22 DCD grafts, 16 were recovered with thoracoabdominal normothermic regional perfusion (TA-NRP) and six with direct procurement followed by normothermic machine perfusion (DP-NMP). The contribution margin per case for DBD versus DCD was $234,362 and $235,440 (P = .72). The direct costs did not significantly differ between the two groups ($171,949 and 186,250; P = .49). In comparing the two methods of procuring hearts from DCD donors, the direct cost of TA-NRP was $155,955 in comparison to $223,399 for DP-NMP (P = .21). This difference translated into a clinically meaningful but not statistically significant greater contribution margin for TA-NRP ($242, 657 vs. $175,768; P = .34). CONCLUSIONS: Our data showed that the adoption of DCD procurement did not have a negative financial impact on the contribution margin in our institution. Programs considering starting DCD heart transplantation, and those who are currently performing DCD procurement should evaluate their own financial situation.


Asunto(s)
Trasplante de Corazón , Obtención de Tejidos y Órganos , Humanos , Trasplante de Corazón/métodos , Donantes de Tejidos , Perfusión/métodos , Muerte Encefálica , Muerte , Preservación de Órganos/métodos , Supervivencia de Injerto
19.
J Heart Lung Transplant ; 43(6): 1021-1029, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432523

RESUMEN

In a workshop sponsored by the U.S. National Heart, Lung, and Blood Institute, experts identified current knowledge gaps and research opportunities in the scientific, conceptual, and ethical understanding of organ donation after the circulatory determination of death and its technologies. To minimize organ injury from warm ischemia and produce better recipient outcomes, innovative techniques to perfuse and oxygenate organs postmortem in situ, such as thoracoabdominal normothermic regional perfusion, are being implemented in several medical centers in the US and elsewhere. These technologies have improved organ outcomes but have raised ethical and legal questions. Re-establishing donor circulation postmortem can be viewed as invalidating the condition of permanent cessation of circulation on which the earlier death determination was made and clamping arch vessels to exclude brain circulation can be viewed as inducing brain death. Alternatively, TA-NRP can be viewed as localized in-situ organ perfusion, not whole-body resuscitation, that does not invalidate death determination. Further scientific, conceptual, and ethical studies, such as those identified in this workshop, can inform and help resolve controversies raised by this practice.


Asunto(s)
Muerte , Obtención de Tejidos y Órganos , Humanos , Obtención de Tejidos y Órganos/métodos , Obtención de Tejidos y Órganos/ética , Estados Unidos , National Heart, Lung, and Blood Institute (U.S.) , Trasplante de Pulmón , Donantes de Tejidos , Preservación de Órganos/métodos , Trasplante de Corazón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA