Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.752
Filtrar
1.
Radiology ; 312(1): e240114, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980182

RESUMEN

Background Discrepancies in the literature regarding optimal optic nerve sheath diameter (ONSD) cutoffs for intracranial pressure (ICP) necessitate alternative neuroimaging parameters to improve clinical management. Purpose To evaluate the diagnostic accuracy of the dimensions of the perineural subarachnoid space to the optic nerve sheath ratio, measured using US, in predicting increased ICP. Materials and Methods In a prospective cohort study from April 2022 to December 2023, patients with suspected increased ICP underwent optic nerve US to determine the dimensions of arachnoid bulk (DAB) ratio and ONSD before invasive ICP measurement. Correlation between the parameters and ICP, as well as diagnostic accuracy, was assessed using area under the receiver operating characteristic curve (AUC) analysis. Results A total of 30 participants were included (mean age, 39 years ± 14 [SD]; 24 female). The DAB ratio and ONSD were significantly larger in participants with increased ICP (38% [0.16 of 0.42] and 14% [0.82 of 6.04 mm], respectively; P < .001). The DAB ratio showed a stronger correlation with ICP than ONSD (rs = 0.87 [P < .001] vs rs = 0.61 [P < .001]). The DAB ratio and ONSD optimal cutoffs for increased ICP were 0.5 and 6.5 mm, respectively, and the ratio had higher sensitivity (100% vs 92%) and specificity (94% vs 83%) compared with ONSD. Moreover, the DAB ratio better predicted increased ICP than ONSD, with a higher AUC (0.98 [95% CI: 0.95, 1.00] vs 0.86 [95% CI: 0.71, 0.95], P = .047). Conclusion An imaging ratio was proposed to predict ICP based on the relative anatomy of the cerebrospinal fluid space, demonstrating more accurate diagnosis of increased ICP and a strong correlation with ICP values, suggesting its potential utility as a neuroimaging marker in clinical settings. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Shepherd in this issue.


Asunto(s)
Aracnoides , Hipertensión Intracraneal , Presión Intracraneal , Nervio Óptico , Humanos , Femenino , Masculino , Adulto , Estudios Prospectivos , Nervio Óptico/diagnóstico por imagen , Presión Intracraneal/fisiología , Hipertensión Intracraneal/diagnóstico por imagen , Hipertensión Intracraneal/fisiopatología , Aracnoides/diagnóstico por imagen , Ultrasonografía/métodos , Persona de Mediana Edad
2.
Acta Neurochir (Wien) ; 166(1): 287, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980542

RESUMEN

BACKGROUND: Bacterial meningitis can cause a life-threatening increase in intracranial pressure (ICP). ICP-targeted treatment including an ICP monitoring device and external ventricular drainage (EVD) may improve outcomes but is also associated with the risk of complications. The frequency of use and complications related to ICP monitoring devices and EVDs among patients with bacterial meningitis remain unknown. We aimed to investigate the use of ICP monitoring devices and EVDs in patients with bacterial meningitis including frequency of increased ICP, drainage of cerebrospinal fluid (CSF), and complications associated with the insertion of ICP monitoring and external ventricular drain (EVD) in patients with bacterial meningitis. METHOD: In a single-center prospective cohort study (2017-2021), we examined the frequency of use and complications of ICP-monitoring devices and EVDs in adult patients with bacterial meningitis. RESULTS: We identified 108 patients with bacterial meningitis admitted during the study period. Of these, 60 were admitted to the intensive care unit (ICU), and 47 received an intracranial device (only ICP monitoring device N = 16; EVD N = 31). An ICP > 20 mmHg was observed in 8 patients at insertion, and in 21 patients (44%) at any time in the ICU. Cerebrospinal fluid (CSF) was drained in 24 cases (51%). Severe complications (intracranial hemorrhage) related to the device occurred in two patients, but one had a relative contraindication to receiving a device. CONCLUSIONS: Approximately half of the patients with bacterial meningitis needed intensive care and 47 had an intracranial device inserted. While some had conservatively correctable ICP, the majority needed CSF drainage. However, two patients experienced serious adverse events related to the device, potentially contributing to death. Our study highlights that the incremental value of ICP measurement and EVD in managing of bacterial meningitis requires further research.


Asunto(s)
Cuidados Críticos , Drenaje , Presión Intracraneal , Meningitis Bacterianas , Humanos , Masculino , Persona de Mediana Edad , Femenino , Presión Intracraneal/fisiología , Drenaje/métodos , Drenaje/efectos adversos , Adulto , Anciano , Estudios Prospectivos , Cuidados Críticos/métodos , Estudios de Cohortes , Monitoreo Fisiológico/métodos , Hipertensión Intracraneal/cirugía , Ventriculostomía/métodos , Ventriculostomía/efectos adversos
3.
PLoS One ; 19(7): e0306028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38950055

RESUMEN

Even with the powerful statistical parameters derived from the Extreme Gradient Boost (XGB) algorithm, it would be advantageous to define the predicted accuracy to the level of a specific case, particularly when the model output is used to guide clinical decision-making. The probability density function (PDF) of the derived intracranial pressure predictions enables the computation of a definite integral around a point estimate, representing the event's probability within a range of values. Seven hold-out test cases used for the external validation of an XGB model underwent retinal vascular pulse and intracranial pressure measurement using modified photoplethysmography and lumbar puncture, respectively. The definite integral ±1 cm water from the median (DIICP) demonstrated a negative and highly significant correlation (-0.5213±0.17, p< 0.004) with the absolute difference between the measured and predicted median intracranial pressure (DiffICPmd). The concordance between the arterial and venous probability density functions was estimated using the two-sample Kolmogorov-Smirnov statistic, extending the distribution agreement across all data points. This parameter showed a statistically significant and positive correlation (0.4942±0.18, p< 0.001) with DiffICPmd. Two cautionary subset cases (Case 8 and Case 9), where disagreement was observed between measured and predicted intracranial pressure, were compared to the seven hold-out test cases. Arterial predictions from both cautionary subset cases converged on a uniform distribution in contrast to all other cases where distributions converged on either log-normal or closely related skewed distributions (gamma, logistic, beta). The mean±standard error of the arterial DIICP from cases 8 and 9 (3.83±0.56%) was lower compared to that of the hold-out test cases (14.14±1.07%) the between group difference was statistically significant (p<0.03). Although the sample size in this analysis was limited, these results support a dual and complementary analysis approach from independently derived retinal arterial and venous non-invasive intracranial pressure predictions. Results suggest that plotting the PDF and calculating the lower order moments, arterial DIICP, and the two sample Kolmogorov-Smirnov statistic may provide individualized predictive accuracy parameters.


Asunto(s)
Presión Intracraneal , Aprendizaje Automático , Probabilidad , Humanos , Presión Intracraneal/fisiología , Femenino , Masculino , Algoritmos , Adulto , Persona de Mediana Edad
4.
BMJ Paediatr Open ; 8(1)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942587

RESUMEN

BACKGROUND: Raised intracranial pressure (ICP) contributes to approximately 20% of the admissions in the paediatric intensive care unit (PICU) in our setting. Timely identification and treatment of raised ICP is important to prevent brain herniation and death in such cases. The objective of this study was to examine the role of optic nerve sheath diameter (ONSD) in detecting clinically relevant raised ICP in children. METHODS: A hospital-based observational analytical study in a PICU of a tertiary care institute in India on children aged 2-14 years. ONSD was measured in all children on three time points that is, day 1, day 2 and between day 4 and 7 of admission. ONSD values were compared between children with and without clinical signs of raised ICP. RESULTS: Out of 137 paediatric patients recruited, 34 had signs of raised ICP. Mean ONSD on day 1 was higher in children with signs of raised ICP (4.99±0.57 vs 4.06±0.40; p<0.01). Mean ONSD on day 2 also was higher in raised ICP patients (4.94±0.55 vs 4.04±0.40; p<0.01). The third reading between days 4 and 7 of admission was less than the first 2 values but still higher in raised ICP patients (4.48±1.26 vs 3.99±0.57; p<0.001). The cut-off ONSD value for detecting raised ICP was 4.46 mm on the ROC curve with an area under curve 0.906 (95% CI 0.844 to 0.968), 85.3% sensitivity and 86.4% specificity. There was no difference in ONSD between the right and the left eyes at any time point irrespective of signs of raised ICP. CONCLUSION: We found that measurement of ONSD by transorbital ultrasound was able to detect clinically relevant raised ICP with an excellent discriminatory performance at the cut-off value of 4.46 mm.


Asunto(s)
Hipertensión Intracraneal , Nervio Óptico , Humanos , Niño , Nervio Óptico/diagnóstico por imagen , Nervio Óptico/patología , Hipertensión Intracraneal/diagnóstico , Hipertensión Intracraneal/diagnóstico por imagen , Preescolar , Femenino , Masculino , Adolescente , Unidades de Cuidado Intensivo Pediátrico , India , Ultrasonografía/métodos , Presión Intracraneal/fisiología , Curva ROC , Sensibilidad y Especificidad
5.
Comput Biol Med ; 177: 108677, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38833800

RESUMEN

Intracranial pressure (ICP) is commonly monitored to guide treatment in patients with serious brain disorders such as traumatic brain injury and stroke. Established methods to assess ICP are resource intensive and highly invasive. We hypothesized that ICP waveforms can be computed noninvasively from three extracranial physiological waveforms routinely acquired in the Intensive Care Unit (ICU): arterial blood pressure (ABP), photoplethysmography (PPG), and electrocardiography (ECG). We evaluated over 600 h of high-frequency (125 Hz) simultaneously acquired ICP, ABP, ECG, and PPG waveform data in 10 patients admitted to the ICU with critical brain disorders. The data were segmented in non-overlapping 10-s windows, and ABP, ECG, and PPG waveforms were used to train deep learning (DL) models to re-create concurrent ICP. The predictive performance of six different DL models was evaluated in single- and multi-patient iterations. The mean average error (MAE) ± SD of the best-performing models was 1.34 ± 0.59 mmHg in the single-patient and 5.10 ± 0.11 mmHg in the multi-patient analysis. Ablation analysis was conducted to compare contributions from single physiologic sources and demonstrated statistically indistinguishable performances across the top DL models for each waveform (MAE±SD 6.33 ± 0.73, 6.65 ± 0.96, and 7.30 ± 1.28 mmHg, respectively, for ECG, PPG, and ABP; p = 0.42). Results support the preliminary feasibility and accuracy of DL-enabled continuous noninvasive ICP waveform computation using extracranial physiological waveforms. With refinement and further validation, this method could represent a safer and more accessible alternative to invasive ICP, enabling assessment and treatment in low-resource settings.


Asunto(s)
Aprendizaje Profundo , Electrocardiografía , Unidades de Cuidados Intensivos , Presión Intracraneal , Fotopletismografía , Procesamiento de Señales Asistido por Computador , Humanos , Presión Intracraneal/fisiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Fotopletismografía/métodos , Electrocardiografía/métodos , Anciano , Monitoreo Fisiológico/métodos
6.
Crit Care Explor ; 6(5): e1089, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38728059

RESUMEN

IMPORTANCE: Patients admitted with cerebral hemorrhage or cerebral edema often undergo external ventricular drain (EVD) placement to monitor and manage intracranial pressure (ICP). A strain gauge transducer accompanies the EVD to convert a pressure signal to an electrical waveform and assign a numeric value to the ICP. OBJECTIVES: This study explored ICP accuracy in the presence of blood and other viscous fluid contaminates in the transducer. DESIGN: Preclinical comparative design study. SETTING: Laboratory setting using two Natus EVDs, two strain gauge transducers, and a sealed pressure chamber. PARTICIPANTS: No human subjects or animal models were used. INTERVENTIONS: A control transducer primed with saline was compared with an investigational transducer primed with blood or with saline/glycerol mixtures in mass:mass ratios of 25%, 50%, 75%, and 100% glycerol. Volume in a sealed chamber was manipulated to reflect changes in ICP to explore the impact of contaminates on pressure measurement. MEASUREMENTS AND MAIN RESULTS: From 90 paired observations, ICP readings were statistically significantly different between the control (saline) and experimental (glycerol or blood) transducers. The time to a stable pressure reading was significantly different for saline vs. 25% glycerol (< 0.0005), 50% glycerol (< 0.005), 75% glycerol (< 0.0001), 100% glycerol (< 0.0005), and blood (< 0.0005). A difference in resting stable pressure was observed for saline vs. blood primed transducers (0.041). CONCLUSIONS AND RELEVANCE: There are statistically significant and clinically relevant differences in time to a stable pressure reading when contaminates are introduced into a closed drainage system. Changing a transducer based on the presence of blood contaminate should be considered to improve accuracy but must be weighed against the risk of introducing infection.


Asunto(s)
Presión Intracraneal , Transductores de Presión , Presión Intracraneal/fisiología , Humanos , Sangre/metabolismo , Glicerol , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Drenaje/instrumentación , Hemorragia Cerebral/fisiopatología , Hemorragia Cerebral/diagnóstico
7.
Physiol Meas ; 45(6)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38776946

RESUMEN

Objective.Continuous monitoring of cerebrospinal compliance (CC)/cerebrospinal compensatory reserve (CCR) is crucial for timely interventions and preventing more substantial deterioration in the context of acute neural injury, as it enables the early detection of abnormalities in intracranial pressure (ICP). However, to date, the literature on continuous CC/CCR monitoring is scattered and occasionally challenging to consolidate.Approach.We subsequently conducted a systematic scoping review of the human literature to highlight the available continuous CC/CCR monitoring methods.Main results.This systematic review incorporated a total number of 76 studies, covering diverse patient types and focusing on three primary continuous CC or CCR monitoring metrics and methods-Moving Pearson's correlation between ICP pulse amplitude waveform and ICP, referred to as RAP, the Spiegelberg Compliance Monitor, changes in cerebral blood flow velocity with respect to the alternation of ICP measured through transcranial doppler (TCD), changes in centroid metric, high frequency centroid (HFC) or higher harmonics centroid (HHC), and the P2/P1 ratio which are the distinct peaks of ICP pulse wave. The majority of the studies in this review encompassed RAP metric analysis (n= 43), followed by Spiegelberg Compliance Monitor (n= 11), TCD studies (n= 9), studies on the HFC/HHC (n= 5), and studies on the P2/P1 ratio studies (n= 6). These studies predominantly involved acute traumatic neural injury (i.e. Traumatic Brain Injury) patients and those with hydrocephalus. RAP is the most extensively studied of the five focused methods and exhibits diverse applications. However, most papers lack clarification on its clinical applicability, a circumstance that is similarly observed for the other methods.Significance.Future directions involve exploring RAP patterns and identifying characteristics and artifacts, investigating neuroimaging correlations with continuous CC/CCR and integrating machine learning, holding promise for simplifying CC/CCR determination. These approaches should aim to enhance the precision and accuracy of the metric, making it applicable in clinical practice.


Asunto(s)
Presión Intracraneal , Humanos , Monitoreo Fisiológico/métodos , Presión Intracraneal/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Circulación Cerebrovascular/fisiología , Adaptabilidad
8.
World Neurosurg ; 187: e656-e664, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704142

RESUMEN

OBJECTIVE: The measurement of optic nerve sheath diameter is a noninvasive, practical, and economical method used to identify increased intracranial pressure. The purpose of this study is to detect the preoperative and postoperative changes in optic nerve sheath diameter in patients with intracranial mass, to correlate these changes with optic nerve diameter variations, and to evaluate the impact of hydrocephalus on these alterations. MATERIAL AND METHOD: This study was conducted with patients who presented to our clinic with complaints of intracranial mass, were decided for surgery, and underwent surgical procedures. FINDINGS: The optic nerve and optic nerve sheath diameter measurement values were different preoperatively and postoperatively, with a significant decrease in the optic nerve sheath diameter in all groups in postoperative measurements, while the optic nerve diameter significantly increased. CONCLUSIONS: Although there was no significant difference between the effects of hydrocephalus and intracranial mass-related increase in intracranial pressure on the optic nerve and optic nerve sheath, it was observed that hydrocephalus increased intracranial pressure when considering the Evans ratio. It has been determined that as ventricular dilatation increases, so does intracranial pressure, which leads to an increase in the diameter of the optic nerve sheath, resulting in papilledema and thinning of the optic nerve. These findings indicate the importance of early cerebrospinal fluid diversion and monitoring optic nerve sheath diameter in the management.


Asunto(s)
Hidrocefalia , Nervio Óptico , Humanos , Nervio Óptico/diagnóstico por imagen , Nervio Óptico/patología , Hidrocefalia/cirugía , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/etiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Presión Intracraneal/fisiología , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Papiledema/etiología , Adulto Joven , Hipertensión Intracraneal/diagnóstico por imagen , Hipertensión Intracraneal/complicaciones , Adolescente
9.
PLoS Comput Biol ; 20(5): e1012145, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805558

RESUMEN

In ischaemic stroke, a large reduction in blood supply can lead to the breakdown of the blood-brain barrier and to cerebral oedema after reperfusion therapy. The resulting fluid accumulation in the brain may contribute to a significant rise in intracranial pressure (ICP) and tissue deformation. Changes in the level of ICP are essential for clinical decision-making and therapeutic strategies. However, the measurement of ICP is constrained by clinical techniques and obtaining the exact values of the ICP has proven challenging. In this study, we propose the first computational model for the simulation of cerebral oedema following acute ischaemic stroke for the investigation of ICP and midline shift (MLS) relationship. The model consists of three components for the simulation of healthy blood flow, occluded blood flow and oedema, respectively. The healthy and occluded blood flow components are utilized to obtain oedema core geometry and then imported into the oedema model for the simulation of oedema growth. The simulation results of the model are compared with clinical data from 97 traumatic brain injury patients for the validation of major model parameters. Midline shift has been widely used for the diagnosis, clinical decision-making, and prognosis of oedema patients. Therefore, we focus on quantifying the relationship between ICP and midline shift (MLS) and identify the factors that can affect the ICP-MLS relationship. Three major factors are investigated, including the brain geometry, blood-brain barrier damage severity and the types of oedema (including rare types of oedema). Meanwhile, the two major types (stress and tension/compression) of mechanical brain damage are also presented and the differences in the stress, tension, and compression between the intraparenchymal and periventricular regions are discussed. This work helps to predict ICP precisely and therefore provides improved clinical guidance for the treatment of brain oedema.


Asunto(s)
Edema Encefálico , Simulación por Computador , Presión Intracraneal , Accidente Cerebrovascular Isquémico , Edema Encefálico/fisiopatología , Humanos , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/complicaciones , Presión Intracraneal/fisiología , Biología Computacional , Ventrículos Cerebrales/fisiopatología , Ventrículos Cerebrales/diagnóstico por imagen , Barrera Hematoencefálica/fisiopatología , Masculino
10.
Acta Neurochir (Wien) ; 166(1): 240, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814348

RESUMEN

BACKGROUND: Intracranial pressure (ICP) monitoring plays a key role in patients with traumatic brain injury (TBI), however, cerebral hypoxia can occur without intracranial hypertension. Aiming to improve neuroprotection in these patients, a possible alternative is the association of Brain Tissue Oxygen Pressure (PbtO2) monitoring, used to detect PbtO2 tension. METHOD: We systematically searched PubMed, Embase and Cochrane Central for RCTs comparing combined PbtO2 + ICP monitoring with ICP monitoring alone in patients with severe or moderate TBI. The outcomes analyzed were mortality at 6 months, favorable outcome (GOS ≥ 4 or GOSE ≥ 5) at 6 months, pulmonary events, cardiovascular events and sepsis rate. RESULTS: We included 4 RCTs in the analysis, totaling 505 patients. Combined PbtO2 + ICP monitoring was used in 241 (47.72%) patients. There was no significant difference between the groups in relation to favorable outcome at 6 months (RR 1.17; 95% CI 0.95-1.43; p = 0.134; I2 = 0%), mortality at 6 months (RR 0.82; 95% CI 0.57-1.18; p = 0.281; I2 = 34%), cardiovascular events (RR 1.75; 95% CI 0.86-3.52; p = 0.120; I2 = 0%) or sepsis (RR 0.75; 95% CI 0.25-2.22; p = 0.604; I2 = 0%). The risk of pulmonary events was significantly higher in the group with combined PbtO2 + ICP monitoring (RR 1.44; 95% CI 1.11-1.87; p = 0.006; I2 = 0%). CONCLUSIONS: Our findings suggest that combined PbtO2 + ICP monitoring does not change outcomes such as mortality, functional recovery, cardiovascular events or sepsis. Furthermore, we found a higher risk of pulmonary events in patients undergoing combined monitoring.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Presión Intracraneal , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/mortalidad , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/fisiopatología , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/diagnóstico , Presión Intracraneal/fisiología , Monitoreo Fisiológico/métodos , Monitorización Neurofisiológica/métodos , Oxígeno/análisis , Oxígeno/metabolismo
11.
Crit Care ; 28(1): 170, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769582

RESUMEN

AIMS AND SCOPE: The aim of this panel was to develop consensus recommendations on targeted temperature control (TTC) in patients with severe traumatic brain injury (TBI) and in patients with moderate TBI who deteriorate and require admission to the intensive care unit for intracranial pressure (ICP) management. METHODS: A group of 18 international neuro-intensive care experts in the acute management of TBI participated in a modified Delphi process. An online anonymised survey based on a systematic literature review was completed ahead of the meeting, before the group convened to explore the level of consensus on TTC following TBI. Outputs from the meeting were combined into a further anonymous online survey round to finalise recommendations. Thresholds of ≥ 16 out of 18 panel members in agreement (≥ 88%) for strong consensus and ≥ 14 out of 18 (≥ 78%) for moderate consensus were prospectively set for all statements. RESULTS: Strong consensus was reached on TTC being essential for high-quality TBI care. It was recommended that temperature should be monitored continuously, and that fever should be promptly identified and managed in patients perceived to be at risk of secondary brain injury. Controlled normothermia (36.0-37.5 °C) was strongly recommended as a therapeutic option to be considered in tier 1 and 2 of the Seattle International Severe Traumatic Brain Injury Consensus Conference ICP management protocol. Temperature control targets should be individualised based on the perceived risk of secondary brain injury and fever aetiology. CONCLUSIONS: Based on a modified Delphi expert consensus process, this report aims to inform on best practices for TTC delivery for patients following TBI, and to highlight areas of need for further research to improve clinical guidelines in this setting.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Consenso , Técnica Delphi , Hipotermia Inducida , Humanos , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Hipotermia Inducida/métodos , Hipotermia Inducida/normas , Unidades de Cuidados Intensivos/organización & administración , Presión Intracraneal/fisiología , Encuestas y Cuestionarios
12.
Fluids Barriers CNS ; 21(1): 44, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773608

RESUMEN

OBJECTIVE: Optimizing the treatment of several neurosurgical and neurological disorders relies on knowledge of the intracranial pressure (ICP). However, exploration of normal ICP and intracranial pressure pulse wave amplitude (PWA) values in healthy individuals poses ethical challenges, and thus the current documentation remains scarce. This study explores ICP and PWA values for healthy adults without intracranial pathology expected to influence ICP. METHODS: Adult patients (age > 18 years) undergoing surgery for an unruptured intracranial aneurysm without any other neurological co-morbidities were included. Patients had a telemetric ICP sensor inserted, and ICP was measured in four different positions: supine, lateral recumbent, standing upright, and 45-degree sitting, at day 1, 14, 30, and 90 following the surgery. RESULTS: ICP in each position did not change with time after surgery. Median ICP was 6.7 mmHg and median PWA 2.1 mmHg in the supine position, while in the upright standing position median ICP was - 3.4 mmHg and median PWA was 1.9 mmHg. After standardization of the measurements from the transducer site to the external acoustic meatus, the median ICPmidbrain was 8.3 mmHg in the supine position and 1.2 mmHg in the upright standing position. CONCLUSION: Our study provides insights into normal ICP dynamics in healthy adults following a uncomplicated surgery for an unruptured aneurysm. These results suggest a slightly wider normal reference range for invasive intracranial pressure than previously suggested, and present the first normal values for PWA in different positions. Further studies are, however, essential to enhance our understanding of normal ICP. Trial registration The study was preregistered at www. CLINICALTRIALS: gov (NCT03594136) (11 July 2018).


Asunto(s)
Aneurisma Intracraneal , Presión Intracraneal , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aneurisma Intracraneal/cirugía , Aneurisma Intracraneal/fisiopatología , Presión Intracraneal/fisiología , Procedimientos Neuroquirúrgicos , Postura/fisiología , Análisis de la Onda del Pulso , Estudios Prospectivos
13.
PLoS One ; 19(5): e0298619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748676

RESUMEN

INTRODUCTION: Traumatic brain injury (TBI) accounts for the majority of Uganda's neurosurgical disease burden; however, invasive intracranial pressure (ICP) monitoring is infrequently used. Noninvasive monitoring could change the care of patients in such a setting through quick detection of elevated ICP. PURPOSE: Given the novelty of pupillometry in Uganda, this mixed methods study assessed the feasibility of pupillometry for noninvasive ICP monitoring for patients with TBI. METHODS: Twenty-two healthcare workers in Kampala, Uganda received education on pupillometry, practiced using the device on healthy volunteers, and completed interviews discussing pupillometry and its implementation. Interviews were assessed with qualitative analysis, while quantitative analysis evaluated learning time, measurement time, and accuracy of measurements by participants compared to a trainer's measurements. RESULTS: Most participants (79%) reported a positive perception of pupillometry. Participants described the value of pupillometry in the care of patients during examination, monitoring, and intervention delivery. Commonly discussed concerns included pupillometry's cost, understanding, and maintenance needs. Perceived implementation challenges included device availability and contraindications for use. Participants suggested offering continued education and engaging hospital leadership as implementation strategies. During training, the average learning time was 13.5 minutes (IQR 3.5), and the measurement time was 50.6 seconds (IQR 11.8). Paired t-tests to evaluate accuracy showed no statistically significant difference in comparison measurements. CONCLUSION: Pupillometry was considered acceptable for noninvasive ICP monitoring of patients with TBI, and pupillometer use was shown to be feasible during training. However, key concerns would need to be addressed during implementation to aid device utilization.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Estudios de Factibilidad , Presión Intracraneal , Humanos , Uganda , Masculino , Femenino , Monitoreo Fisiológico/métodos , Adulto , Presión Intracraneal/fisiología , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/psicología , Personal de Salud , Pupila/fisiología , Persona de Mediana Edad
14.
Neurosurg Rev ; 47(1): 222, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758384

RESUMEN

To assess whether monitoring brain tissue oxygen partial pressure (PbtO2) or employing intracranial pressure (ICP)/cerebral perfusion pressure (CCP)-guided management improves patient outcomes, including mortality, hospital length of stay (LOS), mean daily ICP and mean daily CCP during the intensive care unit(ICU)stay. We searched the Web of Science, EMBASE, PubMed, Cochrane Library, and MEDLINE databases until December 12, 2023. Prospective randomized controlled and cohort studies were included. A meta-analysis was performed for the primary outcome measure, mortality, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eleven studies with a total of 37,492 patients were included. The mortality in the group with PbtO2 was 29.0% (odds ratio: 0.73;95% confidence interval [CI]:0.56-0.96; P = 0.03; I = 55%), demonstrating a significant benefit. The overall hospital LOS was longer in the PbtO2 group than that in the ICP/CPP group (mean difference:2.03; 95% CI:1.03-3.02; P<0.0001; I = 39%). The mean daily ICP in the PbtO2 monitoring group was lower than that in the ICP/CPP group (mean difference:-1.93; 95% CI: -3.61 to -0.24; P = 0.03; I = 41%). Moreover, PbtO2 monitoring did not improve the mean daily CPP (mean difference:2.43; 95%CI: -1.39 to 6.25;P = 0.21; I = 56%).Compared with ICP/CPP monitoring, PbtO2 monitoring reduced the mortality and the mean daily ICP in patients with severe traumatic brain injury; however, no significant effect was noted on the mean daily CPP. In contrast, ICP/CPP monitoring alone was associated with a short hospital stay.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encéfalo , Presión Intracraneal , Oxígeno , Humanos , Lesiones Traumáticas del Encéfalo/mortalidad , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/terapia , Circulación Cerebrovascular/fisiología , Presión Intracraneal/fisiología , Tiempo de Internación , Monitoreo Fisiológico/métodos , Oxígeno/metabolismo , Oxígeno/sangre , Presión Parcial , Pronóstico
15.
Clin Neurol Neurosurg ; 242: 108310, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38788542

RESUMEN

BACKGROUND: Gold standard for determining intracranial pressure (ICP), intraventricular catheter, is invasive with associated risks. Non-invasive investigations like magnetic resonance imaging and ultrasonography have demonstrated correlation between optic nerve sheath diameter (ONSD) and raised ICP. However, computed tomography (CT) is accessible and less operator-dependent. Literature shows variable results regarding correlations between ICP and ONSD on CT. The study aimed to investigate correlations between raised ICP and ONSD, eyeball transverse diameter (ETD), and ONSD/ETD ratios on CT scan(s) of severe head injuries. METHODS: A retrospective review of a three-year prospectively-maintained database of severe traumatic head injuries in patients who had ICP measurements and CT scans was conducted. Glasgow Coma Score (GCS), ICP, ONSD 3 mm and 9 mm behind the globe, ETD, ONSD/ETD ratios, CT Marshall Grade, and Glasgow Outcome Score (GOS) were recorded. Statistical analysis assessed correlations between ICP and CT measurements. RESULTS: Seventy-four patients were assessed; mortality rate: 36.5 %. Assault (48.6 %) and pedestrian-vehicle collisions (21.6 %) were the most common mechanisms. CT Marshall Grade correlated significantly with 3 mm and 9 mm ONSD, ONSD/ETD ratios, GCS, and GCS motor score, which correlated significantly with GOS. No significant correlation was found between ICP and ONSD, ETD or ONSD/ETD ratios. Marshall Grade was not significantly associated with ICP measurements but correlated with injury severity. CONCLUSIONS: Unlike previous studies, our study not only investigated the correlation between ICP and single variables (ONSD and ETD) but also the ONSD/ETD ratios. No correlations were observed between raised ICP and ONSD, ETD or ONSD/ETD ratio on CT in neurotrauma patients.


Asunto(s)
Traumatismos Craneocerebrales , Presión Intracraneal , Nervio Óptico , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Nervio Óptico/diagnóstico por imagen , Nervio Óptico/patología , Presión Intracraneal/fisiología , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Traumatismos Craneocerebrales/diagnóstico por imagen , Anciano , Adulto Joven , Adolescente , Escala de Coma de Glasgow , Hipertensión Intracraneal/diagnóstico por imagen , Hipertensión Intracraneal/etiología , Ojo/diagnóstico por imagen , Anciano de 80 o más Años
16.
Crit Care Explor ; 6(5): e1083, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694846

RESUMEN

OBJECTIVES: This prospective cohort study aimed to investigate changes in intracranial pressure (ICP) and cerebral hemodynamics in infants with congenital heart disease undergoing the Glenn procedure, focusing on the relationship between superior vena cava pressure and estimated ICP. DESIGN: A single-center prospective cohort study. SETTING: The study was conducted in a cardiac center over 4 years (2019-2022). PATIENTS: Twenty-seven infants with congenital heart disease scheduled for the Glenn procedure were included in the study, and detailed patient demographics and primary diagnoses were recorded. INTERVENTIONS: Transcranial Doppler (TCD) ultrasound examinations were performed at three time points: baseline (preoperatively), postoperative while ventilated (within 24-48 hr), and at discharge. TCD parameters, blood pressure, and pulmonary artery pressure were measured. MEASUREMENTS AND MAIN RESULTS: TCD parameters included systolic flow velocity, diastolic flow velocity (dFV), mean flow velocity (mFV), pulsatility index (PI), and resistance index. Estimated ICP and cerebral perfusion pressure (CPP) were calculated using established formulas. There was a significant postoperative increase in estimated ICP from 11 mm Hg (interquartile range [IQR], 10-16 mm Hg) to 15 mm Hg (IQR, 12-21 mm Hg) postoperatively (p = 0.002) with a trend toward higher CPP from 22 mm Hg (IQR, 14-30 mm Hg) to 28 mm Hg (IQR, 22-38 mm Hg) postoperatively (p = 0.1). TCD indices reflected alterations in cerebral hemodynamics, including decreased dFV and mFV and increased PI. Intracranial hemodynamics while on positive airway pressure and after extubation were similar. CONCLUSIONS: Glenn procedure substantially increases estimated ICP while showing a trend toward higher CPP. These findings underscore the intricate interaction between venous pressure and cerebral hemodynamics in infants undergoing the Glenn procedure. They also highlight the remarkable complexity of cerebrovascular autoregulation in maintaining stable brain perfusion under these circumstances.


Asunto(s)
Circulación Cerebrovascular , Cardiopatías Congénitas , Hemodinámica , Presión Intracraneal , Ultrasonografía Doppler Transcraneal , Humanos , Lactante , Estudios Prospectivos , Femenino , Masculino , Presión Intracraneal/fisiología , Cardiopatías Congénitas/cirugía , Cardiopatías Congénitas/fisiopatología , Cardiopatías Congénitas/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Ultrasonografía Doppler Transcraneal/métodos , Hemodinámica/fisiología , Estudios de Cohortes , Procedimiento de Fontan , Vena Cava Superior/fisiopatología , Vena Cava Superior/diagnóstico por imagen
17.
Injury ; 55(6): 111589, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704918

RESUMEN

INTRODUCTION: Brain contusion is a prevalent traumatic brain injury (TBI) in low-age children, bearing the potential for coma and fatality. Hence, it is imperative to undertake comprehensive research in this field. METHODS: This study employed 4-week-old piglets as surrogates for children and introduced self-designed devices for both free-fall drop impact tests and drop-hammer impact tests. The study explored the characteristics of brain contusion and dynamic responses of brain under these distinct testing conditions. RESULTS: Brain contusions induced by free-fall and drop-hammer conditions both were categorized as the coup injury, except that slight difference in the contusion location was observed, with contusion occurring mainly in the surrounding regions beneath the impact location under free-fall condition and the region just right beneath the impact location under drop-hammer condition. Analysis of impact force and intracranial pressure (ICP) curves indicated similar trends in impact forces under both conditions, yet different trends in ICPs. Further examination of the peak impact forces and ICPs elucidated that, with increasing impact energy, the former followed a combined power and first-order polynomial function, while the latter adhered to a power function. The brain contusion was induced at the height (energy) of 2 m (17.2 J), but not at the heights of 0.4, 0.7, 1, 1.35 and 1.7 m, when the vertex of the piglet head collided with a rigid plate. In the case of a cylindrical rigid hammer (cross-sectional area constituting 40 % of the parietal bone) striking the head, the brain contusion was observed under the energy of 21.9 J, but not under energies of 8.1 J, 12.7 J and 20.3 J. Notably, the incidence of brain contusion was more pronounced under the free-fall condition. CONCLUSIONS: These findings not only facilitate a comprehensive understanding of brain contusion dynamics in pediatric TBIs, but also contribute to the validation of theories and finite element models for piglet heads, which are commonly employed as surrogates for children.


Asunto(s)
Contusión Encefálica , Modelos Animales de Enfermedad , Animales , Porcinos , Contusión Encefálica/fisiopatología , Humanos , Presión Intracraneal/fisiología , Fenómenos Biomecánicos , Lesiones Traumáticas del Encéfalo/fisiopatología , Encéfalo/fisiopatología
18.
PLoS One ; 19(4): e0297131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626156

RESUMEN

BACKGROUND: Intraventricular hemorrhage (IVH) is a severe condition with poor outcomes and high mortality. IRRAflow® (IRRAS AB) is a new technology introduced to accelerate IVH clearance by minimally invasive wash-out. The IRRAflow® system performs active and controlled intracranial irrigation and aspiration with physiological saline, while simultaneously monitoring and maintaining a stable intracranial pressure (ICP). We addressed important aspects of the device implementation and intracranial lavage. METHOD: To allow versatile investigation of multiple device parameters, we designed an ex vivo lab setup. We evaluated 1) compatibility between the IRRAflow® catheter and the Silverline f10 bolt (Spiegelberg), 2) the physiological and hydrodynamic effects of varying the IRRAflow® settings, 3) the accuracy of the IRRAflow® injection volumes, and 4) the reliability of the internal ICP monitor of the IRRAflow®. RESULTS: The IRRAflow® catheter was not compatible with Silverline bolt fixation, which was associated with leakage and obstruction. Design space exploration of IRRAflow® settings revealed that appropriate settings included irrigation rate 20 ml/h with a drainage bag height at 0 cm, irrigation rate 90 ml/h with a drainage bag height at 19 cm and irrigation rate 180 ml/h with a drainage bag height at 29 cm. We found the injection volume performed by the IRRAflow® to be stable and reliable, while the internal ICP monitor was compromised in several ways. We observed a significant mean drift difference of 3.16 mmHg (variance 0.4, p = 0.05) over a 24-hour test period with a mean 24-hour drift of 3.66 mmHg (variance 0.28) in the pressures measured by the IRRAflow® compared to 0.5 mmHg (variance 1.12) in the Raumedic measured pressures. CONCLUSION: Bolting of the IRRAflow® catheter using the Medtronic Silverline® bolt is not recommendable. Increased irrigation rates are recommendable followed by a decrease in drainage bag level. ICP measurement using the IRRAflow® device was unreliable and should be accompanied by a control ICP monitor device in clinical settings.


Asunto(s)
Presión Intracraneal , Irrigación Terapéutica , Humanos , Reproducibilidad de los Resultados , Presión Intracraneal/fisiología , Monitoreo Fisiológico , Hemorragia Cerebral/terapia , Hematoma
19.
Acta Neurochir (Wien) ; 166(1): 190, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38653934

RESUMEN

BACKGROUND: Cerebral perfusion pressure (CPP) management in the developing child with traumatic brain injury (TBI) is challenging. The pressure reactivity index (PRx) may serve as marker of cerebral pressure autoregulation (CPA) and optimal CPP (CPPopt) may be assessed by identifying the CPP level with best (lowest) PRx. To evaluate the potential of CPPopt guided management in children with severe TBI, cerebral microdialysis (CMD) monitoring levels of lactate and the lactate/pyruvate ratio (LPR) (indicators of ischemia) were related to actual CPP levels, autoregulatory state (PRx) and deviations from CPPopt (ΔCPPopt). METHODS: Retrospective study of 21 children ≤ 17 years with severe TBI who had both ICP and CMD monitoring were included. CPP, PRx, CPPopt and ΔCPPopt where calculated, dichotomized and compared with CMD lactate and lactate-pyruvate ratio. RESULTS: Median age was 16 years (range 8-17) and median Glasgow coma scale motor score 5 (range 2-5). Both lactate (p = 0.010) and LPR (p = < 0.001) were higher when CPP ≥ 70 mmHg than when CPP < 70. When PRx ≥ 0.1 both lactate and LPR were higher than when PRx < 0.1 (p = < 0.001). LPR was lower (p = 0.012) when CPPopt ≥ 70 mmHg than when CPPopt < 70, but there were no differences in lactate levels. When ΔCPPopt > 10 both lactate (p = 0.026) and LPR (p = 0.002) were higher than when ΔCPPopt < -10. CONCLUSIONS: Increased levels of CMD lactate and LPR in children with severe TBI appears to be related to disturbed CPA (PRx). Increased lactate and LPR also seems to be associated with actual CPP levels ≥ 70 mmHg. However, higher lactate and LPR values were also seen when actual CPP was above CPPopt. Higher CPP appears harmful when CPP is above the upper limit of pressure autoregulation. The findings indicate that CPPopt guided CPP management may have potential in pediatric TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Circulación Cerebrovascular , Homeostasis , Presión Intracraneal , Ácido Láctico , Humanos , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/metabolismo , Niño , Adolescente , Homeostasis/fisiología , Femenino , Masculino , Estudios Retrospectivos , Presión Intracraneal/fisiología , Circulación Cerebrovascular/fisiología , Ácido Láctico/metabolismo , Ácido Láctico/análisis , Microdiálisis/métodos , Ácido Pirúvico/metabolismo , Ácido Pirúvico/análisis , Encéfalo/metabolismo , Encéfalo/fisiopatología
20.
Acta Neurochir (Wien) ; 166(1): 177, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622368

RESUMEN

PURPOSE: In general, high levels of PEEP application is avoided in patients undergoing craniotomy to prevent a rise in ICP. But that approach would increase the risk of secondary brain injury especially in hypoxemic patients. Because the optic nerve sheath is distensible, a rise in ICP is associated with an increase in the optic nerve sheath diameter (ONSD). The cutoff value for elevated ICP assessed by ONSD is between 5.6 and 6.3 mm. We aimed to evaluate the effect of different PEEP levels on ONSD and compare the effect of different PEEP levels in patients with and without intracranial midline shift. METHODS: This prospective observational study was performed in aged 18-70 years, ASA I-III, 80 patients who were undergoing supratentorial craniotomy. After the induction of general anesthesia, the ONSD's were measured by the linear transducer from 3 mm below the globe at PEEP values of 0-5-10 cmH2O. The ONSD were compered between patients with (n = 7) and without midline shift (n = 73) at different PEEP values. RESULTS: The increases in ONSD due to increase in PEEP level were determined (p < 0.001). No difference was found in the comparison of ONSD between patients with and without midline shift in different PEEP values (p = 0.329, 0.535, 0.410 respectively). But application of 10 cmH2O PEEP in patients with a midline shift increased the mean ONSD value to 5.73 mm. This value is roughly 0.1 mm higher than the lower limit of the ONSD cutoff value. CONCLUSIONS: The ONSD in adults undergoing supratentorial tumor craniotomy, PEEP values up to 5 cmH2O, appears not to be associated with an ICP increase; however, the ONSD exceeded the cutoff for increased ICP when a PEEP of 10 cmH2O was applied in patients with midline shift.


Asunto(s)
Hipertensión Intracraneal , Adulto , Humanos , Craneotomía/efectos adversos , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/cirugía , Presión Intracraneal/fisiología , Nervio Óptico/cirugía , Nervio Óptico/diagnóstico por imagen , Respiración con Presión Positiva/efectos adversos , Ultrasonografía/efectos adversos , Adulto Joven , Persona de Mediana Edad , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...