Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.413
Filtrar
1.
Sci Rep ; 14(1): 17955, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095475

RESUMEN

Probiotic production in commercial culture media is expensive, so, it is necessary to design culture media based on "low-cost" components like agro-industrial by-products. Therefore, this study aimed to design an agro-industrial by-product-based culture media using whey, sugarcane molasses, and palm kernel cake as components to produce Lactococcus lactis A12, Priestia megaterium M4, and Priestia sp. M10 isolated from Nile tilapia (Oreochromis niloticus) associated gut microbiota. Higher bacterial concentrations were achieved at high whey concentrations and low concentrations of sugarcane molasses and palm kernel cake (PKC) using agitation. The optimal conditions were whey, 3.84% w/v; sugarcane molasses, 7.39% w/v; PKC, 0.77% w/v; and agitation speed, 75 RPM. Bacterial growth under optimal conditions was compared to that in commercial Brain-Heart Infusion (BHI) broth. L. lactis A12 showed similar growth in the optimal media and BHI. The estimated cost of the culture media based on component prices was USD $ 3.01/L, which is 86.93% lower than BHI broth (USD $ 23.04/L). It was possible to design a "low-cost agro-industrial by-product-based culture media to produce L. lactis A12 and the two Priestia species under monoculture conditions.


Asunto(s)
Medios de Cultivo , Probióticos , Probióticos/metabolismo , Animales , Medios de Cultivo/química , Lactococcus lactis/metabolismo , Lactococcus lactis/crecimiento & desarrollo , Suero Lácteo/microbiología , Suero Lácteo/metabolismo , Cíclidos/microbiología , Cíclidos/metabolismo , Cíclidos/crecimiento & desarrollo , Microbioma Gastrointestinal , Melaza , Alimentación Animal , Saccharum
2.
J Agric Food Chem ; 72(32): 18234-18246, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087623

RESUMEN

Escherichia coli Nissle 1917 (EcN) is one of the most widely used probiotics to treat gastrointestinal diseases. Recently, many studies have engineered EcN to release therapeutic proteins to treat specific diseases. However, because EcN exhibits intestinal metabolic activities, it is difficult to predict outcomes after administration. In silico and fermentation profiles revealed mucin metabolism of EcN. Multiomics revealed that fucose metabolism contributes to the intestinal colonization of EcN by enhancing the synthesis of flagella and nutrient uptake. The multiomics results also revealed that excessive intracellular trehalose synthesis in EcN, which is responsible for galactose metabolism, acts as a metabolic bottleneck, adversely affecting growth. To improve the ability of EcN to metabolize galactose, otsAB genes for trehalose synthesis were deleted, resulting in the ΔotsAB strain; the ΔotsAB strain exhibited a 1.47-fold increase in the growth rate and a 1.37-fold increase in the substrate consumption rate relative to wild-type EcN.


Asunto(s)
Escherichia coli , Intestinos , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Intestinos/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Probióticos/metabolismo , Galactosa/metabolismo , Fermentación , Trehalosa/metabolismo , Humanos , Fucosa/metabolismo
3.
Sci Rep ; 14(1): 18518, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122808

RESUMEN

In this study, a variety of probiotic strains, including Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium longum, Limosilactobacillus reuteri, Lactobacillus delbrueckii subsp. bulgaricus, Lacticaseibacillus rhamnosus, and Bifidobacterium bifidum, were utilized for soymilk fermentation both as free cells and as synbiotics on agro-industrial residuals such as okara, whey protein, banana peels, apple pomace, sugarcane bagasse, orange peels, and lemon peels. Among these, Lacticaseibacillus rhamnosus emerged as the most significant strain for soymilk fermentation, exhibiting a viability of 10.47 log cfu/mL, a pH of 4.41, total acidity of 1.12%, and organic acid contents (lactic and acetic acid) of 11.20 and 7.50 g/L, respectively. As a synbiotic Lacticaseibacillus rhamnosus immobilised on okara, showed even more impressive results, with a viability of 12.98 log cfu/mL, a pH of 4.31, total acidity of 1.27%, and organic acid contents of 13.90 and 9.30 g/L, respectively. Over a 12-h fermentation period, cell viability values increased by 10.47-fold in free cells and 11.19-fold in synbiotics. Synbiotic supplementation of fermented soymilk proved more beneficial than free cells in terms of viability, acidity, and organic acid content. Furthermore, when synbiotic fermented soymilk was freeze-dried to simulate the digestive system in vitro, synbiotics and freeze-dried cells demonstrated superior gastrointestinal tract survival compared to free cells. Both the probiotic bacteria and the synbiotics exhibited cytotoxicity against colon and liver cancer cell lines, with half-maximal inhibitory concentrations ranging from 41.96 to 61.52 µL/well.


Asunto(s)
Fermentación , Probióticos , Leche de Soja , Simbióticos , Humanos , Probióticos/metabolismo , Leche de Soja/química , Leche de Soja/metabolismo , Antineoplásicos/farmacología
4.
J Agric Food Chem ; 72(32): 18089-18099, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39102436

RESUMEN

Due to the reports describing virulent and multidrug resistant enterococci, their use has become a topic of controversy despite most of them being safe and commonly used in traditionally fermented foods worldwide. We have characterized Enterococcus lactis SF68, a probiotic strain approved by the European Food Safety Authority (EFSA) for use in food and feed, and find that it has a remarkable potential in food fermentations. Genome analysis revealed the potential of SF68 to metabolize a multitude of carbohydrates, including lactose and sucrose, which was substantiated experimentally. Bacteriocin biosynthesis clusters were identified and SF68 was found to display a strong inhibitory effect against Listeria monocytogenes. Fermentation-wise, E. lactis SF68 was remarkably like Lactococcus lactis and displayed a clear mixed-acid shift on slowly fermented sugars. SF68 could produce the butter aroma compounds, acetoin and diacetyl, the production of which was enhanced under aerated conditions in a strain deficient in lactate dehydrogenase activity. Overall, E. lactis SF68 was found to be versatile, with a broad carbohydrate utilization capacity, a capacity for producing bacteriocins, and an ability to grow at elevated temperatures. This is key to eliminating pathogenic and spoilage microorganisms that are frequently associated with fermented foods.


Asunto(s)
Bacteriocinas , Enterococcus , Fermentación , Alimentos Fermentados , Listeria monocytogenes , Probióticos , Enterococcus/metabolismo , Enterococcus/genética , Probióticos/metabolismo , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/crecimiento & desarrollo , Bacteriocinas/metabolismo , Bacteriocinas/genética , Microbiología de Alimentos , Inocuidad de los Alimentos
5.
BMC Microbiol ; 24(1): 271, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033096

RESUMEN

BACKGROUND: Selenium nanoparticles (SeNPs) are increasingly gaining attention due to its characteristics of low toxicity, high activity, and stability. Additionally, Bacillus licheniformis, as a probiotic, has achieved remarkable research outcomes in diverse fields such as medicine, feed processing, and pesticides, attracting widespread attention. Consequently, evaluating the activity of probiotics and SeNPs is paramount. The utilization of probiotics to synthesize SeNPs, achieving large-scale industrialization, is a current hotspot in the field of SeNPs synthesis and is currently the most promising synthetic method. To minimize production costs and maximize yield of SeNPs, this study selected agricultural by-products that are nutrient-rich, cost-effective, and readily available as culture medium components. This approach not only fulfills industrial production requirements but also mitigates the impact on downstream processes. RESULTS: The experimental findings revealed that SeNPs synthesized by B. licheniformis F1 exhibited a spherical morphology with diameters ranging from 110 to 170 nm and demonstrating high stability. Both the secondary metabolites of B. licheniformis F1 and the synthesized SeNPs possessed significant free radical scavenging ability. To provide a more robust foundation for acquiring large quantities of SeNPs via fermentation with B. licheniformis F1, key factors were identified through single-factor experiments and response surface methodology (RSM) include a 2% seed liquid inoculum, a temperature of 37 ℃, and agitation at 180 rpm. Additionally, critical factors during the optimization process were corn powder (11.18 g/L), soybean meal (10.34 g/L), and NaCl (10.68 g/L). Upon validating the optimized conditions and culture medium, B. licheniformis F1 can synthesize nearly 100.00% SeNPs from 5 mmol/L sodium selenite. Subsequently, pilot-scale verification in a 5 L fermentor using the optimized medium resulted in a shortened fermentation time, significantly reducing production costs. CONCLUSION: In this study, the efficient production of SeNPs by the probiotic B. licheniformis F1 was successfully achieved, leading to a significant reduction in fermentation costs. The exploration of the practical applications of this strain holds significant potential and provides valuable guidance for facilitating the industrial-scale implementation of microbial synthesis of SeNPs.


Asunto(s)
Bacillus licheniformis , Medios de Cultivo , Fermentación , Probióticos , Selenio , Bacillus licheniformis/metabolismo , Selenio/metabolismo , Medios de Cultivo/química , Probióticos/metabolismo , Nanopartículas/química , Nanopartículas del Metal/química
6.
Food Microbiol ; 123: 104596, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038898

RESUMEN

This study evaluated the use of acerola (Malpighia glabra L., CACE), cashew (Anacardium occidentale L., CCAS), and guava (Psidium guayaba L., CGUA) fruit processing coproducts as substrates to promote the growth, metabolite production, and maintenance of the viability/metabolic activity of the probiotics Lactobacillus acidophilus LA-05 and Lacticaseibacillus paracasei L-10 during cultivation, freeze-drying, storage, and exposure to simulated gastrointestinal digestion. Probiotic lactobacilli presented high viable counts (≥8.8 log colony-forming units (CFU)/mL) and a short lag phase during 24 h of cultivation in CACE, CCAS, and CGUA. Cultivation of probiotic lactobacilli in fruit coproducts promoted sugar consumption, medium acidification, and production of organic acids over time, besides increasing the of several phenolic compounds and antioxidant activity. Probiotic lactobacilli cultivated in fruit coproducts had increased survival percentages after freeze-drying and during 120 days of refrigerated storage. Moreover, probiotic lactobacilli cultivated and freeze-dried in fruit coproducts had larger subpopulations of live and metabolically active cells when exposed to simulated gastrointestinal digestion. The results showed that fruit coproducts not only improved the growth and helped to maintain the viability and metabolic activity of probiotic strains but also enriched the final fermented products with bioactive compounds, being an innovative circular strategy for producing high-quality probiotic cultures.


Asunto(s)
Frutas , Probióticos , Probióticos/metabolismo , Frutas/microbiología , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/fisiología , Anacardium/microbiología , Anacardium/crecimiento & desarrollo , Psidium/crecimiento & desarrollo , Psidium/microbiología , Malpighiaceae/crecimiento & desarrollo , Malpighiaceae/microbiología , Liofilización , Viabilidad Microbiana , Lacticaseibacillus paracasei/crecimiento & desarrollo , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus paracasei/fisiología , Fermentación , Manipulación de Alimentos/métodos
7.
Biotechnol Adv ; 74: 108397, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38909664

RESUMEN

In order to improve the flavor profiles, food security, probiotic effects and shorten the fermentation period of traditional fermented foods, lactic acid bacteria (LAB) were often considered as the ideal candidate to participate in the fermentation process. In general, LAB strains possessed the ability to develop flavor compounds via carbohydrate metabolism, protein hydrolysis and amino acid metabolism, lipid hydrolysis and fatty acid metabolism. Based on the functional properties to inhibit spoilage microbes, foodborne pathogens and fungi, those species could improve the safety properties and prolong the shelf life of fermented products. Meanwhile, influence of LAB on texture and functionality of fermented food were also involved in this review. As for the adverse effect carried by environmental challenges during fermentation process, engineering strategies based on exogenous addition, cross protection, and metabolic engineering to improve the robustness and of LAB were also discussed in this review. Besides, this review also summarized the potential strategies including microbial co-culture and metabolic engineering for improvement of fermentation performance in LAB strains. The authors hope this review could contribute to provide an understanding and insight into improving the industrial functionalities of LAB.


Asunto(s)
Fermentación , Microbiología de Alimentos , Lactobacillales , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Lactobacillales/metabolismo , Probióticos/metabolismo , Alimentos Fermentados/microbiología
8.
Nat Microbiol ; 9(7): 1700-1712, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38914826

RESUMEN

Microbially derived short-chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. Here we use a microbial community-scale metabolic modelling (MCMM) approach to predict individual-specific SCFA production profiles to assess the impact of different dietary, prebiotic and probiotic inputs. We evaluate the quantitative accuracy of our MCMMs using in vitro and ex vivo data, plus published human cohort data. We find that MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic and probiotic interventions aimed at optimizing SCFA production in the gut. Our model represents an approach to direct gut microbiome engineering for precision health and nutrition.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Humanos , Ácidos Grasos Volátiles/metabolismo , Prebióticos , Probióticos/metabolismo , Probióticos/administración & dosificación , Modelos Biológicos , Dieta , Bacterias/metabolismo , Bacterias/genética , Estudios de Cohortes , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Adulto
9.
J Microbiol Methods ; 223: 106975, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889842

RESUMEN

The mucin-degrading gut commensal Akkermansia muciniphila (A. muciniphila) negatively correlates with various diseases, including metabolic disorders, neurodegenerative disorders, and cancers, through interacting with host receptors by diverse molecules. Still, their exact metabolic capability within the nutrient-rich environment (such as in the human gut) is not fully characterized. Therefore, in the present study, we investigated the comprehensive metabolome and lipidome of A. muciniphila after supplementation of four major gut microbial nutrients: mucin, inorganic salts, bile salts, and short-chain fatty acids (SCFAs). Our results showed that mucin is the predominant driver of the different lipidomic and metabolomic profiles of A. muciniphila, and it promotes the overall growth of this bacteria. While the addition of inorganic salts, bile salts, and SCFAs was found to inhibit the growth of A. muciniphila. Interestingly, inorganic salts affected the purine metabolism in A. muciniphila cultures, while adding bile salts significantly increased the production of other bile acids and N-acyl amides. Lastly, SCFAs were identified to alter the A. muciniphila energy utilization of triglycerides, fatty acyls, and phosphatidylethanolamines. To our knowledge, this is the first study to examine the comprehensive lipidome and metabolome of A. muciniphila, which highlights the importance of nutritional impacts on the lipidome and metabolome of A. muciniphila and hence providing foundational knowledge to unveil the potential effects of A. muciniphila on host health.


Asunto(s)
Akkermansia , Ácidos y Sales Biliares , Microbioma Gastrointestinal , Lipidómica , Metabolómica , Probióticos , Akkermansia/metabolismo , Akkermansia/crecimiento & desarrollo , Metabolómica/métodos , Ácidos y Sales Biliares/metabolismo , Lipidómica/métodos , Probióticos/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Cromatografía Liquida/métodos , Metaboloma , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Mucinas/metabolismo , Espectrometría de Masas/métodos
10.
Microb Cell Fact ; 23(1): 172, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867272

RESUMEN

There is increasing evidence that probiotic and commensal bacteria play a role in substrate metabolism, energy harvesting and intestinal homeostasis, and may exert immunomodulatory activities on human health. In addition, recent research suggests that these microorganisms interact with vitamins and minerals, promoting intestinal and metabolic well-being while producing vital microbial metabolites such as short-chain fatty acids (SCFAs). In this regard, there is a flourishing field exploring the intricate dynamics between vitamins, minerals, SCFAs, and commensal/probiotic interactions. In this review, we summarize some of the major hypotheses beyond the mechanisms by which commensals/probiotics impact gut health and their additional effects on the absorption and metabolism of vitamins, minerals, and SCFAs. Our analysis includes comprehensive review of existing evidence from preclinical and clinical studies, with particular focus on the potential interaction between commensals/probiotics and micronutrients. Finally, we highlight knowledge gaps and outline directions for future research in this evolving field.


Asunto(s)
Bacterias , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Minerales , Probióticos , Vitaminas , Probióticos/metabolismo , Humanos , Vitaminas/metabolismo , Minerales/metabolismo , Ácidos Grasos Volátiles/metabolismo , Bacterias/metabolismo , Simbiosis , Animales
11.
Int J Food Microbiol ; 421: 110787, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38878704

RESUMEN

Gamma-aminobutyric acid (GABA) produced by lactic acid bacteria (LAB) is safe and has several health benefits. Levilactobacillus brevis YSJ3 was selected from 110 LAB. It exhibited the highest in vitro GABA production level of 970.10 µg/mL. Whole-genome analysis revealed that L. brevis YSJ3 contained gadR, gadC, gadB and gadA. Furthermore, the Luedeking-Piret model was fitted, which indicated that GABA production was divided into three stages. The gadR 0079, gadC 0080, and gadB 0081 were confirmed to promote GABA synthesis. Moreover, 55 metabolites, particularly those involved in arginine metabolism, were significantly different at 6 and 20 h of cultivation. Notably, L. brevis YSJ3 significantly improved sleep in mice and increased GABA levels in the mice's gut compared with the control group. This suggests that the oral administration of L. brevis YSJ3 improves sleep quality, probably by increasing intestinal GABA levels. Overall, L. brevis YSJ3 was confirmed as a GABA-producing strain in vitro and in vivo, making it a promising probiotic candidate for its application in food and medicine.


Asunto(s)
Genoma Bacteriano , Levilactobacillus brevis , Probióticos , Ácido gamma-Aminobutírico , Levilactobacillus brevis/genética , Levilactobacillus brevis/metabolismo , Animales , Ácido gamma-Aminobutírico/metabolismo , Probióticos/metabolismo , Ratones , Masculino , Secuenciación Completa del Genoma , Microbioma Gastrointestinal
12.
Food Chem ; 457: 140076, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879960

RESUMEN

The intake of probiotics offers various health benefits; however, their efficacy depends on the maintenance of viability during industrial processing and digestion. Probiotic viability can be compromised during encapsulation, freeze-drying, storage, and digestion, necessitating multiple coatings. This complicates production and raises costs. In this study, CaCO3-single-coated probiotics (CSCPs) were prepared, an approach rarely reported before. Through instrumental analyses, the encapsulation of probiotics within CaCO3 was confirmed, ensuring their high viability. This proposed technology effectively preserves the viability of probiotics during the encapsulation and freeze-drying processes, resulting in minimal cell loss. Moreover, CSCPs demonstrated exceptional viability performance under simulated gastric and intestinal conditions. Notably, 100% of these microorganisms reached the intestines, delivering over 10 billion CFUs of probiotics in a viable state. This study highlights the potential of CSCPs as a feasible solution for overcoming probiotic encapsulation challenges and optimizing therapeutic benefits.


Asunto(s)
Carbonato de Calcio , Viabilidad Microbiana , Probióticos , Probióticos/química , Probióticos/metabolismo , Humanos , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Intestinos/microbiología , Liofilización
13.
Food Chem ; 457: 140138, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901337

RESUMEN

This study aimed to investigate the integration of cereal and germinated pseudocereals into set-type yogurt mimic, resulting in a novel and nutritious product. Four groups of yogurts mimic, namely CPY-1, CPY-2, CPY-3, and CPY-4, were prepared using different probiotic cultures, including L. acidophilus 21, L. plantarum 14, and L. rhamnosus 296 along with starter cultures. Notably, CPY-2 cultured with L. plantarum and L. rhamnosus and incubated for 12 h exhibited the most desirable attributes. The resulting yogurt demonstrated an acidity of 0.65%, pH of 4.37 and a probiotic count of 6.38 log CFU/mL. The logistic growth model fit revealed maximum growth rates (k, 1/h) and maximum bacterial counts (Nm log CFU/mL) for each CPY variant. The results revealed that CPY-2 significantly improved protein, dietary fiber, phenols and antioxidant capacities compared to the control. Scanning electron microscopy showed more structured and compact casein network in CPY-2, highlighting its superior textural characteristics. Overall, this study demonstrates the incorporation of cereal and germinated pseudocereals into set-type yogurt mimic offers health benefits through increased dietary fiber and ß-glucan.


Asunto(s)
Amaranthus , Antioxidantes , Fagopyrum , Germinación , Yogur , Yogur/análisis , Yogur/microbiología , Antioxidantes/química , Antioxidantes/metabolismo , Fagopyrum/química , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Cinética , Amaranthus/crecimiento & desarrollo , Amaranthus/química , Amaranthus/metabolismo , Probióticos/análisis , Probióticos/metabolismo , Probióticos/química , Fermentación , Lactobacillus/crecimiento & desarrollo , Lactobacillus/metabolismo , Lactobacillus/química , Manipulación de Alimentos
14.
Anal Chem ; 96(28): 11247-11254, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38941069

RESUMEN

Evaluating the dynamic interaction of microorganisms and mammalian cells is challenging due to the lack of suitable platforms for examining interspecies interactions in biologically relevant coculture conditions. In this work, we demonstrate the interaction between probiotic bacteria (Lactococcus lactis and Escherichia coli) and A498 human cancer cells in vitro, utilizing a hydrogel-based platform in a label-free manner by infrared spectroscopy. The L. lactis strain recapitulated in the compartment system secretes polypeptide molecules such as nisin, which has been reported to trigger cell apoptosis. We propose a mid-infrared (IR) spectroscopic imaging approach to monitor the variation of biological components utilizing kidney cells (A498) as a model system cocultured with bacteria. We characterized the biochemical composition (i.e., nucleic acids, protein secondary structures, and lipid conformations) label-free using an unbiased measurement. Several IR spectral features, including unsaturated fatty acids, ß-turns in protein, and nucleic acids, were utilized to predict cellular response. These features were then applied to establish a quantitative relationship through a multivariate regression model to predict cellular dynamics in the coculture system to assess the effect of nisin on A498 kidney cancer cells cocultured with bacteria. Overall, our study sheds light on the potential of using IR spectroscopic imaging as a label-free tool to monitor complex microbe-host cell interactions in biological systems. This integration will enable mechanistic studies of interspecies interactions with insights into their underlying physiological processes.


Asunto(s)
Técnicas de Cocultivo , Escherichia coli , Probióticos , Humanos , Escherichia coli/metabolismo , Probióticos/metabolismo , Nisina/farmacología , Nisina/química , Nisina/metabolismo , Lactococcus lactis/metabolismo , Espectrofotometría Infrarroja , Línea Celular Tumoral
15.
Gut Microbes ; 16(1): 2347725, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722028

RESUMEN

The gut commensal bacteria Christensenellaceae species are negatively associated with many metabolic diseases, and have been seen as promising next-generation probiotics. However, the cultured Christensenellaceae strain resources were limited, and their beneficial mechanisms for improving metabolic diseases have yet to be explored. In this study, we developed a method that enabled the enrichment and cultivation of Christensenellaceae strains from fecal samples. Using this method, a collection of Christensenellaceae Gut Microbial Biobank (ChrisGMB) was established, composed of 87 strains and genomes that represent 14 species of 8 genera. Seven species were first described and the cultured Christensenellaceae resources have been significantly expanded at species and strain levels. Christensenella strains exerted different abilities in utilization of various complex polysaccharides and other carbon sources, exhibited host-adaptation capabilities such as acid tolerance and bile tolerance, produced a wide range of volatile probiotic metabolites and secondary bile acids. Cohort analyses demonstrated that Christensenellaceae and Christensenella were prevalent in various cohorts and the abundances were significantly reduced in T2D and OB cohorts. At species level, Christensenellaceae showed different changes among healthy and disease cohorts. C. faecalis, F. tenuis, L. tenuis, and Guo. tenuis significantly reduced in all the metabolic disease cohorts. The relative abundances of C. minuta, C. hongkongensis and C. massiliensis showed no significant change in NAFLD and ACVD. and C. tenuis and C. acetigenes showed no significant change in ACVD, and Q. tenuis and Geh. tenuis showed no significant change in NAFLD, when compared with the HC cohort. So far as we know, this is the largest collection of cultured resource and first exploration of Christensenellaceae prevalences and abundances at species level.


Asunto(s)
Heces , Microbioma Gastrointestinal , Humanos , Heces/microbiología , Clostridiales/genética , Clostridiales/metabolismo , Clostridiales/aislamiento & purificación , Clostridiales/clasificación , Probióticos/metabolismo , Metabolómica , Genómica , Masculino , Filogenia , Femenino , Genoma Bacteriano
16.
Curr Microbiol ; 81(6): 164, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710854

RESUMEN

Edible bird's nest (EBN), a most highly priced and valuable foodstuff, contains high percentage of proteins and carbohydrates. However, proteins adhering to these carbohydrates make the EBN hard and tough, which need to be boiled as the bird's nest soup to make the Chinese cuisine. To overcome the hard and tough texture of EBN and improve the digestion degrees, the present study screened and identified a probiotic strain Bacillus amyloliquefaciens YZW02 from 5-year stored EBN sample completely solubilizing EBN for the first time. The 24-h B. amyloliquefaciens fermented EBN contained 20.30-21.48 mg/mL of the soluble protein contents with a recovery rate of 98-100%, DPPH radical scavenging rate of 84.76% and ABTS radical scavenging capacity of 41.05%. The mixed fermentation of B. amyloliquefaciens YZW02 and Bacillus natto BN1 were further applied to improve the low-MW peptide percentages and antioxidant activities. The mixed-fermentation of B. natto BN1 with 4-h cultured B. amyloliquefaciens YZW02 had the lowest percentage (82.23%) of >12-kDa proteins/peptides and highest percentages of 3-12 kDa, 1-3 kDa and 0.1-1 kDa peptides of 8.6% ± 0.08, 7.57% ± 0.09, 1.77% ± 0.05 and 0.73% ± 0.05, with the highest DPPH, ABTS and •OH scavenging capacity of 90.23%, 46.45% and 49.12%, respectively. These findings would provide an efficient strategy for improving the solubility and antioxidant activities of EBNs.


Asunto(s)
Antioxidantes , Bacillus amyloliquefaciens , Aves , Fermentación , Probióticos , Solubilidad , Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Animales , Probióticos/química , Probióticos/metabolismo , Aves/microbiología
17.
Food Chem ; 452: 139541, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718457

RESUMEN

Identifying aflatoxin-detoxifying probiotics remains a significant challenge in mitigating the risks associated with aflatoxin contamination in crops. Biological detoxification is a popular technique that reduces mycotoxin hazards and garners consumer acceptance. Through multiple rounds of screening and validation tests, Geotrichum candidum XG1 demonstrated the ability to degrade aflatoxin B1 (AFB1) by 99-100%, exceeding the capabilities of mere adsorption mechanisms. Notably, the degradation efficiency was demonstrably influenced by the presence of copper and iron ions in the liquid medium, suggesting a potential role for proteases in the degradation process. Subsequent validation experiments with red pepper revealed an 83% reduction in AFB1 levels following fermentation with G. candidum XG1. Furthermore, mass spectrometry analysis confirmed the disruption of the AFB1 furan ring structure, leading to a subsequent reduction in its toxicity. Collectively, these findings establish G. candidum XG1 as a promising candidate for effective aflatoxin degradation, with potential applications within the food industry.


Asunto(s)
Aflatoxina B1 , Contaminación de Alimentos , Geotrichum , Probióticos , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Aflatoxina B1/análisis , Probióticos/metabolismo , Probióticos/química , Geotrichum/metabolismo , Geotrichum/química , Contaminación de Alimentos/análisis , Fermentación , Capsicum/química , Capsicum/metabolismo , Capsicum/microbiología , China
18.
Int J Biol Macromol ; 268(Pt 2): 131836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692553

RESUMEN

Multiple species of Bifidobacterium exhibit the ability to bioconvert conjugated fatty acids (CFAs), which is considered an important pathway for these strains to promote host health. However, there has been limited progress in understanding the enzymatic mechanism of CFA bioconversion by bifidobacteria, despite the increasing number of studies identifying CFA-producing strains. The protein responsible for polyunsaturated fatty acid (PUFA) isomerization in B. breve CCFM683 has recently been discovered and named BBI, providing a starting point for exploring Bifidobacterium isomerases (BIs). This study presents the sequence classification of membrane-bound isomerases from four common Bifidobacterium species that produce CFA. Heterologous expression, purification, and enzymatic studies of the typical sequences revealed that all possess a single c9, t11 isomer as the product and share common features in terms of enzymatic properties and catalytic kinetics. Using molecular docking and alanine scanning, Lys84, Tyr198, Asn202, and Leu245 located in the binding pocket were identified as critical to the catalytic activity, a finding further confirmed by site-directed mutagenesis-based screening assays. Overall, these findings provide insightful knowledge concerning the molecular mechanisms of BIs. This will open up additional opportunities for the use of bifidobacteria and CFAs in probiotic foods and precision nutrition.


Asunto(s)
Bifidobacterium , Ácidos Grasos Insaturados , Bifidobacterium/enzimología , Bifidobacterium/genética , Bifidobacterium/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Simulación del Acoplamiento Molecular , Isomerismo , Cinética , Secuencia de Aminoácidos , Mutagénesis Sitio-Dirigida , Probióticos/metabolismo
19.
Microbiol Res ; 285: 127741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761487

RESUMEN

Fructooligosaccharides (FOS) are a common prebiotic widely used in functional foods. Meanwhile, Saccharomyces boulardii is a fungal probiotic frequenly used in the clinical treatment of diarrhea. Compared with single use, the combination of prebiotics and probiotics as symbiotics may be more effective in regulating gut microbiota as recently reported in the literature. The present study aimed to investigate the effects of FOS, S. boulardii and their combination on the structure and metabolism of the gut microbiota in healthy primary and secondary school students using an in vitro fermentation model. The results indicated that S. boulardii alone could not effectively regulate the community structure and metabolism of the microbiota. However, both FOS and the combination of FOS and S. boulardii could effectively regulate the microbiota, significantly inhibiting the growth of Escherichia-Shigella and Bacteroides, and controlling the production of the gases including H2S and NH3. In addition, both FOS and the combination could significantly promote the growth of Bifidobacteria and Lactobacillus, lower environmental pH, and enhance several physiological functions related to synthesis and metabolism. Nevertheless, the combination had more unique benefits as it promoted the growth of Lactobacillus, significantly increased CO2 production and enhanced the functional pathways of carbon metabolism and pyruvic acid metabolism. These findings provide guidance for clinical application and a theoretical basis for the development of synbiotic preparations.


Asunto(s)
Fermentación , Microbioma Gastrointestinal , Oligosacáridos , Prebióticos , Probióticos , Saccharomyces boulardii , Estudiantes , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Saccharomyces boulardii/metabolismo , Humanos , Probióticos/metabolismo , Niño , Masculino , Adolescente , Femenino , Lactobacillus/metabolismo , Lactobacillus/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Heces/microbiología , Bifidobacterium/metabolismo , Bifidobacterium/crecimiento & desarrollo
20.
Adv Appl Microbiol ; 127: 223-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763528

RESUMEN

The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Probióticos , Animales , Probióticos/metabolismo , Bacterias/metabolismo , Bacterias/genética , Intestinos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...