RESUMEN
Probiotics serve a very important role in human health. However, probiotics have poor stability during processing, storage, and gastrointestinal digestion. The gellan gum (GG) is less susceptible to enzymatic degradation and resistant to thermal and acidic environments. This study investigated the effect of casein (CS)-GG emulsions to encapsulate Lactiplantibacillus plantarum CICC 6002 (L. plantarum CICC 6002) on its storage stability, thermal stability, and gastrointestinal digestion. L. plantarum CICC 6002 was suspended in palm oil and emulsions were prepared using CS or CS-GG complexes. We found the CS-GG emulsions improved the viability of L. plantarum CICC 6002 after storage, pasteurization, and digestion compared to the CS emulsions. In addition, we investigated the influence of the gellan gum concentration on emulsion stability, and the optimal stability was observed in the emulsion prepared by CS-0.8% GG complex. This study provided a new strategy for the protection of probiotics based on CS-GG delivery system.
Asunto(s)
Caseínas , Emulsiones , Lactobacillus plantarum , Polisacáridos Bacterianos , Probióticos , Emulsiones/química , Probióticos/química , Polisacáridos Bacterianos/química , Caseínas/química , Humanos , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Pasteurización , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Composición de Medicamentos , Digestión , Almacenamiento de AlimentosRESUMEN
The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.
Asunto(s)
Glucolípidos , Glicoproteínas , Gotas Lipídicas , Leche Humana , Estrés Oxidativo , Probióticos , Humanos , Probióticos/farmacología , Probióticos/química , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Glicoproteínas/química , Glicoproteínas/farmacología , Glicoproteínas/metabolismo , Células CACO-2 , Glucolípidos/química , Glucolípidos/farmacología , Glucolípidos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Leche Humana/química , Lactante , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Fórmulas Infantiles/química , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismoRESUMEN
Probiotics and polyphenols have multiple bioactivities, and developing co-encapsulated microcapsules (CM) is a novel strategy to enhance their nutritional diversity. However, the development of CMs is challenged by complicated processing, single types, and unclear in vivo effects and applications. In this study, the co-microencapsulations of polyphenol and probiotic were constructed using pectin, alginate (WGCA@LK), and Fu brick tea polysaccharides (WGCF@LK), respectively, with chitosan-whey isolate proteins by layer-by-layer coacervation reaction, and their protective effects, in vivo effectiveness, and application potential were evaluated. WGCA@LK improved the encapsulation rate of polyphenols (42.41 %), and remained high viability of probiotics after passing through gastric acidic environment (8.79 ± 0.04 log CFU/g) and storage for 4 weeks (4.59 ± 0.06 log CFU/g). WGCF@LK exhibited the highest total antioxidant activity (19.40 ± 0.25 µmol/mL) and its prebiotic activity removed the restriction on probiotic growth. WGCA@LK showed strong in vitro colonic adhesion, but WGCF@LK promoted in vivo retention of probiotics at 48 h. WGCF@LK showed excellent anti-inflammatory effects and alleviated symptoms of acute colitis in mice. These findings provide unique insights into the fortification of probiotic-polyphenol CMs by different polysaccharides and the development of novel health foods with rich functional hierarchies and superior therapeutic effects.
Asunto(s)
Cápsulas , Colitis , Polifenoles , Polisacáridos , Probióticos , Probióticos/administración & dosificación , Probióticos/química , Animales , Polifenoles/química , Polifenoles/farmacología , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Ratones , Polisacáridos/química , Polisacáridos/farmacología , Alimentos Fortificados , Alginatos/química , Alginatos/farmacología , Masculino , Pectinas/química , Pectinas/farmacología , Té/química , Antioxidantes/química , Antioxidantes/farmacología , Quitosano/química , Sulfato de Dextran/química , Composición de Medicamentos/métodosRESUMEN
Probiotics are used in cheese fermentation to endow the product with unique functional properties, such as enhanced flavor and aroma development through proteolysis and lipolysis. In this study, two probiotic Lactobacillus strains, Lactobacillus plantarum A3 and Lactobacillus reuteri WQY-1, were selected to develop new probiotic cheeses in the form of single- and mixed-strain starters. The results demonstrated that the L. plantarum A3 single-strain group and the L. plantarum A3/L. reuteri WQY-1 mixed fermentation group exhibited superior product performance, particularly the release of functional hydrolysates during cheese ripening. Furthermore, Label-free quantitative proteomic analysis revealed 26 unique antioxidant peptides in the L. plantarum A3 single-strain group and 53 in the L. plantarum A3/L. reuteri WQY-1 mixed fermentation group. Among these, CMENSAEPEQSLACQCL (ß-lactoglobulin), CMENSAEPEQSLVCQCL (ß-lactoglobulin), and IQYVLSR (κ-casein) have been found to possess potential antioxidant properties both in vitro and in vivo. This confirmed that milk-derived protein peptides in cheese products exhibit potential antioxidant functions through the hydrolysis of probiotic strains.
Asunto(s)
Antioxidantes , Queso , Fermentación , Lactobacillus plantarum , Péptidos , Probióticos , Queso/microbiología , Queso/análisis , Antioxidantes/metabolismo , Antioxidantes/química , Péptidos/metabolismo , Péptidos/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/química , Animales , Probióticos/metabolismo , Probióticos/química , Limosilactobacillus reuteri/metabolismo , Limosilactobacillus reuteri/química , Bovinos , Lactobacillus/metabolismo , RatonesRESUMEN
To realize the health benefits of probiotic bacteria, they must withstand processing and storage conditions and remain viable after use. The encapsulation of these probiotics in the form of microspheres containing tapioca flour as a prebiotic and vehicle component in their structure or shell affords symbiotic effects that improve the survival of probiotics under unfavorable conditions. Microencapsulation is one such method that has proven to be effective in protecting probiotics from adverse conditions while maintaining their viability and functionality. The aim of the work was to obtain high-quality microspheres that can act as carriers of Lactobacillus casei bacteria and to assess the impact of encapsulation on the viability of probiotic microorganisms in alginate microspheres enriched with a prebiotic (tapioca flour) and additionally coated with hyaluronic acid, chitosan, or gelatin. The influence of the composition of microparticles on the physicochemical properties and the viability of probiotic bacteria during storage was examined. The optimal composition of microspheres was selected using the design of experiments using statistical methods. Subsequently, the size, morphology, and cross-section of the obtained microspheres, as well as the effectiveness of the microsphere coating with biopolymers, were analyzed. The chemical structure of the microspheres was identified by using Fourier-transform infrared spectrophotometry. Raman spectroscopy was used to confirm the success of coating the microspheres with the selected biopolymers. The obtained results showed that the addition of tapioca flour had a positive effect on the surface modification of the microspheres, causing the porous structure of the alginate microparticles to become smaller and more sealed. Moreover, the addition of prebiotic and biopolymer coatings of the microspheres, particularly using hyaluronic acid and chitosan, significantly improved the survival and viability of the probiotic strain during long-term storage. The highest survival rate of the probiotic strain was recorded for alginate-tapioca flour microspheres coated with hyaluronic acid, at 5.48 log CFU g-1. The survival rate of L. casei in that vehicle system was 89% after storage for 30 days of storage.
Asunto(s)
Alginatos , Lacticaseibacillus casei , Manihot , Microesferas , Probióticos , Lacticaseibacillus casei/química , Alginatos/química , Alginatos/farmacología , Probióticos/química , Manihot/química , Harina , Biopolímeros/química , Biopolímeros/farmacología , Quitosano/química , Quitosano/farmacología , Viabilidad Microbiana/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacologíaRESUMEN
Personalized three-dimensional (3D) printed foods rich in probiotics were investigated. Lactiplantibacillus plantarum (Lp), as a representative of probiotics, was used to investigate the 3D printing of probiotic-rich dysphagia foods. Here, whey protein isolate nanofibrils (WPNFs) were coated and anchored on bacterial surfaces via biointerfacial supramolecular self-assembly, providing protection against environmental stress and the 3D printing process. The optimized composite gels consisting of High acyl gellan gum (0.25 g), whey protein isolate (1.25 g), fructooligosaccharides (0.75 g), Lp-WPNFs-Glyceryl tributyrate emulsion (Φ = 40%, 3.75 mL) can realize 3D printing, and exhibit high resolution, and stable shape. The viable cell count is higher than 8.0 log CFU/g. They are particularly suitable for people with dysphagia and are classified as level 5-minced & moist in the international dysphagia diet standardization initiative framework. The results provide new insights into the development of WPNFs-coating on bacterial surfaces to deliver probiotics and 3D printed food rich in probiotics.
Asunto(s)
Trastornos de Deglución , Impresión Tridimensional , Probióticos , Proteína de Suero de Leche , Probióticos/química , Proteína de Suero de Leche/química , Humanos , Nanofibras/químicaRESUMEN
The plum seed protein isolates (PSPI) were used to prepare a gel by probiotics fermentation. The effects of fermentation time (from 0 to 12 h) on the physicochemical properties of PSPI gel were evaluated. The results showed that PSPI started to form a gel after 6 h of fermentation, as evidenced by a decrease in pH from 6.6 to 5.2, an increase in particle size from 10 µm to 40 µm, appearance of a new peak with retention time of 10 min in gel filtration high-performance liquid chromatography, and formation of aggregation and porous structure observed by fluorescence and scanning electron microscope. The PSPI gel from 9 h of fermentation exhibited the highest viscosity (318 Pa.s), storage modulus (18,000 Pa), water holding capacity (37 %), and gel strength (21.5 g) due to stronger molecular interactions such as hydrogen bond, electrostatic, hydrophobic interaction and disulfide bond. However, increasing fermentation time over 9 h led to disrupture of PSPI gel. Furthermore, the subunit around 15 kDa of PSPI disappeared after fermentation, indicating that the formation of PSPI gel was induced by both acidification and partial hydrolysis. Our results suggest that PSPI can provide an alternative for developing plant-based gel products.
Asunto(s)
Fermentación , Geles , Proteínas de Plantas , Probióticos , Semillas , Semillas/química , Geles/química , Probióticos/química , Proteínas de Plantas/química , Fenómenos Químicos , Prunus domestica/química , Concentración de Iones de Hidrógeno , Viscosidad , Tamaño de la PartículaRESUMEN
Probiotics are active microorganisms that are beneficial to the health of the host. However, probiotics are highly sensitive to the external environment, and are susceptible to a variety of factors that reduce their activity during production, storage, and use. Microencapsulation is an effective method that enhances probiotic activity. Macromolecules like polysaccharides, who classified as biologically active prebiotics, have attracted significant attention for their utility in probiotic microencapsulation. This article summarized the types of commonly used microencapsulation materials and their structural characteristics from the perspective of polysaccharides prebiotics. It also discussed recent advancements, probiotic-prebiotic microcapsule-based modulation of the immune system, as well as the associated limitations. Furthermore, the advantages and disadvantages of eight prebiotics as microencapsulation wall materials. The honeycomb structure of ß-glucan enhances the bioavailability of probiotics, while, fructooligosaccharide and galactooligosaccharides improve microbead structure to tightly encapsulate probiotics. The terminal reducing groups of isomaltooligosaccharides and the free hydroxyl groups in xylooligosaccharides also positively affect the structure of microcapsules. Prebiotics not only enhance the survival rate and biological activity of probiotics as embedding materials during storage, but also exert their own probiotic effects. Collectively, prebiotics holds great promise as microencapsulation materials for probiotics delivery.
Asunto(s)
Oligosacáridos , Polisacáridos , Prebióticos , Probióticos , Probióticos/química , Oligosacáridos/química , Polisacáridos/química , Humanos , Animales , Composición de MedicamentosRESUMEN
Probiotics can promote the balance of the intestinal microbial community and enhance the biological activity of food. They are beneficial to the health of elderly people. Therefore, five different probiotics (4% of the total weight) were added to pasted brown rice to study the printability, swallowability, and digestibility of fermented inks (at 40 °C for 10 h). The results showed that probiotics reduced the apparent viscosity and resistance to deformation of brown rice inks. The inks with Lactobacillus bulgaricus (LB), Bifidobacterium longum (BL), and Lactiplantibacillus plantarum (LP) had better printing properties and finer appearances. Probiotics significantly reduced the adhesiveness, gumminess, and hardness of inks but had little effect on cohesiveness. LB, Streptococcus thermophilus (ST), and LP were categorized as having class 4 consistency with easy-to-swallow characteristics. The growth and multiplication of probiotics detached the internal structure of brown rice inks and reduced the relative crystallinity. They also modulated the nutrient content and flavor components by producing short-chain fatty acids, and improved the digestion of starch.
Asunto(s)
Digestión , Fermentación , Oryza , Impresión Tridimensional , Probióticos , Oryza/química , Oryza/metabolismo , Oryza/microbiología , Probióticos/metabolismo , Probióticos/química , Probióticos/análisis , Viscosidad , Humanos , Deglución , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/aislamiento & purificaciónRESUMEN
The complex sample matrix poses significant challenges in accurately detecting heavy metals. In view of its superior performance for the biological adsorption of heavy metals, probiotic bacteria can be explored for functional unit to eliminate matrix interference. Herein, Lactobacillus rhamnosus (LGG) demonstrates a remarkable tolerance and can adsorb up to 300 µM of Hg2+, following the Freundlich isotherm model with the correlation coefficient (R2) value of 0.9881. Subsequently, by integrating the CRISPR/Cas12a system, a sensitive and specific fluorescent biosensor, "Cas12a-MB," has been developed for Hg2+ detection. Specifically, Hg2+ adsorbed onto LGG can specifically bind to the nucleic acid probe, thereby inhibiting the binding of the probe to LGG and the subsequent activation of the CRISPR/Cas12a system. Under optimal experimental conditions, with the detection time of 90 min and the detection limit of 0.44 nM, the "Cas12a-MB" biosensor offers a novel, eco-friendly approach for Hg2+ detection, showcasing the innovative application of probiotics in biosensor.
Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Lacticaseibacillus rhamnosus , Mercurio , Probióticos , Mercurio/análisis , Mercurio/química , Técnicas Biosensibles/métodos , Probióticos/química , Lacticaseibacillus rhamnosus/aislamiento & purificación , Lacticaseibacillus rhamnosus/genética , Adsorción , Límite de DetecciónRESUMEN
Living drugs offer a new frontier in medicine, paving the way for personalized and potentially curative treatments. A customized living drug generally requires specialized technologies for highly effective and selective delivery to lesion locations. In this study, we explored an interfacial engineering method for living drugs by wrapping them with a "stealth coating", achieving "ON/OFF" switching of the communications between probiotics and the gastrointesinal (GI) tract. This maximized the bioactivity of living drugs following oral administration to exempt acidic insults and then significantly improved the retention through the gastrointestinal tract. With the notable ability to improve oral availability, the interfacial-engineered living drugs represent remarkable effects for enhanced oral delivery and treatment efficacy in the dextran sulfate sodium (DSS)-induced acute colitis model. We believe that this work has the potential to revolutionize medicine by precisely targeting and increasing curative activity in the future of disease treatment.
Asunto(s)
Colitis , Sulfato de Dextran , Probióticos , Administración Oral , Animales , Probióticos/química , Probióticos/administración & dosificación , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran/química , Humanos , Sistemas de Liberación de MedicamentosRESUMEN
OBJECTIVE: This paper investigates the critical role of material thickness in freeze-dried pellets for enhancing the storage stability of encapsulated bacteria. Freeze dried material of varying thicknesses obtained from different annealing durations is quantified using Scanning Electron Microscopy (SEM) and X-ray microtomography (µCT), the material thickness is then correlated to the storage stability of the encapsulated cells. METHODS: A formulation comprising of sucrose, maltodextrin, and probiotic cells is quenched in liquid nitrogen to form pellets. The pellets undergo different durations of annealing before undergoing freeze-drying. The material thickness is quantified using SEM and µCT. Storage stability in both oxygen-rich and oxygen-poor environments is evaluated by measuring CFU counts and correlated with the pellet structure. RESULTS: The varying annealing protocols produce a range of material thicknesses, with more extensive annealing resulting in thicker materials. Storage stability exhibits a positive correlation with material thickness, indicating improved stability with thicker materials. Non-annealed pellets exhibit structural irregularities and inconsistent storage stability, highlighting the impracticality of avoiding annealing in the freeze-drying process. CONCLUSIONS: Extensive annealing not only enhances the storage stability of probiotic products but also provides greater control over the freeze-drying process, ensuring homogeneous and reproducible products. This study underscores the importance of material thickness in freeze-dried pellets for optimizing storage stability for probiotic formulations, and emphasize the necessity of annealing as a critical step in freeze-drying quenched pellets to achieve desired structural and stability outcomes.
Asunto(s)
Liofilización , Probióticos , Liofilización/métodos , Probióticos/química , Sacarosa/química , Microscopía Electrónica de Rastreo/métodos , Polisacáridos/química , Microtomografía por Rayos X , Estabilidad de Medicamentos , Almacenaje de MedicamentosRESUMEN
Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.
Asunto(s)
Probióticos , Probióticos/química , Humanos , Ácidos Grasos/metabolismo , Ácidos Grasos/química , AnimalesRESUMEN
In this study, the impact of Gluconolactone (GDL) concentration on the formation of high-internal-phase emulsion gels (HIPEGs) and the gastrointestinal digestive viability of Lactobacillus plantarum encapsulated within these HIPEGs were demonstrated. Increasing GDL concentrations led to cross-linking of particles at the oil-water interface, thereby stabilizing smaller oil droplets. The addition of GDL to HIPEs results in a significant increase in the secondary structure of SPI, specifically in ß-sheet and ß-turn formations, accompanied by a reduction in α-helix percentage. This alteration enhanced the binding effect of protein on water, leading to changes in intermolecular force. Notably, HIPEGs containing 3.0% GDL demonstrated superior encapsulation efficiency and delivery efficiency, reaching 99.0% and 84.5%, respectively. After 14 d of continuous zebrafishs feeding, the intestinal viable cells count of Lactobacillus plantarum reached 1.18 × 107 CFU/mL. This finding supports the potential use of HIPEGs as a probiotic delivery carrier, effectively enhancing the intestinal colonization rate.
Asunto(s)
Emulsiones , Tracto Gastrointestinal , Geles , Gluconatos , Lactobacillus plantarum , Probióticos , Pez Cebra , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Emulsiones/química , Probióticos/química , Probióticos/farmacología , Probióticos/administración & dosificación , Animales , Geles/química , Gluconatos/química , Gluconatos/metabolismo , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Viabilidad Microbiana , LactonasRESUMEN
Ulcerative colitis (UC) is a recurrent chronic mucosal inflammation disease whose most significant pathological characteristics are intestinal inflammation and damaged mucosal barrier induced by reactive oxygen/nitrogen species, abnormal immune microenvironment, and intestinal microecological imbalance. Oral probiotics are a living therapy for intestinal diseases, but their clinical application is hindered by poor bacterial biological activity and insufficient intestinal retention. Here, we developed a targeted oral formulation, functionalized probiotic Lf@MPB, with Lactobacillus fermentum (Lf) as the core and modified melanin nanoparticles (MNPs) on its surface through a click reaction of tricarboxyphenylboronic acid for synergistic therapy of UC. In vitro experiments showed that Lf@MPB not only possessed strong free radical scavenging ability, reduced cellular mitochondrial polarization, and inhibited apoptosis but also significantly enhanced the viability of Lf probiotics in simulated gastrointestinal fluid. Fluorescence imaging in vivo revealed the high accumulation of Lf@MPB at the site of intestinal inflammation in dextran sulfate sodium-induced UC mice. Moreover, in vivo results demonstrated that Lf@MPB effectively alleviated oxidative stress and inflammatory response and restored the intestinal barrier. In addition, 16S rRNA gene sequencing verified that Lf@MPB could increase the abundance and diversity of intestinal microbial communities and optimize microbial composition to inhibit the progression of UC. This work combines effective antioxidant and anti-inflammatory strategies with the oral administration of functionalized probiotics to provide a promising alternative for UC treatment.
Asunto(s)
Colitis Ulcerosa , Melaninas , Nanopartículas , Probióticos , Animales , Humanos , Masculino , Ratones , Colitis Ulcerosa/terapia , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Limosilactobacillus fermentum , Melaninas/química , Ratones Endogámicos C57BL , Nanopartículas/química , Probióticos/química , Probióticos/farmacologíaRESUMEN
The rheological and mechanical properties of mixed κ/ι-carrageenan - LM pectin gels were determined, and the potential of these gels for the formation of beads using the extrusion method and for the encapsulation of Lacticaseibacillus rhamnosus ATCC 53103 (LGG) was evaluated. Self-standing gels were obtained with all formulations evaluated. Carrageenan-rich gels, with carrageenan fraction (XC) ≥ 0.75, exhibited the highest storage modulus, but they were also brittle, while pectin-rich gels (XC ≤ 0.25) presented the highest hardness and cohesiveness. Pectin-rich formulations formed beads with the smallest initial diameter (2.40-2.45 mm), and the addition of carrageenan produced significantly more spherical beads compared to pure-pectin ones. As pectin-rich beads were the formulations that resisted simulated gastrointestinal conditions, these were selected for the encapsulation of LGG. These beads showed high encapsulation yields (87-96 %), and the percentage reduction of CFU/g during storage and simulated gastrointestinal conditions was not significantly different among formulations, the latter being significantly lower for encapsulated cells (8.64-15.03 %) compared to free cells (71.20 %). These results indicate that carrageenan-pectin gel beads with XC ≤ 0.25 were successful in encapsulating probiotic bacteria, and this capacity was related to the rheological and mechanical properties of the gels.
Asunto(s)
Carragenina , Geles , Lacticaseibacillus rhamnosus , Pectinas , Probióticos , Reología , Carragenina/química , Pectinas/química , Probióticos/química , Geles/química , Lacticaseibacillus rhamnosus/química , Fenómenos MecánicosRESUMEN
An increased demand for natural products nowadays most specifically probiotics (PROs) is evident since it comes in conjunction with beneficial health effects for consumers. In this regard, it is well known that encapsulation could positively affect the PROs' viability throughout food manufacturing and long-term storage. This paper aims to analyze and review various double/multilayer strategies for encapsulation of PROs. Double-layer encapsulation of PROs by electrohydrodynamic atomization or electrospraying technology has been reported along with layer-by-layer assembly and water-in-oil-in-water (W1/O/W2) double emulsions to produce multilayer PROs-loaded carriers. Finally, their applications in food products are presented. The resistance and viability of loaded PROs to mechanical damage, during gastrointestinal transit and shelf life of these trapping systems, are also described. The PROs encapsulation in double- and multiple-layer coatings combined with other technologies can be examined to increase the opportunities for new functional products with amended functionalities opening a novel horizon in food technology.
Asunto(s)
Probióticos , Probióticos/química , Emulsiones , Humanos , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Tecnología de Alimentos/métodosRESUMEN
This study focuses on developing a water-in-oil-in-water (W1/O/W2) double emulsion system using high-intensity ultrasound (HIU)-treated pea protein isolate (HIU-PPI) and pectin to encapsulate Lactobacillus plantarum (L. plantarum). The effects of ultrasound treatment on pea protein isolate (PPI) characteristics such as solubility, particle size, emulsification, surface hydrophobicity, and surface free sulfhydryl group were examined, determining optimal HIU processing conditions was 400 W for 10 min. The developed W1/O/W2 double emulsion system based on HIU-PPI demonstrated effective encapsulation and protection of L. plantarum, especially at the HIU-PPI concentration of 4 %, achieving an encapsulation efficiency of 52.65 %. Incorporating both HIU-PPI and pectin as emulsifiers increased the particle size and significantly enhanced the emulsion's viscosity. The highest bacterial encapsulation efficiency of the emulsion, 59.94 %, was attained at a HIU to pectin concentration ratio of 3:1. These emulsions effectively encapsulate and protect L. plantarum, with the concentration of HIU-PPI being a critical factor in enhancing probiotic survival under simulated gastrointestinal digestion. However, the concurrent utilization of pectin and HIU-PPI as emulsifiers did not provide a notable advantage compared to the exclusive use of HIU-PPI in enhancing probiotic viability during in vitro simulated digestion. This research offers valuable perspectives for the food industry on harnessing environmentally friendly, plant-based proteins as emulsifiers in probiotic delivery systems. It underscores the potential of HIU-modified pea protein and pectin in developing functional food products that promote the health benefits of probiotics.
Asunto(s)
Emulsiones , Lactobacillus plantarum , Proteínas de Guisantes , Pectinas , Proteínas de Guisantes/química , Pectinas/química , Tamaño de la Partícula , Agua/química , Ondas Ultrasónicas , Sonicación , Solubilidad , Probióticos/química , Aceites/química , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
The intake of probiotics offers various health benefits; however, their efficacy depends on the maintenance of viability during industrial processing and digestion. Probiotic viability can be compromised during encapsulation, freeze-drying, storage, and digestion, necessitating multiple coatings. This complicates production and raises costs. In this study, CaCO3-single-coated probiotics (CSCPs) were prepared, an approach rarely reported before. Through instrumental analyses, the encapsulation of probiotics within CaCO3 was confirmed, ensuring their high viability. This proposed technology effectively preserves the viability of probiotics during the encapsulation and freeze-drying processes, resulting in minimal cell loss. Moreover, CSCPs demonstrated exceptional viability performance under simulated gastric and intestinal conditions. Notably, 100% of these microorganisms reached the intestines, delivering over 10 billion CFUs of probiotics in a viable state. This study highlights the potential of CSCPs as a feasible solution for overcoming probiotic encapsulation challenges and optimizing therapeutic benefits.
Asunto(s)
Carbonato de Calcio , Viabilidad Microbiana , Probióticos , Probióticos/química , Probióticos/metabolismo , Humanos , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Intestinos/microbiología , LiofilizaciónRESUMEN
This study aimed to investigate the integration of cereal and germinated pseudocereals into set-type yogurt mimic, resulting in a novel and nutritious product. Four groups of yogurts mimic, namely CPY-1, CPY-2, CPY-3, and CPY-4, were prepared using different probiotic cultures, including L. acidophilus 21, L. plantarum 14, and L. rhamnosus 296 along with starter cultures. Notably, CPY-2 cultured with L. plantarum and L. rhamnosus and incubated for 12 h exhibited the most desirable attributes. The resulting yogurt demonstrated an acidity of 0.65%, pH of 4.37 and a probiotic count of 6.38 log CFU/mL. The logistic growth model fit revealed maximum growth rates (k, 1/h) and maximum bacterial counts (Nm log CFU/mL) for each CPY variant. The results revealed that CPY-2 significantly improved protein, dietary fiber, phenols and antioxidant capacities compared to the control. Scanning electron microscopy showed more structured and compact casein network in CPY-2, highlighting its superior textural characteristics. Overall, this study demonstrates the incorporation of cereal and germinated pseudocereals into set-type yogurt mimic offers health benefits through increased dietary fiber and ß-glucan.