Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
Sci Rep ; 14(1): 11988, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796555

RESUMEN

This study employs a combination of mathematical derivation and optimization technique to investigate the adsorption of drug molecules on nanocarriers. Specifically, the chemotherapy drugs, fluorouracil, proflavine, and methylene blue, are non-covalently bonded with either a flat graphene sheet or a spherical C 60 fullerene. Mathematical expressions for the interaction energy between an atom and graphene, as well as between an atom and C 60 fullerene, are derived. Subsequently, a discrete summation is evaluated for all atoms on the drug molecule utilizing the U-NSGA-III algorithm. The stable configurations' three-dimensional architectures are presented, accompanied by numerical values for crucial parameters. The results indicate that the nanocarrier's structure effectively accommodates the atoms on the drug's carbon planes. The three drug types' molecules disperse across the graphene surface, whereas only fluorouracil spreads on the C 60 surface; proflavine and methylene blue stack vertically to form a layer. Furthermore, all atomic positions of equilibrium configurations for all systems are obtained. This hybrid method, integrating analytical expressions and an optimization process, significantly reduces computational time, representing an initial step in studying the binding of drug molecules on nanocarriers.


Asunto(s)
Portadores de Fármacos , Fluorouracilo , Grafito , Azul de Metileno , Adsorción , Grafito/química , Azul de Metileno/química , Fluorouracilo/química , Portadores de Fármacos/química , Modelos Teóricos , Algoritmos , Fulerenos/química , Carbono/química , Proflavina/química , Nanopartículas/química , Antibióticos Antineoplásicos/química , Antineoplásicos/química
2.
J Chem Phys ; 160(12)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38526107

RESUMEN

Proflavine (PF), an acridine DNA intercalating agent, has been widespread applied as an anti-microbial and topical antiseptic agent due to its ability to suppress DNA replication. On the other hand, various studies show that PF intercalation to DNA can increase photogenotoxicity and has potential chances to induce carcinomas of skin appendages. However, the effects of PF intercalation on the photophysical and photochemical properties of DNA have not been sufficiently explored. In this study, the excited state dynamics of the PF intercalated d(GC)9 • d(GC)9 and d(AT)9 • d(AT)9 DNA duplex are investigated in an aqueous buffer solution. Under 267 nm excitation, we observed ultrafast charge transfer (CT) between PF and d(GC)9 • d(GC)9 duplex, generating a CT state with an order of magnitude longer lifetime compared to that of the intrinsic excited state reported for the d(GC)9 • d(GC)9 duplex. In contrast, no excited state interaction was detected between PF and d(AT)9 • d(AT)9. Nevertheless, a localized triplet state with a lifetime over 5 µs was identified in the PF-d(AT)9 • d(AT)9 duplex.


Asunto(s)
Sustancias Intercalantes , Proflavina , Proflavina/química , Análisis Espectral , Sustancias Intercalantes/química , ADN/química
3.
Lasers Surg Med ; 55(4): 378-389, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36802075

RESUMEN

OBJECTIVES: High-contrast and high-resolution imaging techniques would enable real-time sensitive detection of the gastrointestinal lesions. This study aimed to investigate the feasibility of novel dual fluorescence imaging using moxifloxacin and proflavine in the detection of neoplastic lesions of the human gastrointestinal tract. METHODS: Patients with the colonic and gastric neoplastic lesions were prospectively enrolled. The lesions were biopsied with forceps or endoscopically resected. Dual fluorescence imaging was performed by using custom axially swept wide-field fluorescence microscopy after topical moxifloxacin and proflavine instillation. Imaging results were compared with both confocal imaging with cell labeling and conventional histological examination. RESULTS: Ten colonic samples (one normal mucosa, nine adenomas) from eight patients and six gastric samples (one normal mucosa, five adenomas) from four patients were evaluated. Dual fluorescence imaging visualized detail cellular structures. Regular glandular structures with polarized cell arrangement were observed in normal mucosa. Goblet cells were preserved in normal colonic mucosa. Irregular glandular structures with scanty cytoplasm and dispersed elongated nuclei were observed in adenomas. Goblet cells were scarce or lost in the colonic lesions. Similarity analysis between moxifloxacin and proflavine imaging showed relatively high correlation values in adenoma compared with those in normal mucosa. Dual fluorescence imaging showed good detection accuracies of 82.3% and 86.0% in the colonic and the gastric lesions, respectively. CONCLUSIONS: High-contrast and high-resolution dual fluorescence imaging was feasible for obtaining detail histopathological information in the gastrointestinal neoplastic lesions. Further studies are needed to develop dual fluorescence imaging as an in vivo real-time visual diagnostic method.


Asunto(s)
Adenoma , Proflavina , Humanos , Moxifloxacino , Estudios Prospectivos , Estudios de Factibilidad , Adenoma/patología , Imagen Óptica
4.
Molecules ; 27(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500248

RESUMEN

Proflavine is an acridine derivative which was discovered as one of the earliest antibacterial agents, and it has been proven to have potential application to fields such as chemotherapy, photobiology and solar-energy conversion. In particular, it is well known that proflavine can bind to DNA with different modes, and this may open addition photochemical-reaction channels in DNA. Herein, the excited-state dynamics of proflavine after intercalation into DNA duplex is studied using femtosecond time-resolved spectroscopy, and compared with that in solution. It is demonstrated that both fluorescence and the triplet excited-state generation of proflavine were quenched after intercalation into DNA, due to ultrafast non-radiative channels. A static-quenching mechanism was identified for the proflavine-DNA complex, in line with the spectroscopy data, and the excited-state deactivation mechanism was proposed.


Asunto(s)
Sustancias Intercalantes , Proflavina , Proflavina/química , ADN/química , Acridinas
5.
Bioorg Chem ; 129: 106185, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36240541

RESUMEN

The evolving SARS-CoV-2 epidemic buffets the world, and the concerted efforts are needed to explore effective drugs. Mpro is an intriguing antiviral target for interfering with viral RNA replication and transcription. In order to get potential anti-SARS-CoV-2 agents, we established an enzymatic assay using a fluorogenic substrate to screen the inhibitors of Mpro. Fortunately, Acriflavine (ACF) and Proflavine Hemisulfate (PRF) with the same acridine scaffold were picked out for their good inhibitory activity against Mpro with IC50 of 5.60 ± 0.29 µM and 2.07 ± 0.01 µM, respectively. Further evaluation of MST assay and enzymatic kinetics experiment in vitro showed that they had a certain affinity to SARS-CoV-2 Mpro and were both non-competitive inhibitors. In addition, they inhibited about 90 % HCoV-OC43 replication in BHK-21 cells at 1 µM. Both compounds showed nano-molar activities against SARS-CoV-2 virus, which were superior to GC376 for anti-HCoV-43, and equivalent to the standard molecule remdesivir. Our study demonstrated that ACF and PRF were inhibitors of Mpro, and ACF has been previously reported as a PLpro inhibitor. Taken together, ACF and PRF might be dual-targeted inhibitors to provide protection against infections of coronaviruses.


Asunto(s)
Acriflavina , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa , Proflavina , SARS-CoV-2 , Inhibidores de Proteasa Viral , Acriflavina/farmacología , Proflavina/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Proteasa Viral/farmacología , Mesocricetus , Animales , Cricetinae , Línea Celular , Replicación Viral/efectos de los fármacos
6.
ACS Appl Bio Mater ; 5(9): 4203-4212, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35970511

RESUMEN

Here, we exploit our mechanochemical synthesis for co-crystallization of an organic antiseptic, proflavine, with metal-based antimicrobials (silver, copper, zinc, and gallium). Our previous studies have looked for general antimicrobial activity for the co-crystals: proflavine·AgNO3, proflavine·CuCl, ZnCl3[Proflavinium], [Proflavinium]2[ZnCl4]·H2O, and [Proflavinium]3[Ga(oxalate)3]·4H2O. Here, we explore and compare more precisely the bacteriostatic (minimal inhibitory concentrations) and antibiofilm (prevention of cell attachment and propagation) activities of the co-crystals. For this, we choose three prominent "ESKAPE" bacterial pathogens of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The antimicrobial behavior of the co-crystals was compared to that of the separate components of the polycrystalline samples to ascertain whether the proflavine-metal complex association in the solid state provided effective antimicrobial performance. We were particularly interested to see if the co-crystals were effective in preventing bacteria from initiating and propagating the biofilm mode of growth, as this growth form provides high antimicrobial resistance properties. We found that for the planktonic lifestyle of growth of the three bacterial strains, different co-crystal formulations gave selectivity for best performance. For the biofilm state of growth, we see that the silver proflavine co-crystal has the best overall antibiofilm activity against all three organisms. However, other proflavine-metal co-crystals also show practical antimicrobial efficacy against E. coli and S. aureus. While not all proflavine-metal co-crystals demonstrated enhanced antimicrobial efficacy over their constituents alone, all possessed acceptable antimicrobial properties while trapped in the co-crystal form. We also demonstrate that the metal-proflavine crystals retain antimicrobial activity in storage. This work defines that co-crystallization of metal compounds and organic antimicrobials has a potential role in the quest for antimicrobials/antiseptics in the defense against bacteria in our antimicrobial resistance era.


Asunto(s)
Antiinfecciosos , Galio , Zinc/farmacología , Cobre/farmacología , Plata/farmacología , Proflavina/farmacología , Galio/farmacología , Sales (Química)/farmacología , Staphylococcus aureus , Escherichia coli , Antiinfecciosos/farmacología , Bacterias , Biopelículas
7.
Phys Chem Chem Phys ; 24(30): 17966-17978, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35775876

RESUMEN

Because organisms living in the deep sea and in the sub-seafloor must be able to cope with hydrostatic pressures up to 1000 bar and more, their biomolecular processes, including ligand-binding reactions, must be adjusted to keep the associated volume changes low in order to function efficiently. Almost all organisms use organic cosolvents (osmolytes) to protect their cells from adverse environmental conditions. They counteract osmotic imbalance, stabilize the structure of proteins and maintain their function. We studied the binding properties of the prototypical ligand proflavine to two serum proteins with different binding pockets, BSA and HSA, in the presence of two prominent osmolytes, trimethylamine-N-oxide (TMAO) and glycine betaine (GB). TMAO and GB play an important role in the regulation and adaptation of life in deep-sea organisms. To this end, pressure dependent fluorescence spectroscopy was applied, supplemented by circular dichroism (CD) spectroscopy and computer modeling studies. The pressure-dependent measurements were also performed to investigate the intimate nature of the complex formation in relation to hydration and packing changes caused by the presence of the osmolytes. We show that TMAO and GB are able to modulate the ligand binding process in specific ways. Depending on the chemical make-up of the protein's binding pocket and thus the thermodynamic forces driving the binding process, there are osmolytes with specific interaction sites and binding strengths with water that are able to mediate efficient ligand binding even under external stress conditions. In the binding of proflavine to BSA and HSA, the addition of both compatible osmolytes leads to an increase in the binding constant upon pressurization, with TMAO being the most efficient, rendering the binding process also insensitive to pressurization even up to 2 kbar as the volume change remains close to zero. This effect can be corroborated by the effects the cosolvents impose on the strength and dynamics of hydration water as well as on the conformational dynamics of the protein.


Asunto(s)
Metilaminas , Proflavina , Betaína , Ligandos , Metilaminas/química , Proteínas , Termodinámica , Agua/química
8.
Photochem Photobiol ; 98(4): 736-747, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35442536

RESUMEN

The benefits of contrast-enhancing imaging probes have become apparent over the past decade. However, there is a gap in the literature when it comes to the assessment of the phototoxic potential of imaging probes and systems emitting visible and/or near-infrared radiation. The primary mechanism of fluorescent agent phototoxicity is thought to involve the production of reactive molecular species (RMS), yet little has been published on the best practices for safety evaluation of RMS production levels for clinical products. We have proposed methods involving a cell-free assay to quantify singlet oxygen [(SO) a known RMS] generation of imaging probes, and performed testing of Indocyanine Green (ICG), Proflavine, Methylene Blue, IR700 and IR800 at clinically relevant concentrations and radiant exposures. Results indicated that SO production from IR800 and ICG were more than two orders of magnitude below that of the known SO generator Rose Bengal. Methylene Blue and IR700 produced much higher SO levels than ICG and IR800. These results were in good agreement with data from the literature. While agents that exhibit spectral overlap with the assay may be more prone to errors, our tests for one of these agents (Proflavine) appeared robust. Overall, our results indicate that this methodology shows promise for assessing the phototoxic potential of fluorophores due to SO production.


Asunto(s)
Azul de Metileno , Oxígeno Singlete , Verde de Indocianina , Imagen Óptica , Proflavina
9.
Sci Rep ; 12(1): 3673, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256712

RESUMEN

The use of the gallium oxalate complex [Ga(ox)3]3- as a building block in the formation of a drug-drug salt with the antimicrobial agent proflavine (PF) as its proflavinium cation (HPF+), namely [HPF]3[Ga(ox)3]·4H2O, is reported together with the preparation of the potassium salt K3[Ga(ox)3] and the novel dimeric gallium(III) salt K4[Ga2(ox)4(µ-OH)2]·2H2O. All compounds have been characterized by solid state methods, and their performance as antimicrobial agents has been evaluated by disk diffusion assay against the bacteria strains Pseudomonas aeruginosa ATCC27853, Staphylococcus aureus ATCC25923, and Escherichia coli ATCC25922. While the [HPF]3[Ga(ox)3]·4H2O drug-drug salt is effective against all three strains, the gallium oxalate salt K3[Ga(ox)3] showed impressive selectivity towards P. aeruginosa, with little to no antimicrobial activity against the other two organisms. This work presents novel breakthroughs towards Ga based antimicrobial agents.


Asunto(s)
Galio , Antibacterianos/farmacología , Escherichia coli , Galio/farmacología , Pruebas de Sensibilidad Microbiana , Oxalatos/farmacología , Proflavina/farmacología , Pseudomonas aeruginosa , Sales (Química)/farmacología
10.
J Histochem Cytochem ; 70(3): 211-223, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34994225

RESUMEN

Multiplex immunofluorescence (mIF) is an effective technique for the maximal visualization of multiple target proteins in situ. This powerful tool is mainly limited by the spectral overlap of the currently available synthetic fluorescent dyes. The fluorescence excitation wavelengths ranging between 405 and 488 nm are rarely used in mIF imaging and serve as a logical additional slot for a fluorescent probe. In the present study, we demonstrate that the addition of 2,3,4,5,6-pentafluoroaniline to Atto 465 NHS ester, creating Atto 465-pentafluoroaniline (Atto 465-p), generates a bright nuclear stain in the violet-blue region of the visible spectrum. This allows the 405 nm excitation and emission, classically used for nuclear counterstains, to be used for the detection of another target protein. This increases the flexibility of the mIF panel and, with appropriate staining and microscopy, enables the quantitative analysis of at least six targets in one tissue section. (J Histochem Cytochem XX: XXX-XXX, XXXX).


Asunto(s)
Núcleo Celular/química , Proflavina/análogos & derivados , Compuestos de Anilina/química , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/química , Fluorobencenos/química , Fluorocarburos/química , Histocitoquímica , Ratones , Ratones Endogámicos BALB C , Proflavina/análisis
11.
J Am Chem Soc ; 143(51): 21648-21656, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34913337

RESUMEN

Exploring the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution with mass spectrometry imaging (MSI) techniques is crucial in cellular biology, yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. Herein, a microlensed fiber laser desorption post-ionization time-of-flight mass spectrometer (MLF-LDPI-TOFMS) was developed for the 3D imaging of two anticancer drugs within single cells at a 500 × 500 × 500 nm3 voxel resolution. Nanoscale desorption was obtained with a microlensed fiber (MLF), and a 157 nm post-ionization laser was introduced to enhance the ionization yield. Furthermore, a new type of alignment method for 3D reconstruction was developed on the basis of our embedded uniform circular polystyrene microspheres (PMs). Our findings demonstrate that this 3D imaging technique has the potential to provide information about the 3D distributions of specific molecules at the nanoscale level.


Asunto(s)
Imagenología Tridimensional/métodos , Nanotecnología , Análisis de la Célula Individual/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Antineoplásicos/química , Células HeLa , Humanos , Azul de Metileno/química , Microesferas , Poliestirenos , Proflavina/química
12.
Molecules ; 26(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34443446

RESUMEN

A novel series of proflavine ureas, derivatives 11a-11i, were synthesized on the basis of molecular modeling design studies. The structure of the novel ureas was obtained from the pharmacological model, the parameters of which were determined from studies of the structure-activity relationship of previously prepared proflavine ureas bearing n-alkyl chains. The lipophilicity (LogP) and the changes in the standard entropy (ΔS°) of the urea models, the input parameters of the pharmacological model, were determined using quantum mechanics and cheminformatics. The anticancer activity of the synthesized derivatives was evaluated against NCI-60 human cancer cell lines. The urea derivatives azepyl 11b, phenyl 11c and phenylethyl 11f displayed the highest levels of anticancer activity, although the results were only a slight improvement over the hexyl urea, derivative 11j, which was reported in a previous publication. Several of the novel urea derivatives displayed GI50 values against the HCT-116 cancer cell line, which suggest the cytostatic effect of the compounds azepyl 11b-0.44 µM, phenyl 11c-0.23 µM, phenylethyl 11f-0.35 µM and hexyl 11j-0.36 µM. In contrast, the novel urea derivatives 11b, 11c and 11f exhibited levels of cytotoxicity three orders of magnitude lower than that of hexyl urea 11j or amsacrine.


Asunto(s)
Entropía , Proflavina/síntesis química , Urea/síntesis química , Fenómenos Químicos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Cinética , Masculino , Modelos Moleculares , Proflavina/química , Proflavina/farmacología , Urea/química , Urea/farmacología
13.
J Radiat Res ; 62(5): 833-840, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34247250

RESUMEN

X-ray induced molecular luminescence (XML) is a phenomenon that can be utilized for clinical, deep-tissue functional imaging of tailored molecular probes. In this study, a survey of common or clinically approved fluorophores was carried out for their megavoltage X-ray induced excitation and emission characteristics. We find that direct scintillation effects and Cherenkov generation are two possible ways to cause these molecules' excitation. To distinguish the contributions of each excitation mechanism, we exploited the dependency of Cherenkov radiation yield on X-ray energy. The probes were irradiated by constant dose of 6 MV and 18 MV X-ray radiation, and their relative emission intensities and spectra were quantified for each X-ray energy pair. From the ratios of XML, yield for 6 MV and 18 MV irradiation we found that the Cherenkov radiation dominated as an excitation mechanism, except for aluminum phthalocyanine, which exhibited substantial scintillation. The highest emission yields were detected from fluorescein, proflavin and aluminum phthalocyanine, in that order. XML yield was found to be affected by the emission quantum yield, overlap of the fluorescence excitation and Cherenkov emission spectra, scintillation yield. Considering all these factors and XML emission spectrum respective to tissue optical window, aluminum phthalocyanine offers the best XML yield for deep tissue use, while fluorescein and proflavine are most useful for subcutaneous or superficial use.


Asunto(s)
Colorantes Fluorescentes/efectos de la radiación , Luminiscencia , Evaluación Preclínica de Medicamentos , Diseño de Equipo , Fluoresceína/efectos de la radiación , Humanos , Indoles/efectos de la radiación , Isoindoles/efectos de la radiación , Azul de Metileno/efectos de la radiación , Compuestos Organometálicos/efectos de la radiación , Aceleradores de Partículas , Proflavina/efectos de la radiación , Protoporfirinas/efectos de la radiación , Solventes , Espectrometría de Fluorescencia , Verteporfina/efectos de la radiación , Rayos X
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119114, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33166781

RESUMEN

The interaction between xanthene dye eosin Y and double stranded DNA has been studied by spectrophotometry. The conventional titration study does not show the interaction in the eosin Y - DNA system. Therefore, the competitive binding assay was carried out. The DNA-targeted ligands proflavine and methylene blue were used as competitors. Multivariate curve resolution - alternative least squares method (MCR-ALS) was applied to analyze the spectrophotometric titration data. The experimental binding isotherms were fitted by Scatchard and McGee equations. The binding constant of eosin Y with DNA was found to be 1.7·104 M-1. It is shown that the competitive binding assay requires consideration of heteroassociation for the correct determination of ligand-DNA binding parameters.


Asunto(s)
ADN , Proflavina , Unión Competitiva , Eosina Amarillenta-(YS) , Espectrofotometría
15.
J Biomol Struct Dyn ; 38(6): 1590-1597, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31057051

RESUMEN

The binding of proflavine, an acriflavine derivative, with the RNA polynucletodide polyadenylic acid-polyuridylic acid is investigated here to understand the structural and thermodynamic basis of the binding process. Such binding data are crucial for designing viable theraperutic agents. Spectroscopic studies clearly suggest a strong binding interaction between proflavine and polyadenylic acid-polyuridylic acid leading to efficient energy transfer between the poly AU base pairs and proflavine. The stoichiometry of proflavine polyadenylic acid-polyuridylic acid binding was independently estimated by continuous variation analysis of Job. An intercalative binding model is envisaged for the binding from hydrodynamic studies. Circular dichroism experiments revealed that the binding induced conformational changes in the RNA, and also led to induction of optical activity in the bound dye molecules. The binding affinity of the complex was deduced to be (6.57 ± 0.75) 105 M-1 at (298.15 ± 0.10) K from isothermal titration calorimetry experiment. Positive entropy and negative enthalpy changes characterized the complexation. The binding was observed to be weaker both at higher temperatures and increased [Na+]. The affinity of binding decreased with increasing [Na+]. When the Gibbs energy was parsed between polyelectrolytic and nonpolyelectropytic components, it surprisingly revealed a higher role for the non-polyelectrolytic forces. These results present new data for developing RNA targeted ligands.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Polinucleótidos , Proflavina , Calorimetría , Dicroismo Circular , Conformación de Ácido Nucleico , Poli A , ARN , Termodinámica
16.
J Appl Toxicol ; 40(1): 64-71, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31222780

RESUMEN

Proflavine derivatives are extremely interesting chemotherapeutic agents, which have shown promising pharmaceutical potential due to their wide range of biological activities. This review summarizes the current state of research into the anticancer, antimicrobial, antimalarial and antileishmanial properties of these attractive compounds. Our attention has focused on new classes of proflavine conjugates, which display significant levels of anticancer activity. Highly promising cytotoxic properties have been identified in proflavine conjugates with imidazolidinones, ureas and thioureas. In particular, proflavine-dialkyldithioureas displayed substantial cytotoxic effect against the human leukemia HL-60 cells with IC50 values from 7.2 to 34.0 µm. As well, palladium complexes with proflavine ligand have important biologic activity. The LC50 values of these complexes were significantly lower than that of cisplatin against the SK-BR-3 cell line.


Asunto(s)
Acriflavina/farmacología , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Proflavina/farmacología , Acriflavina/análogos & derivados , Acriflavina/toxicidad , Animales , Antiinfecciosos/toxicidad , Antineoplásicos/toxicidad , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Proflavina/análogos & derivados , Proflavina/toxicidad , Relación Estructura-Actividad
17.
J Phys Chem B ; 123(51): 10904-10914, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31671261

RESUMEN

Intercalation into DNA is the interaction mode of some anthracycline antibiotics. Recently, the molecular mechanism of this process was explored using the static free energy landscape. Here we explore the dynamical effects in the intercalation of proflavine into DNA by calculating the transmission coefficient κ-providing a measure of the departure from transition state theory for the reaction rate constant-by examination of the recrossing events at the transition state. For that purpose, we first found the accurate transition state of this complex system-as judged by a committor analysis-using a set of all-atom simulations of total length 6.3 ms. In a subsequent calculation of the transmission coefficient κ in another extensive set of simulations the small value κ = 0.1 was found, indicating a significant departure from TST. Comparison of this result with Grote-Hynes and Kramers theories shows that neither theory is able to capture this complex system's recrossing events; the source of this striking failure is discussed, as are related aspects of the mechanism. This study suggests that, for biomolecular processes similar to this, dynamical effects essential for the process are complex in nature and require novel approaches for their elucidation.


Asunto(s)
Antineoplásicos/química , ADN/química , Sustancias Intercalantes/química , Proflavina/química , Entropía , Cinética , Modelos Moleculares , Termodinámica
18.
Biosensors (Basel) ; 9(2)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013753

RESUMEN

Development of technologies for rapid screening of DNA secondary structure thermal stability and the effects on stability for binding of small molecule drugs is important to the drug discovery process. In this report, we describe the capabilities of an electrochemical, microdevice-based approach for determining the melting temperatures (Tm) of electrode-bound duplex DNA structures. We also highlight new features of the technology that are compatible with array development and adaptation for high-throughput screening. As a foundational study to exhibit device performance and capabilities, melting-curve analyses were performed on 12-mer DNA duplexes in the presence/absence of two binding ligands: diminazene aceturate (DMZ) and proflavine. By measuring electrochemical current as a function of temperature, our measurement platform has the ability to determine the effect of binding ligands on Tm values with high signal-to-noise ratios and good reproducibility. We also demonstrate that heating our three-electrode cell with either an embedded microheater or a thermoelectric module produces similar results. The ΔTm values we report show the stabilizing ability of DMZ and proflavine when bound to duplex DNA structures. These initial proof-of-concept studies highlight the operating characteristics of the microdevice platform and the potential for future application toward other immobilized samples.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , Técnicas Electroquímicas/métodos , Diminazeno/análogos & derivados , Diminazeno/química , Ligandos , Proflavina/química , Temperatura de Transición
19.
Photochem Photobiol ; 94(6): 1308-1313, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29981148

RESUMEN

Proflavine is an acridine dye used with high-resolution microendoscopy for in vivo diagnostic evaluation of cervical epithelial cells. However, there are concerns that even short-term exposure of cervical tissue to dilute proflavine may increase cervical cancer risk. We performed a retrospective analysis of women referred for colposcopy to Barretos Cancer Hospital comparing the risk of cervical disease progression in those whose cervical tissue was (n = 232) or was not exposed (n = 160) to proflavine. Patients in both groups underwent treatment and follow-up based on histopathologic results and per the local standards of care. Progression of disease was evaluated by comparing histopathology from the initial visit to the worst subsequent histopathology result from all follow-up visits. Mean duration of follow-up was 18.7 and 20.1 months for the proflavine-exposed and controls groups, respectively. There were no significant differences in disease progression from normal/CIN1 to CIN2/3 or from any initial diagnosis to invasive cancer between the proflavine exposed and control groups overall. Risks of cervical dysplasia progression observed in this study are in agreement with those of the natural history of cervical cancer. Our results suggest that cervical exposure to dilute proflavine does not increase the risk of cervical precancer and cancer.


Asunto(s)
Cuello del Útero/diagnóstico por imagen , Colposcopía/métodos , Medios de Contraste/administración & dosificación , Proflavina/administración & dosificación , Displasia del Cuello del Útero/diagnóstico por imagen , Neoplasias del Cuello Uterino/diagnóstico por imagen , Adulto , Cuello del Útero/metabolismo , Cuello del Útero/patología , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Riesgo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Displasia del Cuello del Útero/metabolismo , Displasia del Cuello del Útero/patología
20.
Mol Pharmacol ; 93(6): 592-600, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29650538

RESUMEN

Many compounds inhibit tetrameric and pseudo-tetrameric cation channels by associating with the central cavity located in the middle of the membrane plane. They traverse the ion conduction pathway from the intracellular side and through access to the cavity. Previously, we reported that the bacteriostatic agent, proflavine, preferentially blocked a subset of inward rectifier K+ (Kir) channels. However, the development of the inhibition of Kir1.1 by the compound was obviously different from that operating in Kir3.2 as a pore blocker. To gain mechanistic insights into the compound-channel interaction, we analyzed its chemical specificity, subunit selectivity, and voltage dependency using 13 different combinations of Kir-channel family members and 11 proflavine derivatives. The Kir-channel family members were classified into three groups: 1) Kir2.2, Kir3.x, Kir4.2, and Kir6.2Δ36, which exhibited Kir3.2-type inhibition (slow onset and recovery, irreversible, and voltage-dependent blockage); 2) Kir1.1 and Kir4.1/Kir5.1 (prompt onset and recovery, reversible, and voltage-independent blockage); and 3) Kir2.1, Kir2.3, Kir4.1, and Kir7.1 (no response). The degree of current inhibition depended on the combination of compounds and channels. Chimera between proflavine-sensitive Kir1.1 and -insensitive Kir4.1 revealed that the extracellular portion of Kir1.1 is crucial for the recognition of the proflavine derivative acrinol. In conclusion, preferential blockage of Kir-channel family members by proflavine derivatives is based on multiple modes of action. This raises the possibility of designing subunit-specific inhibitors.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Proflavina/farmacología , Animales , Humanos , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...