Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125589

RESUMEN

Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.


Asunto(s)
Lamina Tipo A , Lipodistrofia , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/terapia , Animales , Laminopatías/genética , Laminopatías/metabolismo , Progeria/genética , Progeria/metabolismo , Progeria/patología , Mutación , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/terapia , Metabolismo de los Lípidos/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Resistencia a la Insulina/genética , Edición Génica
2.
Cell Death Dis ; 15(7): 523, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039044

RESUMEN

The mechanism regulating cellular senescence of postmitotic muscle cells is still unknown. cGAS-STING innate immune signaling was found to mediate cellular senescence in various types of cells, including postmitotic neuron cells, which however has not been explored in postmitotic muscle cells. Here by studying the myofibers from Zmpste24-/- progeria aged mice [an established mice model for Hutchinson-Gilford progeria syndrome (HGPS)], we observed senescence-associated phenotypes in Zmpste24-/- myofibers, which is coupled with increased oxidative damage to mitochondrial DNA (mtDNA) and secretion of senescence-associated secretory phenotype (SASP) factors. Also, Zmpste24-/- myofibers feature increased release of mtDNA from damaged mitochondria, mitophagy dysfunction, and activation of cGAS-STING. Meanwhile, increased mtDNA release in Zmpste24-/- myofibers appeared to be related with increased VDAC1 oligomerization. Further, the inhibition of VDAC1 oligomerization in Zmpste24-/- myofibers with VBIT4 reduced mtDNA release, cGAS-STING activation, and the expression of SASP factors. Our results reveal a novel mechanism of innate immune activation-associated cellular senescence in postmitotic muscle cells in aged muscle, which may help identify novel sets of diagnostic markers and therapeutic targets for progeria aging and aging-associated muscle diseases.


Asunto(s)
Senescencia Celular , ADN Mitocondrial , Proteínas de la Membrana , Nucleotidiltransferasas , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Ratones , Progeria/metabolismo , Progeria/patología , Progeria/genética , Transducción de Señal , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Ratones Noqueados , Células Musculares/metabolismo , Mitofagia , Mitocondrias/metabolismo , Humanos , Ratones Endogámicos C57BL , Metaloendopeptidasas
3.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917015

RESUMEN

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Asunto(s)
Lamina Tipo A , Lamina Tipo B , Lámina Nuclear , Lámina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progeria/metabolismo , Progeria/genética , Progeria/patología , Animales , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones
4.
Dev Cell ; 59(14): 1892-1911.e13, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38810654

RESUMEN

Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.


Asunto(s)
Envejecimiento , Agregado de Proteínas , Animales , Envejecimiento/metabolismo , Humanos , Proteostasis , Especificidad de Órganos , Vertebrados/metabolismo , Agregación Patológica de Proteínas/metabolismo , Progeria/metabolismo , Progeria/genética , Progeria/patología
5.
Aging Cell ; 23(7): e14188, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38686927

RESUMEN

Beyond the antimicrobial activity, doxycycline (DOX) exhibits longevity-promoting effect in nematodes, while its effect on mammals is unclear. Here, we applied a mouse model of Hutchinson-Gilford progeria syndrome (HGPS), Zmpste24 knockout (KO) mice, and analyzed the antiaging effect of DOX. We found that the DOX treatment prolongs lifespan and ameliorates progeroid features of Zmpste24 KO mice, including the decline of body and tissue weight, exercise capacity and cortical bone density, and the shortened colon length. DOX treatment alleviates the abnormal nuclear envelope in multiple tissues, and attenuates cellular senescence and cell death of Zmpste24 KO and HGPS fibroblasts. DOX downregulates the level of proinflammatory IL6 in both serum and tissues. Moreover, the elevated α-tubulin (K40) acetylation mediated by NAT10 in progeria, is rescued by DOX treatment in the aorta tissues in Zmpste24 KO mice and fibroblasts. Collectively, our study uncovers that DOX can decelerate aging in progeria mice via counteracting IL6 expression and NAT10-mediated acetylation of α-tubulin.


Asunto(s)
Envejecimiento , Doxiciclina , Ratones Noqueados , Progeria , Animales , Progeria/tratamiento farmacológico , Progeria/metabolismo , Progeria/patología , Ratones , Envejecimiento/efectos de los fármacos , Doxiciclina/farmacología , Metaloendopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Senescencia Celular/efectos de los fármacos
6.
Aging Cell ; 23(7): e14150, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38576084

RESUMEN

Hutchinson-Gilford Progeria syndrome (HGPS) is a lethal premature aging disorder caused by a de novo heterozygous mutation that leads to the accumulation of a splicing isoform of Lamin A termed progerin. Progerin expression deregulates the organization of the nuclear lamina and the epigenetic landscape. Progerin has also been observed to accumulate at low levels during normal aging in cardiovascular cells of adults that do not carry genetic mutations linked with HGPS. Therefore, the molecular mechanisms that lead to vascular dysfunction in HGPS may also play a role in vascular aging-associated diseases, such as myocardial infarction and stroke. Here, we show that HGPS patient-derived vascular smooth muscle cells (VSMCs) recapitulate HGPS molecular hallmarks. Transcriptional profiling revealed cardiovascular disease remodeling and reactive oxidative stress response activation in HGPS VSMCs. Proteomic analyses identified abnormal acetylation programs in HGPS VSMC replication fork complexes, resulting in reduced H4K16 acetylation. Analysis of acetylation kinetics revealed both upregulation of K16 deacetylation and downregulation of K16 acetylation. This correlates with abnormal accumulation of error-prone nonhomologous end joining (NHEJ) repair proteins on newly replicated chromatin. The knockdown of the histone acetyltransferase MOF recapitulates preferential engagement of NHEJ repair activity in control VSMCs. Additionally, we find that primary donor-derived coronary artery vascular smooth muscle cells from aged individuals show similar defects to HGPS VSMCs, including loss of H4K16 acetylation. Altogether, we provide insight into the molecular mechanisms underlying vascular complications associated with HGPS patients and normative aging.


Asunto(s)
Enfermedades Cardiovasculares , Progeria , Progeria/metabolismo , Progeria/genética , Progeria/patología , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Envejecimiento/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Modelos Cardiovasculares , Adulto
7.
Sci Rep ; 14(1): 9321, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653789

RESUMEN

ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.


Asunto(s)
Alopecia , Anodoncia , Senescencia Celular , Fibroblastos , Trastornos del Crecimiento , Proteínas de Microfilamentos , Humanos , Fibroblastos/metabolismo , Senescencia Celular/genética , Alopecia/metabolismo , Alopecia/patología , Alopecia/genética , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/deficiencia , Atrofias Ópticas Hereditarias/genética , Atrofias Ópticas Hereditarias/metabolismo , Actinas/metabolismo , Progeria/genética , Progeria/patología , Progeria/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648484

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.


Asunto(s)
Aterosclerosis , Células Endoteliales , Lamina Tipo A , Músculo Liso Vascular , Progeria , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Progeria/metabolismo , Progeria/genética , Progeria/patología , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética
9.
Aging Cell ; 23(6): e14143, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38482753

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal disease manifested by premature aging and aging-related phenotypes, making it a disease model for aging. The cellular machinery mediating age-associated phenotypes in HGPS remains largely unknown, resulting in limited therapeutic targets for HGPS. In this study, we showed that mitophagy defects impaired mitochondrial function and contributed to cellular markers associated with aging in mesenchymal stem cells derived from HGPS patients (HGPS-MSCs). Mechanistically, we discovered that mitophagy affected the aging-associated phenotypes of HGPS-MSCs by inhibiting the STING-NF-ĸB pathway and the downstream transcription of senescence-associated secretory phenotypes (SASPs). Furthermore, by utilizing UMI-77, an effective mitophagy inducer, we showed that mitophagy induction alleviated aging-associated phenotypes in HGPS and naturally aged mice. Collectively, our results uncovered that mitophagy defects mediated the aging-associated markers in HGPS, highlighted the function of mitochondrial homeostasis in HGPS progression, and suggested mitophagy as an intervention target for HGPS and aging.


Asunto(s)
Mitofagia , Progeria , Progeria/metabolismo , Progeria/genética , Progeria/patología , Mitofagia/genética , Humanos , Ratones , Animales , Envejecimiento/metabolismo , Senescencia Celular/genética
10.
Aging Cell ; 23(5): e14105, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38504487

RESUMEN

Hutchinson-Gilford Progeria syndrome (HGPS) is a severe premature ageing disorder caused by a 50 amino acid truncated (Δ50AA) and permanently farnesylated lamin A (LA) mutant called progerin. On a cellular level, progerin expression leads to heterochromatin loss, impaired nucleocytoplasmic transport, telomeric DNA damage and a permanent growth arrest called cellular senescence. Although the genetic basis for HGPS has been elucidated 20 years ago, the question whether the Δ50AA or the permanent farnesylation causes cellular defects has not been addressed. Moreover, we currently lack mechanistic insight into how the only FDA-approved progeria drug Lonafarnib, a farnesyltransferase inhibitor (FTI), ameliorates HGPS phenotypes. By expressing a variety of LA mutants using a doxycycline-inducible system, and in conjunction with FTI, we demonstrate that the permanent farnesylation, and not the Δ50AA, is solely responsible for progerin-induced cellular defects, as well as its rapid accumulation and slow clearance. Importantly, FTI does not affect clearance of progerin post-farnesylation and we demonstrate that early, but not late FTI treatment prevents HGPS phenotypes. Collectively, our study unravels the precise contributions of progerin's permanent farnesylation to its turnover and HGPS cellular phenotypes, and how FTI treatment ameliorates these. These findings are applicable to other diseases associated with permanently farnesylated proteins, such as adult-onset autosomal dominant leukodystrophy.


Asunto(s)
Lamina Tipo A , Progeria , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Humanos , Progeria/metabolismo , Progeria/genética , Progeria/patología , Progeria/tratamiento farmacológico , Farnesiltransferasa/metabolismo , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/genética , Prenilación de Proteína , Dibenzocicloheptenos , Piperidinas , Piridinas
11.
Nat Cell Biol ; 26(2): 235-249, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267537

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth, metabolism and autophagy. Multiple pathways modulate mTORC1 in response to nutrients. Here we describe that nucleus-cytoplasmic shuttling of p300/EP300 regulates mTORC1 activity in response to amino acid or glucose levels. Depletion of these nutrients causes cytoplasm-to-nucleus relocalization of p300 that decreases acetylation of the mTORC1 component raptor, thereby reducing mTORC1 activity and activating autophagy. This is mediated by AMP-activated protein kinase-dependent phosphorylation of p300 at serine 89. Nutrient addition to starved cells results in protein phosphatase 2A-dependent dephosphorylation of nuclear p300, enabling its CRM1-dependent export to the cytoplasm to mediate mTORC1 reactivation. p300 shuttling regulates mTORC1 in most cell types and occurs in response to altered nutrients in diverse mouse tissues. Interestingly, p300 cytoplasm-nucleus shuttling is altered in cells from patients with Hutchinson-Gilford progeria syndrome. p300 mislocalization by the disease-causing protein, progerin, activates mTORC1 and inhibits autophagy, phenotypes that are normalized by modulating p300 shuttling. These results reveal how nutrients regulate mTORC1, a cytoplasmic complex, by shuttling its positive regulator p300 in and out of the nucleus, and how this pathway is misregulated in Hutchinson-Gilford progeria syndrome, causing mTORC1 hyperactivation and defective autophagy.


Asunto(s)
Progeria , Humanos , Ratones , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Progeria/genética , Progeria/metabolismo , Transporte Activo de Núcleo Celular , Proteína Reguladora Asociada a mTOR/metabolismo , Aminoácidos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo
12.
Bioorg Chem ; 142: 106967, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979321

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) or progeria is a rare genetic disease that causes premature aging, leading to a drastic reduction in the life expectancy of patients. Progeria is mainly caused by the intracellular accumulation of a defective protein called progerin, generated from a mutation in the LMNA gene. Currently, there is only one approved drug for the treatment of progeria, which has limited efficacy. It is believed that progerin levels are the most important biomarker related to the severity of the disease. However, there is a lack of effective tools to directly visualize progerin in the native cellular models, since the commercially available antibodies are not well suited for the direct visualization of progerin in cells from the mouse model of the disease. In this context, an alternative option for the visualization of a protein relies on the use of fluorescent chemical probes, molecules with affinity and specificity towards a protein. In this work we report the synthesis and characterization of a new fluorescent probe (UCM-23079) that allows for the direct visualization of progerin in cells from the most widely used progeroid mouse model. Thus, UCM-23079 is a new tool compound that could help prioritize potential preclinical therapies towards the final goal of finding a definitive cure for progeria.


Asunto(s)
Progeria , Ratones , Animales , Humanos , Progeria/tratamiento farmacológico , Progeria/genética , Progeria/metabolismo , Colorantes Fluorescentes/uso terapéutico , Mutación
13.
Nucleus ; 14(1): 2288476, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38050983

RESUMEN

Several related progeroid disorders are caused by defective post-translational processing of prelamin A, the precursor of the nuclear scaffold protein lamin A, encoded by LMNA. Prelamin A undergoes farnesylation and additional modifications at its C-terminus. Subsequently, the farnesylated C-terminal segment is cleaved off by the zinc metalloprotease ZMPSTE24. The premature aging disorder Hutchinson Gilford progeria syndrome (HGPS) and a related progeroid disease, mandibuloacral dysplasia (MAD-B), are caused by mutations in LMNA and ZMPSTE24, respectively, that result in failure to process the lamin A precursor and accumulate permanently farnesylated forms of prelamin A. The farnesyl transferase inhibitor (FTI) lonafarnib is known to correct the aberrant nuclear morphology of HGPS patient cells and improves lifespan in children with HGPS. Importantly, and in contrast to a previous report, we show here that FTI treatment also improves the aberrant nuclear phenotypes in MAD-B patient cells with mutations in ZMPSTE24 (P248L or L425P). As expected, lonafarnib does not correct nuclear defects for cells with lamin A processing-proficient mutations. We also examine prelamin A processing in fibroblasts from two individuals with a prevalent laminopathy mutation LMNA-R644C. Despite the proximity of residue R644 to the prelamin A cleavage site, neither R644C patient cell line shows a prelamin A processing defect, and both have normal nuclear morphology. This work clarifies the prelamin A processing status and role of FTIs in a variety of laminopathy patient cells and supports the FDA-approved indication for the FTI Zokinvy for patients with processing-deficient progeroid laminopathies, but not for patients with processing-proficient laminopathies.


Asunto(s)
Lipodistrofia , Progeria , Niño , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progeria/tratamiento farmacológico , Progeria/genética , Progeria/metabolismo , Inhibidores Enzimáticos/farmacología , Mutación , Lipodistrofia/metabolismo , Fibroblastos/metabolismo , Transferasas/genética , Transferasas/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(47): e2309200120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37967221

RESUMEN

Patients with Hutchinson-Gilford progeria syndrome (HGPS) present with a number of premature aging phenotypes, including DNA damage accumulation, and many of them die of cardiovascular complications. Although vascular pathologies have been reported, whether HGPS patients exhibit cardiac dysfunction and its underlying mechanism is unclear, rendering limited options for treating HGPS-related cardiomyopathy. In this study, we reported a cardiac atrophy phenotype in the LmnaG609G/G609G mice (hereafter, HGPS mice). Using a GFP-based reporter system, we demonstrated that the efficiency of nonhomologous end joining (NHEJ) declined by 50% in HGPS cardiomyocytes in vivo, due to the attenuated interaction between γH2AX and Progerin, the causative factor of HGPS. As a result, genomic instability in cardiomyocytes led to an increase of CHK2 protein level, promoting the LKB1-AMPKα interaction and AMPKα phosphorylation, which further led to the activation of FOXO3A-mediated transcription of atrophy-related genes. Moreover, inhibiting AMPK enlarged cardiomyocyte sizes both in vitro and in vivo. Most importantly, our proof-of-concept study indicated that isoproterenol treatment significantly reduced AMPKα and FOXO3A phosphorylation in the heart, attenuated the atrophy phenotype, and extended the mean lifespan of HGPS mice by ~21%, implying that targeting cardiac atrophy may be an approach to HGPS treatment.


Asunto(s)
Envejecimiento Prematuro , Progeria , Humanos , Ratones , Animales , Progeria/metabolismo , Corazón , Daño del ADN , Inestabilidad Genómica , Proteínas Quinasas Activadas por AMP/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo
15.
Aging Cell ; 22(12): e13983, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858983

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal genetic condition that arises from a single nucleotide alteration in the LMNA gene, leading to the production of a defective lamin A protein known as progerin. The accumulation of progerin accelerates the onset of a dramatic premature aging phenotype in children with HGPS, characterized by low body weight, lipodystrophy, metabolic dysfunction, skin, and musculoskeletal age-related dysfunctions. In most cases, these children die of age-related cardiovascular dysfunction by their early teenage years. The absence of effective treatments for HGPS underscores the critical need to explore novel safe therapeutic strategies. In this study, we show that treatment with the hormone ghrelin increases autophagy, decreases progerin levels, and alleviates other cellular hallmarks of premature aging in human HGPS fibroblasts. Additionally, using a HGPS mouse model (LmnaG609G/G609G mice), we demonstrate that ghrelin administration effectively rescues molecular and histopathological progeroid features, prevents progressive weight loss in later stages, reverses the lipodystrophic phenotype, and extends lifespan of these short-lived mice. Therefore, our findings uncover the potential of modulating ghrelin signaling offers new treatment targets and translational approaches that may improve outcomes and enhance the quality of life for patients with HGPS and other age-related pathologies.


Asunto(s)
Envejecimiento Prematuro , Progeria , Adolescente , Niño , Humanos , Ratones , Animales , Progeria/tratamiento farmacológico , Progeria/genética , Progeria/metabolismo , Envejecimiento Prematuro/tratamiento farmacológico , Envejecimiento Prematuro/genética , Ghrelina/farmacología , Calidad de Vida , Piel/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Envejecimiento
16.
Nucleus ; 14(1): 2270345, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37885131

RESUMEN

As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.


Asunto(s)
Lamina Tipo A , Progeria , Humanos , Animales , Ratones , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Promoción de la Salud , Progeria/genética , Progeria/metabolismo , Envejecimiento/genética , Proteínas de la Membrana/metabolismo
17.
Mech Ageing Dev ; 216: 111879, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832833

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS), also known as hereditary progeria syndrome, is caused by mutations in the LMNA gene and the expression of progerin, which causes accelerated aging and premature death, with most patients dying of heart failure or other cardiovascular complications in their teens. HGPS patients are able to exhibit cardiovascular phenotypes similar to physiological aging, such as extensive atherosclerosis, smooth muscle cell loss, vascular lesions, and electrical and functional abnormalities of the heart. It also excludes the traditional risk causative factors of cardiovascular disease, making HGPS a new model for studying aging-related cardiovascular disease. Here, we analyzed the pathogenesis and pathophysiological characteristics of HGPS and the relationship between HGPS and cardiovascular disease, provided insight into the molecular mechanisms of cardiovascular disease pathogenesis in HGPS patients and treatment strategies for this disease. Moreover, we summarize the disease models used in HGPS studies to improve our understanding of the pathological mechanisms of cardiovascular aging in HGPS patients.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Sistema Cardiovascular , Progeria , Humanos , Adolescente , Progeria/genética , Progeria/terapia , Progeria/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Envejecimiento/metabolismo , Aterosclerosis/patología , Sistema Cardiovascular/metabolismo
18.
Cell Tissue Res ; 394(1): 189-207, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572165

RESUMEN

Cardiovascular diseases, atherosclerosis, and strokes are the most common causes of death in patients with Hutchinson-Gilford progeria syndrome (HGPS). The LMNA variant c.1824C > T accounts for ~ 90% of HGPS cases. The detailed molecular mechanisms of Lamin A in the heart remain elusive due to the lack of appropriate in vitro models. We hypothesize that HGPS patient's induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMCs) will provide a model platform to study the cardio-pathologic mechanisms associated with HGPS. To elucidate the effects of progerin in cardiomyocytes, we first obtained skin fibroblasts (SFs) from a de-identified HGPS patient (hPGP1, proband) and both parents from the Progeria Research Foundation. Through Sanger sequencing and restriction fragment length polymorphism, with the enzyme EciI, targeting Lamin A, we characterized hPGP1-SFs as heterozygous mutants for the LMNA variant c.1824 C > T. Additionally, we performed LMNA exon 11 bisulfite sequencing to analyze the methylation status of the progeria cells. Furthermore, we reprogrammed the three SFs into iPSCs and differentiated them into iCMCs, which gained a beating on day 7. Through particle image velocimetry analysis, we found that hPGP1-iCMCs had an irregular contractile function and decreased cardiac-specific gene and protein expressions by qRT-PCR and Western blot. Our progeria-patient-derived iCMCs were found to be functionally and structurally defective when compared to normal iCMCs. This in vitro model will help in elucidating the role of Lamin A in cardiac diseases and the cardio-pathologic mechanisms associated with progeria. It provides a new platform for researchers to study novel treatment approaches for progeria-associated cardiac diseases.


Asunto(s)
Cardiopatías , Progeria , Humanos , Progeria/genética , Progeria/metabolismo , Progeria/patología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Miocitos Cardíacos/metabolismo , Diferenciación Celular
19.
Aging Cell ; 22(10): e13952, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37565451

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by nuclear envelope alterations that lead to accelerated aging and premature death. Several studies have linked health and longevity to cell-extrinsic mechanisms, highlighting the relevance of circulating factors in the aging process as well as in age-related diseases. We performed a global plasma proteomic analysis in two preclinical progeroid models (LmnaG609G/G609G and Zmpste24-/- mice) using aptamer-based proteomic technology. Pathways related to the extracellular matrix, growth factor response and calcium ion binding were among the most enriched in the proteomic signature of progeroid samples compared to controls. Despite the global downregulation trend found in the plasma proteome of progeroid mice, several proteins associated with cardiovascular disease, the main cause of death in HGPS, were upregulated. We also developed a chronological age predictor using plasma proteome data from a cohort of healthy mice (aged 1-30 months), that reported an age acceleration when applied to progeroid mice, indicating that these mice exhibit an "old" plasma proteomic signature. Furthermore, when compared to naturally-aged mice, a great proportion of differentially expressed circulating proteins in progeroid mice were specific to premature aging, highlighting secretome-associated differences between physiological and accelerated aging. This is the first large-scale profiling of the plasma proteome in progeroid mice, which provides an extensive list of candidate circulating plasma proteins as potential biomarkers and/or therapeutic targets for further exploration and hypothesis generation in the context of both physiological and premature aging.


Asunto(s)
Envejecimiento Prematuro , Progeria , Humanos , Ratones , Animales , Progeria/metabolismo , Envejecimiento Prematuro/genética , Proteómica , Proteoma/metabolismo , Secretoma , Lamina Tipo A/genética , Lamina Tipo A/metabolismo
20.
Aging Cell ; 22(9): e13903, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365004

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the LmnaG609G knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.


Asunto(s)
Envejecimiento Prematuro , Enfermedades del Desarrollo Óseo , Progeria , Ratones , Animales , Progeria/genética , Progeria/metabolismo , Mutación , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...