Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674770

RESUMEN

Toll-like receptors (TLRs)-mediated host-bacterial interactions participate in the microbial regulation of gastrointestinal functions, including the epithelial barrier function (EBF). We evaluated the effects of TLR7 stimulation on the colonic EBF in rats. TLR7 was stimulated with the selective agonist imiquimod (100/300 µg/rat, intracolonic), with or without the intracolonic administration of dimethyl sulfoxide (DMSO). Colonic EBF was assessed in vitro (electrophysiology and permeability to macromolecules, Ussing chamber) and in vivo (passage of macromolecules to blood and urine). Changes in the expression (RT-qPCR) and distribution (immunohistochemistry) of tight junction-related proteins were determined. Expression of proglucagon, precursor of the barrier-enhancer factor glucagon-like peptide 2 (GLP-2) was also assessed (RT-qPCR). Intracolonic imiquimod enhanced the EBF in vitro, reducing the epithelial conductance and the passage of macromolecules, thus indicating a pro-barrier effect of TLR7. However, the combination of TLR7 stimulation and DMSO had a detrimental effect on the EBF, which manifested as an increased passage of macromolecules. DMSO alone had no effect. The modulation of the EBF (imiquimod alone or with DMSO) was not associated with changes in gene expression or the epithelial distribution of the main tight junction-related proteins (occludin, tricellulin, claudin-2, claudin-3, junctional adhesion molecule 1 and Zonula occludens-1). No changes in the proglucagon expression were observed. These results show that TLR7 stimulation leads to the modulation of the colonic EBF, having beneficial or detrimental effects depending upon the state of the epithelium. The underlying mechanisms remain elusive, but seem independent of the modulation of the main tight junction-related proteins or the barrier-enhancer factor GLP-2.


Asunto(s)
Dimetilsulfóxido , Receptor Toll-Like 7 , Ratas , Animales , Receptor Toll-Like 7/metabolismo , Proglucagón/metabolismo , Proglucagón/farmacología , Dimetilsulfóxido/farmacología , Imiquimod/farmacología , Colon/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Uniones Estrechas/metabolismo , Mucosa Intestinal/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Permeabilidad
2.
Bull Exp Biol Med ; 170(5): 618-622, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33788103

RESUMEN

Glucagon-like peptide-1 (GLP-1), a product of partial proteolysis of proglucagon, is involved not only in regulation of carbohydrates, but also in water-salt metabolism. The study examined the role of proglucagon derivatives GLP-1, GLP-2, and oxyntomodulin in rat osmoregulation. Of them, only blood plasma GLP-1 increased in response to water load (20 ml/kg). Administration of glucose (1.5 g/kg) elevated GLP-1 and oxyntomodulin but did not change the level of GLP-2. GLP-1 accelerated excretion of excess water during hyperhydration, whereas GLP-2 decreased this parameter. No physiological effects of oxyntomodulin in the kidneys were revealed. Probably, the blood levels of proglucagon derivatives are independently regulated for each peptide. In contrast to GLP-2 and oxyntomodulin, GLP-1 is involved in osmoregulation.


Asunto(s)
Péptidos/farmacología , Proglucagón/farmacología , Animales , Femenino , Péptido 1 Similar al Glucagón/química , Péptido 2 Similar al Glucagón/química , Riñón/efectos de los fármacos , Riñón/metabolismo , Osmorregulación/efectos de los fármacos , Péptidos/química , Proglucagón/química , Ratas , Ratas Wistar
3.
Diabetologia ; 62(10): 1928-1937, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31414143

RESUMEN

AIMS/HYPOTHESIS: Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two peptides that function to promote insulin secretion. Dipeptidyl peptidase-4 (DPP-4) inhibitors increase the bioavailability of both GLP-1 and GIP but the dogma continues to be that it is the increase in GLP-1 that contributes to the improved glucose homeostasis. We have previously demonstrated that pancreatic rather than intestinal GLP-1 is necessary for improvements in glucose homeostasis in mice. Therefore, we hypothesise that a combination of pancreatic GLP-1 and GIP is necessary for the full effect of DPP-4 inhibitors on glucose homeostasis. METHODS: We have genetically engineered mouse lines in which the preproglucagon gene (Gcg) is absent in the entire body (GcgRAΔNull) or is expressed exclusively in the intestine (GcgRAΔVilCre) or pancreas and duodenum (GcgRAΔPDX1Cre). These mice were used to examine oral glucose tolerance and GLP-1 and GIP responses to a DPP-4 inhibitor alone, or in combination with incretin receptor antagonists. RESULTS: Administration of the DPP-4 inhibitor, linagliptin, improved glucose tolerance in GcgRAΔNull mice and control littermates and in GcgRAΔVilCre and GcgRAΔPDX1Cre mice. The potent GLP-1 receptor antagonist, exendin-[9-39] (Ex9), blunted improvements in glucose tolerance in linagliptin-treated control mice and in GcgRAΔPDX1Cre mice. Ex9 had no effect on glucose tolerance in linagliptin-treated GcgRAΔNull or in GcgRAΔVilCre mice. In addition to GLP-1, linagliptin also increased postprandial plasma levels of GIP to a similar degree in all genotypes. When linagliptin was co-administered with a GIP-antagonising antibody, the impact of linagliptin was partially blunted in wild-type mice and was fully blocked in GcgRAΔNull mice. CONCLUSIONS/INTERPRETATION: Taken together, these data suggest that increases in pancreatic GLP-1 and GIP are necessary for the full effect of DPP-4 inhibitors on glucose tolerance.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Animales , Glucemia/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Linagliptina/farmacología , Masculino , Ratones , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Periodo Posprandial , Proglucagón/farmacología
4.
Cell Rep ; 21(6): 1452-1460, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29117552

RESUMEN

Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in ß cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.


Asunto(s)
Glucemia/análisis , Insulina/análisis , Fallo Renal Crónico/patología , Proglucagón/sangre , Animales , Células COS , Estudios de Casos y Controles , Células Cultivadas , Chlorocebus aethiops , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Gluconeogénesis/efectos de los fármacos , Humanos , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Fallo Renal Crónico/sangre , Fallo Renal Crónico/metabolismo , Masculino , Ratones , Fosforilasa Quinasa/genética , Fosforilasa Quinasa/metabolismo , Proglucagón/farmacología , Ratas , Ratas Wistar , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo
5.
J Clin Invest ; 127(3): 793-795, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28218623

RESUMEN

Glucagon-like peptide 1 receptor (GLP-1R) signaling in the CNS has been linked to reduced food intake, lower body weight, improved glucose homeostasis, and activation of CNS stress axes. GLP-1 is produced by cells that express proglucagon (GCG); however, the stimuli that activate GCG+ neurons are not well known, which has made understanding the role of this neuronal population in the CNS a challenge. In this issue of the JCI, Gaykema et al. use designer receptors exclusively activated by designer drugs (DREADD) technology to specifically activate GCG+ neurons in mouse models. While activation of GCG+ neurons did reduce food intake, and variably decreased hepatic glucose production, other GLP-1-associated effects were not observed - e.g., activation of stress axes or stimulation of insulin secretion - in response to GCG+ neuron activation. The authors have provided a valuable model to study this set of neurons in vivo, and their results provide new insights into the function of GCG+ neural activity in the brain and raise questions that will move research on this clinically relevant neural system forward.


Asunto(s)
Encéfalo/metabolismo , Diseño de Fármacos , Receptor del Péptido 1 Similar al Glucagón , Neuronas/metabolismo , Proglucagón/farmacología , Animales , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Ratones
6.
Pancreas ; 45(7): 967-73, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26731187

RESUMEN

OBJECTIVES: Reports have suggested a link between treatment with glucagon-like peptide 1 (GLP-1) analogs and an increased risk of pancreatitis. Oxyntomodulin, a dual agonist of both GLP-1 and glucagon receptors, is currently being investigated as a potential antiobesity therapy, but little is known about its pancreatic safety. The aim of the study was to investigate the acute effect of oxyntomodulin and other proglucagon-derived peptides on the rat exocrine pancreas. METHODS: Glucagon-like peptide 1, oxyntomodulin, glucagon, and exendin-4 were infused into anesthetized rats to measure plasma amylase concentration changes. In addition, the effect of each peptide on both amylase release and proliferation in rat pancreatic acinar (AR42J) and primary isolated ductal cells was determined. RESULTS: Plasma amylase did not increase postpeptide infusion, compared with vehicle and cholecystokinin; however, oxyntomodulin inhibited plasma amylase when coadministered with cholecystokinin. None of the peptides caused a significant increase in proliferation rate or amylase secretion from acinar and ductal cells. CONCLUSIONS: The investigated peptides do not have an acute effect on the exocrine pancreas with regard to proliferation and plasma amylase, when administered individually. Oxyntomodulin seems to be a potent inhibitor of amylase release, potentially making it a safer antiobesity agent regarding pancreatitis, compared with GLP-1 agonists.


Asunto(s)
Oxintomodulina/farmacología , Páncreas Exocrino/efectos de los fármacos , Péptidos/farmacología , Proglucagón/farmacología , Actinas/genética , Amilasas/sangre , Amilasas/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Exenatida , Expresión Génica , Glucagón/administración & dosificación , Glucagón/farmacología , Péptido 1 Similar al Glucagón/administración & dosificación , Péptido 1 Similar al Glucagón/farmacología , Inyecciones Intravenosas , Antígeno Ki-67/genética , Masculino , Oxintomodulina/administración & dosificación , Páncreas Exocrino/metabolismo , Péptidos/administración & dosificación , Proglucagón/administración & dosificación , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ponzoñas/administración & dosificación , Ponzoñas/farmacología
7.
Nat Clin Pract Endocrinol Metab ; 1(1): 22-31, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16929363

RESUMEN

The actions of the structurally related proglucagon-derived peptides (PGDPs)-glucagon, glucagon-like peptide (GLP)-1 and GLP-2-are focused on complementary aspects of energy homeostasis. Glucagon opposes insulin action, regulates hepatic glucose production, and is a primary hormonal defense against hypoglycemia. Conversely, attenuation of glucagon action markedly improves experimental diabetes, hence glucagon antagonists may prove useful for the treatment of type 2 diabetes. GLP-1 controls blood glucose through regulation of glucose-dependent insulin secretion, inhibition of glucagon secretion and gastric emptying, and reduction of food intake. GLP-1-receptor activation also augments insulin biosynthesis, restores beta-cell sensitivity to glucose, increases beta-cell proliferation, and reduces apoptosis, leading to expansion of the beta-cell mass. Administration of GLP-1 is highly effective in reducing blood glucose in subjects with type 2 diabetes but native GLP-1 is rapidly degraded by dipeptidyl peptidase IV. A GLP-1-receptor agonist, exendin 4, has recently been approved for the treatment of type 2 diabetes in the US. Dipeptidyl-peptidase-IV inhibitors, currently in phase III clinical trials, stabilize the postprandial levels of GLP-1 and gastric inhibitory polypeptide and lower blood glucose in diabetic patients via inhibition of glucagon secretion and enhancement of glucose-stimulated insulin secretion. GLP-2 acts proximally to control energy intake by enhancing nutrient absorption and attenuating mucosal injury and is currently in phase III clinical trials for the treatment of short bowel syndrome. Thus the modulation of proglucagon-derived peptides has therapeutic potential for the treatment of diabetes and intestinal disease.


Asunto(s)
Proglucagón/farmacología , Proglucagón/uso terapéutico , Glucagón/fisiología , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Péptido 2 Similar al Glucagón , Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/uso terapéutico , Humanos , Mucosa Intestinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...