Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(31): 44308-44317, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951395

RESUMEN

Avobenzone (AVO) is a sunscreen with high global production and is constantly released into the environment. Incorporating sewage biosolids for fertilization purposes, the leaching from cultivated soils, and the use of wastewater for irrigation explain its presence in the soil. There is a lack of information about the impact of this sunscreen on plants. In the present study, the ecotoxicity of AVO was tested at concentrations 1, 10, 100, and 1,000 ng/L. All concentrations caused a reduction in root growth of Allium cepa, Cucumis sativus, and Lycopersicum esculentum seeds, as well as a mitodepressive effect, changes in the mitotic spindle and a reduction in root growth of A. cepa bulbs. The cell cycle was disturbed because AVO disarmed the enzymatic defense system of root meristems, leading to an accumulation of hydroxyl radicals and superoxides, besides lipid peroxidation in cells. Therefore, AVO shows a high potential to cause damage to plants and can negatively affect agricultural production and the growth of non-cultivated plants.


Asunto(s)
Protectores Solares , Protectores Solares/toxicidad , Propiofenonas/toxicidad , Cebollas/efectos de los fármacos , Cucumis sativus/efectos de los fármacos
2.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892053

RESUMEN

This study reports the first application of in silico methods to assess the toxicity of 4-chloromethcathinone (4-CMC), a novel psychoactive substance (NPS). Employing advanced toxicology in silico tools, it was possible to predict crucial aspects of the toxicological profile of 4-CMC, including acute toxicity (LD50), genotoxicity, cardiotoxicity, and its potential for endocrine disruption. The obtained results indicate significant acute toxicity with species-specific variability, moderate genotoxic potential suggesting the risk of DNA damage, and a notable cardiotoxicity risk associated with hERG channel inhibition. Endocrine disruption assessment revealed a low probability of 4-CMC interacting with estrogen receptor alpha (ER-α), suggesting minimal estrogenic activity. These insights, derived from in silico studies, are critical in advancing the understanding of 4-CMC properties in forensic and clinical toxicology. These initial toxicological findings provide a foundation for future research and aid in the formulation of risk assessment and management strategies in the context of the use and abuse of NPSs.


Asunto(s)
Simulación por Computador , Psicotrópicos , Psicotrópicos/toxicidad , Psicotrópicos/química , Humanos , Animales , Cardiotoxicidad/etiología , Propiofenonas/toxicidad , Propiofenonas/química , Receptor alfa de Estrógeno/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química , Daño del ADN/efectos de los fármacos
3.
Toxicol Appl Pharmacol ; 483: 116809, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38211931

RESUMEN

Xanthohumol (XN) is a prominent prenylated flavonoid present in the hop plant (Humulus lupulus L.). Despite undoubted pro-healing properties of hop plant, there is still a need for clinical investigations confirming these effects as well as the underlying molecular mechanisms. The present study was designed to (1) establish the role of XN in non-invasive inflammation induced by chemical damage to zebrafish hair cells, (2) clarify if it influences cell injury severity, neutrophil migration, macrophage activation, cell regeneration, and (3) find out whether it modulates the gene expression profile of chosen immune and stress response markers. All experiments were performed on 3 dpf zebrafish larvae. After fertilization the embryos were transferred to appropriate XN solutions (0.1 µM, 0.3 µM and 0.5 µM). The 40 min 10 µM CuSO4 exposure evoked severe damage to posterior lateral line hair cells triggering a robust acute inflammatory response. Four readouts were selected as the indicators of XN role in the process of inflammation: 1) hair cell death, 2) neutrophil migration towards damaged hair cells, 3) macrophage activation and recruitment to damaged hair cells, 4) hair cell regeneration. The assessments involved in vivo confocal microscopy imaging and qPCR based molecular analysis. It was demonstrated that XN (1) influences death pathway of damaged hair cells by redirecting their severe necrotic phenotype into apoptotic one, (2) impacts the immune response via regulating neutrophil migration, macrophage recruitment and activation (3) modulates gene expression of immune system markers and (4) accelerates hair cell regeneration.


Asunto(s)
Humulus , Propiofenonas , Animales , Humulus/química , Humulus/metabolismo , Pez Cebra/metabolismo , Flavonoides/química , Propiofenonas/toxicidad , Propiofenonas/química , Propiofenonas/metabolismo , Inmunidad Innata , Inflamación/inducido químicamente , Cabello/metabolismo
4.
J Appl Toxicol ; 42(1): 73-86, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34101210

RESUMEN

Ethylhexyl methoxycinnamate (EHMC) (CAS number: 5466-77-3) and butyl methoxydibenzoylmethane (BMDM) (CAS number: 70356-09-1) are important sunscreens. However, frequent application of large amounts of these compounds may reflect serious environmental impact, once it enters the environment through indirect release via wastewater treatment or immediate release during water activities. In this article, we reviewed the toxicological effects of EHMC and BMDM on aquatic ecosystems and the human consequences. According to the literature, EHMC and BMDM have been detected in water samples and sediments worldwide. Consequently, these compounds are also present in several marine organisms like fish, invertebrates, coral reefs, marine mammals, and other species, due to its bioaccumulation potential. Studies show that these chemicals are capable of damaging the aquatic beings in different ways. Further, bioaccumulation studies have shown that EHMC biomagnifies through trophic levels, which makes human seafood consumption a concern because the higher position in the trophic chain, the more elevate levels of ultraviolet (UV) filters are detected, and it is established that EHMC present adverse effects on the human organism. In contrast, there are no studies on the BMDM bioaccumulation and biomagnification potential. Different strategies can be adopted to avoid the damage caused by sunscreens in the environment and human organism. Two of them include the use of natural photoprotectors, such as polyphenols, in association with UV filters in sunscreens and the development of new and safer UV filters. Overall, this review shows the importance of studying the impacts of sunscreens in nature and developing safer sunscreens and formulations to safeguard marine fauna, ecosystems, and humans.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Cinamatos/toxicidad , Peces , Invertebrados/efectos de los fármacos , Propiofenonas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Humanos
5.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206985

RESUMEN

Microbial conjugation studies of licochalcones (1-4) and xanthohumol (5) were performed by using the fungi Mucor hiemalis and Absidia coerulea. As a result, one new glucosylated metabolite was produced by M. hiemalis whereas four new and three known sulfated metabolites were obtained by transformation with A. coerulea. Chemical structures of all the metabolites were elucidated on the basis of 1D-, 2D-NMR and mass spectroscopic data analyses. These results could contribute to a better understanding of the metabolic fates of licochalcones and xanthohumol in mammalian systems. Although licochalcone A 4'-sulfate (7) showed less cytotoxic activity against human cancer cell lines compared to its substrate licochalcone A, its activity was fairly retained with the IC50 values in the range of 27.35-43.07 µM.


Asunto(s)
Absidia/metabolismo , Chalconas/química , Flavonoides/química , Mucor/metabolismo , Propiofenonas/química , Células A549 , Absidia/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Proliferación Celular/efectos de los fármacos , Chalconas/metabolismo , Chalconas/toxicidad , Flavonoides/metabolismo , Flavonoides/toxicidad , Humanos , Células MCF-7 , Metaboloma , Mucor/química , Propiofenonas/metabolismo , Propiofenonas/toxicidad
6.
Arch Toxicol ; 95(4): 1443-1462, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33550444

RESUMEN

Synthetic cathinones are among the most popular new psychoactive substances, being abused for their stimulant properties, which are similar to those of amphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Considering that the liver is a likely target for cathinones-induced toxicity, and for their metabolic activation/detoxification, we aimed to determine the hepatotoxicity of three commonly abused synthetic cathinones: butylone, α-methylamino-butyrophenone (buphedrone) and 3,4-dimethylmethcathinone (3,4-DMMC). We characterized their cytotoxic profile in primary rat hepatocytes (PRH) and in the HepaRG and HepG2 cell lines. PRH was the most sensitive cell model, showing the lowest EC50 values for all three substances (0.158 mM for 3,4-DMMC; 1.21 mM for butylone; 1.57 mM for buphedrone). Co-exposure of PRH to the synthetic cathinones and CYP450 inhibitors (selective and non-selective) proved that hepatic metabolism reduced the toxicity of buphedrone but increased that of butylone and 3,4-DMMC. All compounds were able to increase oxidative stress, disrupting mitochondrial homeostasis and inducing apoptotic and necrotic features, while also increasing the occurrence of acidic vesicular organelles in PRH, compatible with autophagic activation. In conclusion, butylone, buphedrone and 3,4-DMMC have hepatotoxic potential, and their toxicity lies in the interference with a number of homeostatic processes, while being influenced by their metabolic fate.


Asunto(s)
3,4-Metilenodioxianfetamina/análogos & derivados , Butirofenonas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Metilaminas/toxicidad , Propiofenonas/toxicidad , 3,4-Metilenodioxianfetamina/administración & dosificación , 3,4-Metilenodioxianfetamina/toxicidad , Animales , Autofagia/efectos de los fármacos , Butirofenonas/administración & dosificación , Línea Celular Tumoral , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Drogas de Diseño/administración & dosificación , Drogas de Diseño/toxicidad , Relación Dosis-Respuesta a Droga , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Masculino , Metilaminas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Propiofenonas/administración & dosificación , Ratas , Ratas Wistar
7.
Mov Disord ; 35(10): 1858-1863, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32542919

RESUMEN

BACKGROUND: A number of cases of severe parkinsonism-dystonia have been recognized and reported following the illicit use of ephedrone prepared from pseudoephedrine and potassium permanganate. The pathology associated with ephedrone neurotoxicity has not been described yet in the scientific literature. OBJECTIVES: To report the first neuropathological study of ephedrone toxicity. METHODS: The brain of a 33-year-old Ukrainian female ex-ephedrone addict with a long history of l-dopa-unresponsive parkinsonism with dysarthria, dystonia, profound postural instability, cock-gait, and frequent falls, and on antiretroviral treatment, was examined using routine stains and immunohistochemistry. RESULTS: Neuropathological findings included diffuse pallidal astrogliosis without neuronal depletion. There was also widespread vascular pathology with small vessels occluded by foreign material, associated with giant cell response without any evidence of consequent focal infarction and a cerebellar abscess. CONCLUSIONS: Clinical findings of l-dopa-unresponsive parkinsonism with dystonia, caused by illicit use of ephedrone, are fully consistent with neuropathological changes in the pallidum, lack of change in the SN, and preserved tyrosine hydroxylase activity. The findings in the basal ganglia are compatible with manganese toxicity. The vascular pathology is likely a joint effect of infection and the ephedrone toxicity on the vessels. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Encefalopatías , Intoxicación por Manganeso , Trastornos Parkinsonianos , Propiofenonas , Adulto , Femenino , Humanos , Trastornos Parkinsonianos/inducido químicamente , Propiofenonas/toxicidad
8.
Arch Toxicol ; 94(7): 2481-2503, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382956

RESUMEN

Cathinones (ß-keto amphetamines), widely abused in recreational settings, have been shown similar or even worse toxicological profile than classical amphetamines. In the present study, the cytotoxicity of two ß-keto amphetamines [3,4-dimethylmethcathinone (3,4-DMMC) and 4-methylmethcathinone (4-MMC)], was evaluated in differentiated dopaminergic SH-SY5Y cells in comparison to methamphetamine (METH). MTT reduction and NR uptake assays revealed that both cathinones and METH induced cytotoxicity in a concentration- and time-dependent manner. Pre-treatment with trolox (antioxidant) partially prevented the cytotoxicity induced by all tested drugs, while N-acetyl-L-cysteine (NAC; antioxidant and glutathione precursor) and GBR 12909 (dopamine transporter inhibitor) partially prevented the cytotoxicity induced by cathinones, as evaluated by the MTT reduction assay. Unlike METH, cathinones induced oxidative stress evidenced by the increase on intracellular levels of reactive oxygen species (ROS), and also by the decrease of intracellular glutathione levels. Trolox prevented, partially but significantly, the ROS generation elicited by cathinones, while NAC inhibited it completely. All tested drugs induced mitochondrial dysfunction, since they led to mitochondrial membrane depolarization and to intracellular ATP depletion. Activation of caspase-3, indicative of apoptosis, was seen both for cathinones and METH, and confirmed by annexin V and propidium iodide positive staining. Autophagy was also activated by all drugs tested. Pre-incubation with bafilomycin A1, an inhibitor of the vacuolar H+-ATPase, only protected against the cytotoxicity induced by METH, which indicates dissimilar toxicological pathways for the tested drugs. In conclusion, the mitochondrial impairment and oxidative stress observed for the tested cathinones may be key factors for their neurotoxicity, but different outcome pathways seem to be involved in the adverse effects, when compared to METH.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Metanfetamina/análogos & derivados , Neurogénesis , Propiofenonas/toxicidad , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Metanfetamina/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
9.
Int J Mol Sci ; 21(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325754

RESUMEN

Halogenation of amphetamines and methcathinones has become a common method to obtain novel psychoactive substances (NPS) also called "legal highs". The para-halogenated derivatives of amphetamine and methcathinone are available over the internet and have entered the illicit drug market but studies on their potential neurotoxic effects are rare. The primary aim of this study was to explore the neurotoxicity of amphetamine, methcathinone and their para-halogenated derivatives 4-fluoroamphetamine (4-FA), 4-chloroamphetamine (PCA), 4-fluoromethcathinone (4-FMC), and 4-chloromethcathinone (4-CMC) in undifferentiated and differentiated SH-SY5Y cells. We found that 4-FA, PCA, and 4-CMC were cytotoxic (decrease in cellular ATP and plasma membrane damage) for both cell types, whereby differentiated cells were less sensitive. IC50 values for cellular ATP depletion were in the range of 1.4 mM for 4-FA, 0.4 mM for PCA and 1.4 mM for 4-CMC. The rank of cytotoxicity observed for the para-substituents was chloride > fluoride > hydrogen for both amphetamines and cathinones. Each of 4-FA, PCA and 4-CMC decreased the mitochondrial membrane potential in both cell types, and PCA and 4-CMC impaired the function of the electron transport chain of mitochondria in SH-SY5Y cells. 4-FA, PCA, and 4-CMC increased the ROS level and PCA and 4-CMC induced apoptosis by the endogenous pathway. In conclusion, para-halogenation of amphetamine and methcathinone increases their neurotoxic properties due to the impairment of mitochondrial function and induction of apoptosis. Although the cytotoxic concentrations were higher than those needed for pharmacological activity, the current findings may be important regarding the uncontrolled recreational use of these compounds.


Asunto(s)
Anfetamina/toxicidad , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuroblastoma/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Anfetamina/química , Anfetamina/metabolismo , Anfetaminas/metabolismo , Anfetaminas/toxicidad , Línea Celular Tumoral , Transporte de Electrón/efectos de los fármacos , Halogenación , Humanos , Concentración 50 Inhibidora , Metilaminas/metabolismo , Metilaminas/toxicidad , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Propiofenonas/metabolismo , Propiofenonas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
10.
Neurotox Res ; 38(1): 86-95, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32140923

RESUMEN

This study aimed to investigate the effects of prenatal and lactational methcathinone exposure on the development and the learning and memory abilities of rat offspring using a Sprague-Dawley rat model. Pregnant and lactating rats were administered a consecutive daily dose of methcathinone (0.37 mg/kg) or an equivalent volume of saline by injection on gestational days 7-20 and postnatal days 2-15, respectively. The physical development and neurobehavioral test results of rat pups were recorded throughout the lactation period. Morris water maze (MWM) and novel object recognition (NOR) tests were performed from postnatal day 35 to day 42 to assess the learning and memory abilities of rat offspring in adolescence. The occurrence of hair growth and developments in neurological reflexes, such as improvements in limb grasp, righting reflex, and gait, were delayed in pups after perinatal methcathinone exposure compared with that in the control. Results from MWM and NOR tests indicate that perinatal methcathinone exposure induced deficits in spatial memory, learning ability, and novel object exploration in the adolescent offspring compared with that in the control. The impairment of spatial learning and memory was greater in the prenatal exposure group, while the impairment of novel object exploration was greater in the lactational exposure group. These data show that the prenatal and lactational methcathinone exposure induced the delay of physical and neurological reflex development and impaired learning and memory in rat offspring.


Asunto(s)
Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Propiofenonas/toxicidad , Psicotrópicos/toxicidad , Animales , Femenino , Lactancia , Masculino , Embarazo , Ratas Sprague-Dawley
11.
Pharmacol Biochem Behav ; 192: 172912, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32201298

RESUMEN

RATIONALE: Methylenedioxymethamphetamine (MDMA) and methcathinone (MCAT) are abused psychostimulant drugs that produce adverse effects in human users that include hepatotoxicity and death. Recent work has suggested a connection between hepatotoxicity, elevations in plasma ammonia, and brain glutamate function for methamphetamine (METH)-induced neurotoxicity. OBJECTIVES: These experiments investigated the effect of ambient temperature on the toxicity and lethality produced by MDMA and MCAT in mice, and whether these effects might involve similar mechanisms to those described for METH neurotoxicity. RESULTS: Under low (room temperature) ambient temperature conditions, MDMA induced hepatotoxicity, elevated plasma ammonia levels, and induced lethality. Under the same conditions, even a very high dose of MCAT produced limited toxic or lethal effects. High ambient temperature conditions potentiated the toxic and lethal effects of both MDMA and MCAT. CONCLUSION: These studies suggest that hepatotoxicity, plasma ammonia, and brain glutamate function are involved in MDMA-induced lethality, as has been shown for METH neurotoxicity. The toxicity and lethality of both MDMA and MCAT were potentiated by high ambient temperatures. Although an initial mouse study reported that several cathinones were much less toxic than METH or MDMA, the present results suggest that it will be essential to assess the potential dangers posed by these drugs under high ambient temperatures.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Calor , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/mortalidad , Propiofenonas/toxicidad , Amoníaco/sangre , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Ácido Glutámico/metabolismo , Masculino , Metanfetamina/toxicidad , Ratones , Ratones Endogámicos C57BL , Síndromes de Neurotoxicidad/sangre , Transducción de Señal/efectos de los fármacos , Trastornos Relacionados con Sustancias/mortalidad
12.
Toxicol In Vitro ; 62: 104667, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31629901

RESUMEN

Serum is an important component in cell culture medium. It also possesses potent antioxidant properties. Therefore, the conventional protocols for detecting reactive oxygen species (ROS) in cultured cells with fluorescent probes include washing and suspending cells with serum-free buffers, such as PBS. This transient serum deprivation is essential for the ROS detecting. Unfortunately, it may also cause unexpected results, which push us to choose more optimal experiment conditions. In the present study, we found an acute lytic cell death induced by xanthohumol (XN), which obstructed ROS detecting in human leukemia cell line HL-60 cells. XN induced ROS burst, caused cell swelling, membrane permeability increase, LDH release, and ultimately an acute lytic cell death and cell rupture. These effects could be alleviated by the antioxidant N-Acetyl-L-cysteine (NAC). Apoptosis, pyroptosis or necroptosis were not observed in this process. Results also indicated that 2% serum addition had already completely scavenged ROS induced by 10 µM XN. Taken together, it is strongly suggested to detecting ROS in a serum-free medium when studying where and how ROS generated in cells. The concentration at the ROS maximum point (10 µM XN in this study) can be selected as the optimal concentration.


Asunto(s)
Flavonoides/toxicidad , Propiofenonas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Células HL-60 , Humanos , Interleucina-1beta/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Suero
13.
J Neural Transm (Vienna) ; 127(5): 707-714, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31786692

RESUMEN

An irreversible extrapyramidal syndrome occurs in man after intravenous abuse of "homemade" methcathinone (ephedrone, Mcat) that is contaminated with manganese (Mn) and is accompanied by altered basal ganglia function. Both Mcat and Mn can cause alterations in nigrostriatal function but it remains unknown whether the effects of the 'homemade' drug seen in man are due to Mcat or to Mn or to a combination of both. To determine how toxicity occurs, we have investigated the effects of 4-week intraperitoneal administration of Mn (30 mg/kg t.i.d) and Mcat (100 mg/kg t.i.d.) given alone, on the nigrostriatal function in male C57BL6 mice. The effects were compared to those of the 'homemade' mixture which contained about 7 mg/kg of Mn and 100 mg/kg of Mcat. Motor function, nigral dopaminergic cell number and markers of pre- and postsynaptic dopaminergic neuronal integrity including SPECT analysis were assessed. All three treatments had similar effects on motor behavior and neuronal markers. All decreased motor activity and induced tyrosine hydroxylase positive cell loss in the substantia nigra. All reduced 123I-epidepride binding to D2 receptors in the striatum. Vesicular monoamine transporter 2 (VMAT2) binding was not altered by any drug treatment. However, Mcat treatment alone decreased levels of the dopamine transporter (DAT) and Mn alone reduced GAD immunoreactivity in the striatum. These data suggest that both Mcat and Mn alone could contribute to the neuronal damage caused by the 'homemade' mixture but that both produce additional changes that contribute to the extrapyramidal syndrome seen in man.


Asunto(s)
Enfermedades de los Ganglios Basales/inducido químicamente , Cuerpo Estriado/efectos de los fármacos , Manganeso/toxicidad , Propiofenonas/toxicidad , Sustancia Negra/efectos de los fármacos , Animales , Enfermedades de los Ganglios Basales/diagnóstico por imagen , Enfermedades de los Ganglios Basales/metabolismo , Enfermedades de los Ganglios Basales/patología , Conducta Animal , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Masculino , Manganeso/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Propiofenonas/administración & dosificación , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/metabolismo , Sustancia Negra/patología , Tomografía Computarizada de Emisión de Fotón Único
14.
Neurotoxicology ; 76: 138-143, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678058

RESUMEN

Manganese-methcathinone encephalopathy (MME) is a rare parkinsonian syndrome described in drug addicts who have self-injected a home-made mixture containing methcathinone and manganese. We assessed 14 patients with MME and compared their results with 14 matched control subjects. The patients had a parkinsonian syndrome with symmetrical bradykinesia, dystonias, and postural, gait and speech impairment, with moderate restrictions in activities of daily living. Their cognitive status was assessed with the Russian version of the Wechsler Adult Intelligence Scale (WAIS) and with tests of attention (Trail Making Test, Bourdon-Wiersma Dot Cancellation Test), memory (Auditory Verbal Learning Test, Rey-Osterrieth Complex Figure), motor skills (Grooved Pegboard), visuospatial skills (Money Road Map Test, Benton Judgment of Line Orientation), and executive abilities (Verbal Fluency, 5-Point Test, Wisconsin Card Sorting Test). Only a few significant differences emerged. After controlling for multiple comparisons, the results in the WAIS Object Assembly subtest, the Grooved Pegboard test (dominant and nondominant hand) and the Verbal Fluency test remained significant.


Asunto(s)
Encefalopatías/inducido químicamente , Disfunción Cognitiva/inducido químicamente , Manganeso/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Propiofenonas/toxicidad , Adolescente , Adulto , Encefalopatías/complicaciones , Cognición/efectos de los fármacos , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Trastornos Parkinsonianos/complicaciones , Adulto Joven
15.
Neurotoxicology ; 75: 158-173, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31473217

RESUMEN

Synthetic cathinones also known as ß-keto amphetamines are a new group of recreational designer drugs. We aimed to evaluate the cytotoxic potential of thirteen cathinones lacking the methylenedioxy ring and establish a putative structure-toxicity profile using differentiated SH-SY5Y cells, as well as to compare their toxicity to that of amphetamine (AMPH) and methamphetamine (METH). Cytotoxicity assays [mitochondrial 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction and lysosomal neutral red (NR) uptake] performed after a 24-h or a 48-h exposure revealed for all tested drugs a concentration-dependent toxicity. The rank order regarding the concentration that promoted 50 % of toxicity, at 24 h exposure, by the MTT assay was: 3,4-dimethylmethcathinone (3,4-DMMC) > METH > mephedrone ≈ α-pyrrolidinopentiophenone > AMPH ≈ methedrone > pentedrone > buphedrone ≈ flephedrone >α-pyrrolidinobutiophenone > methcathinone ≈ N-ethylcathinone >α-pyrrolidinopropiophenone >N,N-dimethylcathinone ≈ amfepramone. Apoptotic cell death signs were seen for all studied cathinones. 3,4-DMMC, methcathinone and pentedrone triggered autophagy activation, as well as increased reactive oxygen species production, and N-acetyl-L-cysteine (NAC) totally prevented that rise. Importantly, NAC was also able to prevent the cytotoxicity promoted by 6 tested drugs, ruling for an involvement of oxidative stress in the toxic events observed. The increased lipophilic chain on the alpha carbon, the presence and the high steric volume occupied by the substituents on the aromatic ring, and the substitution of the pyrrolidine ring by its secondary amine analogue have proved to be key points for the cytotoxicity profile of these cathinones. The structure-toxicity relationship established herein may enlighten future human relevant mechanistic studies, and future clinical approaches on intoxications.


Asunto(s)
Alcaloides/toxicidad , Anfetaminas/toxicidad , Neuronas/efectos de los fármacos , Alcaloides/química , Anfetaminas/química , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Microscopía de Contraste de Fase , Neuronas/ultraestructura , Propiofenonas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
17.
Arch Toxicol ; 93(7): 1903-1915, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31016361

RESUMEN

Avobenzone is the most commonly used ultraviolet (UV) A filter ingredient in sunscreen. To investigate the biological activity of avobenzone in normal human epidermal keratinocytes (NHEKs), the genome-scale transcriptional profile of NHEKs was performed. In this microarray study, we found 273 up-regulated and 274 down-regulated differentially expressed genes (DEGs) in NHEKs treated with avobenzone (10 µM). Gene Ontology (GO) enrichment analysis showed that avobenzone significantly increased the DEGs associated with lipid metabolism in NHEKs. In addition, avobenzone increased the gene transcription of peroxisome proliferator-activated receptor γ (PPARγ) and fatty acid binding protein 4 in NHEKs, implicating that avobenzone may be one of the metabolic disrupting obesogens. To confirm the obesogenic potential, we examined the effect of avobenzone on adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). Avobenzone (EC50, 14.1 µM) significantly promoted adipogenesis in hBM-MSCs as its positive control obesogenic chemicals. Avobenzone (10 µM) significantly up-regulated mRNA levels of PPARγ during adipogenesis in hBM-MSCs. However, avobenzone did not directly bind to PPARγ and the avobenzone-induced adipogenesis-promoting activity was not affected by PPARγ antagonists T0070907 and GW9662. Therefore, avobenzone promoted adipogenesis in hBM-MSCs through a PPARγ-independent mechanism. This study suggests that avobenzone functions as a metabolic disrupting obesogen.


Asunto(s)
Adipogénesis/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Propiofenonas/toxicidad , Protectores Solares/toxicidad , Transcripción Genética/efectos de los fármacos , Adipogénesis/genética , Animales , Regulación hacia Abajo , Estudio de Asociación del Genoma Completo , Humanos , Queratinocitos/citología , Células Madre Mesenquimatosas/citología , Nivel sin Efectos Adversos Observados , Fenotipo , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda , Regulación hacia Arriba
18.
Psychopharmacology (Berl) ; 236(3): 1107-1117, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30276421

RESUMEN

RATIONALE: Synthetic cathinones ("bath salts") are ß-ketone analogs of amphetamines, yet few studies have examined their potential neurotoxic effects. OBJECTIVE: In the current study, we assessed the persistent behavioral and neurochemical effects of exposure to the second-generation synthetic cathinone α-pyrrolidinopropiophenone (α-PPP). METHODS: Male, Swiss-Webster mice were exposed to α-PPP (80 mg/kg) using a binge-like dosing regimen (QID, q2h). Behavior was assessed 4-5 days after the dosing regimen, and neurochemistry was assessed the following day. Behavior was studied using the elevated plus maze, Y-maze, and novel object recognition tests. Regional levels of dopamine, serotonin, norepinephrine, and the major dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in the prefrontal cortex and striatum using high-pressure liquid chromatography. Additional experiments assessed the time courses of the effects of α-PPP on locomotor activity and core temperature using telemetry. RESULTS: Exposure to α-PPP significantly impaired performance in the Y-maze, decreased overall exploratory activity in the novel object recognition test, and resulted in regionally specific depletions in monoamine neurochemistry. In contrast, it had no significant effect on elevated plus maze performance or object discrimination in the novel object recognition test. The locomotor-stimulant effects of α-PPP were comparable to cocaine (30 mg/kg), and α-PPP (80 mg/kg) did not induce hyperthermia. CONCLUSIONS: α-PPP exposure results in persistent changes in exploratory behavior, spatial working memory, and monoamine neurochemistry. This research highlights potential dangers of α-PPP, including potential neurotoxicity, and suggests that the mechanisms underlying the persistent untoward effects of the cathinones may be distinct from those of the amphetamines.


Asunto(s)
Alcaloides/toxicidad , Cuerpo Estriado/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Corteza Prefrontal/metabolismo , Propiofenonas/toxicidad , Pirrolidinas/toxicidad , Reconocimiento en Psicología/efectos de los fármacos , Animales , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Norepinefrina/metabolismo , Corteza Prefrontal/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Serotonina/metabolismo
19.
Psychopharmacology (Berl) ; 236(3): 1097-1106, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30074064

RESUMEN

RATIONALE: Mephedrone is a commonly abused constituent of "bath salts" and has many pharmacological effects in common with methamphetamine. Despite their structural similarity, mephedrone differs significantly from methamphetamine in its effects on core body temperature and dopamine nerve endings. The reasons for these differences remain unclear. OBJECTIVES: Mephedrone elicits a transient hypothermia which may provide intrinsic neuroprotection against methamphetamine-like toxicity to dopamine nerve endings. Furthermore, evidence in the literature suggests that this hypothermia is mediated by serotonin. By utilizing transgenic mice devoid of brain serotonin, we determined the contribution of this neurotransmitter to changes in core body temperature as well as its possible role in protecting against neurotoxicity. The effects of methcathinone and 4-methyl-methamphetamine, two structural analogs of mephedrone and methamphetamine, were also evaluated in these mice. RESULTS: The hypothermia induced by mephedrone and methcathinone in wild-type mice was not observed in mice lacking brain serotonin. Despite preventing drug-induced hypothermia, the lack of serotonin did not alter the neurotoxic profiles of the test drugs. CONCLUSIONS: Serotonin is a key mediator of pharmacological hypothermia induced by mephedrone and methcathinone, but these body temperature effects do not contribute to dopamine nerve ending damage observed in mice following treatment with mephedrone, methcathinone or 4-methyl-methamphetamine. Thus, the key component of methamphetamine neurotoxicity lacking in mephedrone remains to be elucidated.


Asunto(s)
Hipotermia/metabolismo , Drogas Ilícitas/toxicidad , Metanfetamina/análogos & derivados , Síndromes de Neurotoxicidad/metabolismo , Propiofenonas/toxicidad , Triptófano Hidroxilasa/deficiencia , Animales , Femenino , Hipotermia/inducido químicamente , Hipotermia/fisiopatología , Metanfetamina/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/fisiopatología , Triptófano Hidroxilasa/genética
20.
Reprod Toxicol ; 81: 50-57, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981360

RESUMEN

Avobenzone is widely used in various personal care products, is present in swimming pools, and is toxic to aquatic organisms. However, it is unclear how avobenzone affects human trophoblast cells. Results of the present study demonstrated that avobenzone inhibited the proliferation of HTR8/SVneo cells, the immortalized human trophoblast cell line, and inhibited the expression of PCNA. In addition, avobenzone increased the activity of AKT and ERK1/2 in HTR8/SVneo cells. When LY294002 (AKT inhibitor) and U0126 (ERK1/2 inhibitor) were treated with avobenzone, the anti-proliferative effect of avobenzone was alleviated. Moreover, avobenzone promoted Ca2+ overload into the mitochondria and induced depolarization of the mitochondrial membrane. Expression of IFI27, which is located in the mitochondria, was elevated by avobenzone via inhibition of expression through siRNA transfection against IFI27, but did not alter cell properties. This study suggests that avobenzone induces mitochondrial dysfunction-mediated apoptosis leading to abnormal placentation during early pregnancy.


Asunto(s)
Propiofenonas/toxicidad , Protectores Solares/toxicidad , Trofoblastos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de la Membrana/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trofoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...