Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Pediatr Endocrinol Metab ; 36(12): 1140-1145, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37877373

RESUMEN

OBJECTIVES: To study the prevalence and influence on metabolic profile of the prohormone-convertase-1 (PCSK1) N221D variant in childhood obesity, proven its role in the leptin-melanocortin signaling pathway as in proinsulin and other prohormone cleavage. METHODS: Transversal study of 1066 children with obesity (mean age and BMI Z-score 10.38 ± 3.44 years and +4.38 ± 1.77, respectively), 51.4 % males, 54.4 % prepubertal, 71.5 % Caucasians and 20.8 % Latinos. Anthropometric and metabolic features were compared between patients carrying the N221D variant in PCSK1 and patients with no variants found after next generation sequencing analysis of 17 genes (CREBBP, CPE, HTR2C, KSR2, LEP, LEPR, MAGEL2, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC, SH2B1, SIM1, TBX3 and TUB) involved in the leptin-melanocortin pathway. RESULTS: No variants were found in 531 patients (49.8 %), while 68 patients carried the PCSK1 N221D variant (42 isolately, and 26 with at least one additional gene variant). Its prevalence was higher in Caucasians vs. Latinos (χ2 7.81; p<0.01). Patients carrying exclusively the PCSK1 N221D variant (n=42) showed lower insulinemia (p<0.05), HOMA index (p<0.05) and area under the curve for insulin in the oral glucose tolerance test (p<0.001) and higher WBISI (p<0.05) than patients with no variants, despite similar obesity severity, age, sex and ethnic distribution. CONCLUSIONS: The N221D variant in PCSK1 is highly prevalent in childhood obesity, influenced by ethnicity. Indirect estimation of insulin resistance, based on insulinemia could be byassed in these patients and underestimate their type 2 diabetes mellitus risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Obesidad Infantil , Masculino , Humanos , Niño , Femenino , Obesidad Infantil/epidemiología , Obesidad Infantil/genética , Leptina/genética , Leptina/metabolismo , Melanocortinas/metabolismo , Metaboloma , Proteínas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo
2.
Mol Metab ; 66: 101627, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36374777

RESUMEN

OBJECTIVE: The hypothalamus regulates feeding and glucose homeostasis through the balanced action of different neuropeptides, which are cleaved and activated by the proprotein convertases PC1/3 and PC2. However, the recent association of polymorphisms in the proprotein convertase FURIN with type 2 diabetes, metabolic syndrome, and obesity, prompted us to investigate the role of FURIN in hypothalamic neurons controlling glucose and feeding. METHODS: POMC-Cre+/- mice were bred with Furinfl/fl mice to generate conditional knockout mice with Furin-deletion in neurons expressing proopiomelanocortin (POMCFurKO), and Furinfl/fl mice were used as controls. POMCFurKO and controls were periodically monitored on both normal chow diet and high fat diet (HFD) for body weight and glucose tolerance by established in-vivo procedures. Food intake was measured in HFD-fed FurKO and controls. Hypothalamic Pomc mRNA was measured by RT-qPCR. ELISAs quantified POMC protein and resulting peptides in the hypothalamic extracts of POMCFurKO mice and controls. The in-vitro processing of POMC was studied by biochemical techniques in HEK293T and CHO cell lines lacking FURIN. RESULTS: In control mice, Furin mRNA levels were significantly upregulated on HFD feeding, suggesting an increased demand for FURIN activity in obesogenic conditions. Under these conditions, the POMCFurKO mice were hyperphagic and had increased body weight compared to Furinfl/fl mice. Moreover, protein levels of POMC were elevated and ACTH concentrations markedly reduced. Also, the ratio of α-MSH/POMC was decreased in POMCFurKO mice compared to controls. This indicates that POMC processing was significantly reduced in the hypothalami of POMCFurKO mice, highlighting for the first time the involvement of FURIN in the cleavage of POMC. Importantly, we found that in vitro, the first stage in processing where POMC is cleaved into proACTH was achieved by FURIN but not by PC1/3 or the other proprotein convertases in cell lines lacking a regulated secretory pathway. CONCLUSIONS: These results suggest that FURIN processes POMC into proACTH before sorting into the regulated secretory pathway, challenging the dogma that PC1/3 and PC2 are the only convertases responsible for POMC cleavage. Furthermore, its deletion affects feeding behaviors under obesogenic conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Conducta Alimentaria , Furina , Hipotálamo , Proopiomelanocortina , Animales , Humanos , Ratones , alfa-MSH/metabolismo , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Conducta Alimentaria/fisiología , Furina/genética , Furina/metabolismo , Glucosa , Células HEK293 , Hipotálamo/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , ARN Mensajero/metabolismo , Subtilisinas/genética , Subtilisinas/metabolismo
3.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955861

RESUMEN

Prader−Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11−q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic−pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.


Asunto(s)
Síndrome de Prader-Willi , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Exones , Impresión Genómica , Humanos , Ratones , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo
4.
Appl Biochem Biotechnol ; 194(12): 6164-6178, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35900711

RESUMEN

Melanocortin-4 receptor (MC4R) plays an important role in energy balance regulation and insulin secretion. It has been demonstrated that in the pancreas, it is expressed in islet α and ß cells, wherein it is significantly correlated with insulin and glucagon-like peptide-1 (GLP-1) secretion. However, the molecular mechanism by which it regulates islet function is still unclear. Therefore, in this study, our aim was to clarify the signaling and target genes involved in the regulation of insulin and GLP-1 secretion by islet MC4R. The results obtained showed that in islet cells, the expression of prohormone convertase 1/3 (PC1/3), which is correlated with islet GLP-1 and insulin secretion, increased significantly under the action of the MC4R agonist, NDP-α-MSH, but decreased under the action of the MC4R antagonist, AgRP. Additionally, we observed that to exert their regulatory functions in the islets, cAMP and ß-arrestin-1 acted as important signaling mediators of MC4R, and compared with control islets, the cAMP, PKA, and ß-arrestin-1 levels corresponding to NDP-α-MSH-treated islets were significantly elevated; however, in AgRP-treated islets, their levels decreased significantly. Islets treated with the PKA inhibitor, H89, and the ERK1/2 inhibitor, PD98059, also showed significant decreases in PC1/3 expression level, indicating that the cAMP and ß-arrestin-1 pathways are significantly correlated with PC1/3 expression. These findings suggest that islet MC4R possibly affects PC1/3 expression via the cAMP and ß-arrestin-1 pathways to regulate GLP-1 and insulin secretion. These results provide a new theoretical basis for targeting the molecular mechanism of type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Animales , Ratones , Proteína Relacionada con Agouti/metabolismo , beta-Arrestina 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo
5.
Eur Rev Med Pharmacol Sci ; 26(7): 2437-2442, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442499

RESUMEN

OBJECTIVE: Prader-Willi syndrome (PWS) is a genomic imprinting disorder predominantly caused by the absence of paternally expressed imprinted genes at chromosome 15q11.2-q13. The PCSK1 gene is vital for the processing of hypothalamic POMC to ACTH and α-MSH, leading to food intake suppression and increased energy expenditure. The aim of this study was to investigate whether our PWS patient had a defect in genes involved in the hypothalamic melanocortin-4 receptor (MC4R) pathway. PATIENTS AND METHODS: A 27-year-old Greek man with PWS presented to the Adult Endocrine Clinic with morbid obesity and hyperphagia. He also had obstructive sleep apnea, growth hormone deficiency, gonadal failure and metabolic disturbances. At 6 years of age, chromosomal testing confirmed PWS with a deletion in the q11q13 region of the long arm of paternal chromosome 15. RESULTS: At the age of 27 years, further genetic testing was conducted, and next generation sequencing revealed a PCSK1_pN221D_HET mutation which was confirmed by Sanger sequencing. CONCLUSIONS: Our findings suggest that different genetic abnormalities may be present in an individual with PWS and that patients with PWS may need to be investigated for PCSK1 mutations, as the finding may potentially offer a novel treatment perspective for them.


Asunto(s)
Síndrome de Prader-Willi , Adulto , Impresión Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo
6.
Mol Cell Endocrinol ; 537: 111425, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34391847

RESUMEN

BACKGROUND: Previously, we reported that Mof was highly expressed in α-cells, and its knockdown led to ameliorated fasting blood glucose (FBG) and glucose tolerance in non-diabetic mice, attributed by reduced total α-cell but enhanced prohormone convertase (PC)1/3-positive α-cell mass. However, how Mof and histone 4 lysine 16 acetylation (H4K16ac) control α-cell and whether Mof inhibition improves glucose handling in type 2 diabetes (T2DM) mice remain unknown. METHODS: Mof overexpression and chromatin immunoprecipitation sequence (ChIP-seq) based on H4K16ac were applied to determine the effect of Mof on α-cell transcriptional factors and underlying mechanism. Then we administrated mg149 to α-TC1-6 cell line, wild type, db/db and diet-induced obesity (DIO) mice to observe the impact of Mof inhibition in vitro and in vivo. In vitro, western blotting and TUNEL staining were used to examine α-cell apoptosis and function. In vivo, glucose tolerance, hormone levels, islet population, α-cell ratio and the co-staining of glucagon and PC1/3 or PC2 were examined. RESULTS: Mof activated α-cell-specific transcriptional network. ChIP-seq results indicated that H4K16ac targeted essential genes regulating α-cell differentiation and function. Mof activity inhibition in vitro caused impaired α-cell function and enhanced apoptosis. In vivo, it contributed to ameliorated glucose intolerance and islet dysfunction, characterized by decreased fasting glucagon and elevated post-challenge insulin levels in T2DM mice. CONCLUSION: Mof regulates α-cell differentiation and function via acetylating H4K16ac and H4K16ac binding to Pax6 and Foxa2 promoters. Mof inhibition may be a potential interventional target for T2DM, which led to decreased α-cell ratio but increased PC1/3-positive α-cells.


Asunto(s)
Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/fisiopatología , Células Secretoras de Glucagón/enzimología , Células Secretoras de Glucagón/patología , Intolerancia a la Glucosa/enzimología , Intolerancia a la Glucosa/fisiopatología , Histona Acetiltransferasas/antagonistas & inhibidores , Acetilación/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Dieta , Redes Reguladoras de Genes/efectos de los fármacos , Células Secretoras de Glucagón/efectos de los fármacos , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Ratones Endogámicos C57BL , Obesidad/etiología , Proproteína Convertasa 1/metabolismo , Salicilatos/farmacología
7.
Mol Metab ; 53: 101240, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33962048

RESUMEN

OBJECTIVE: The area postrema (AP) and nucleus tractus solitarius (NTS) located in the hindbrain are key nuclei that sense and integrate peripheral nutritional signals and consequently regulate feeding behaviour. While single-cell transcriptomics have been used in mice to reveal the gene expression profile and heterogeneity of key hypothalamic populations, similar in-depth studies have not yet been performed in the hindbrain. METHODS: Using single-nucleus RNA sequencing, we provide a detailed survey of 16,034 cells within the AP and NTS of mice in the fed and fasted states. RESULTS: Of these, 8,910 were neurons that group into 30 clusters, with 4,289 from mice fed ad libitum and 4,621 from overnight fasted mice. A total of 7,124 nuclei were from non-neuronal cells, including oligodendrocytes, astrocytes, and microglia. Interestingly, we identified that the oligodendrocyte population was particularly transcriptionally sensitive to an overnight fast. The receptors GLP1R, GIPR, GFRAL, and CALCR, which bind GLP1, GIP, GDF15, and amylin, respectively, are all expressed in the hindbrain and are major targets for anti-obesity therapeutics. We characterise the transcriptomes of these four populations and show that their gene expression profiles are not dramatically altered by an overnight fast. Notably, we find that roughly half of cells that express GIPR are oligodendrocytes. Additionally, we profile POMC-expressing neurons within the hindbrain and demonstrate that 84% of POMC neurons express either PCSK1, PSCK2, or both, implying that melanocortin peptides are likely produced by these neurons. CONCLUSION: We provide a detailed single-cell level characterisation of AP and NTS cells expressing receptors for key anti-obesity drugs that are either already approved for human use or in clinical trials. This resource will help delineate the mechanisms underlying the effectiveness of these compounds and also prove useful in the continued search for other novel therapeutic targets.


Asunto(s)
Ingestión de Alimentos , Ayuno , Proproteína Convertasa 1/genética , Proproteína Convertasa 2/genética , Rombencéfalo/metabolismo , Animales , Área Postrema/metabolismo , Conducta Alimentaria , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 2/metabolismo , Análisis de Secuencia de ARN , Núcleo Solitario/metabolismo
8.
J Biol Chem ; 297(1): 100839, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34051232

RESUMEN

Glucose-mediated signaling regulates the expression of a limited number of genes in human pancreatic ß-cells at the transcriptional level. However, it is unclear whether glucose plays a role in posttranscriptional RNA processing or translational control of gene expression. Here, we asked whether glucose affects posttranscriptional steps and regulates protein synthesis in human ß-cell lines. We first showed the involvement of the mTOR pathway in glucose-related signaling. We also used the surface sensing of translation technique, based on puromycin incorporation into newly translated proteins, to demonstrate that glucose treatment increased protein translation. Among the list of glucose-induced proteins, we identified the proconvertase PCSK1, an enzyme involved in the proteolytic conversion of proinsulin to insulin, whose translation was induced within minutes following glucose treatment. We finally performed global proteomic analysis by mass spectrometry to characterize newly translated proteins upon glucose treatment. We found enrichment in proteins involved in translation, glycolysis, TCA metabolism, and insulin secretion. Taken together, our study demonstrates that, although glucose minorly affects gene transcription in human ß-cells, it plays a major role at the translational level.


Asunto(s)
Metabolismo Energético/genética , Glucosa/farmacología , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Biosíntesis de Proteínas/genética , Línea Celular , Subunidad RIIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Metabolismo Energético/efectos de los fármacos , Humanos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proproteína Convertasa 1/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Puromicina/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
9.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33554958

RESUMEN

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that potentiates glucose-stimulated insulin secretion. GLP-1 is classically produced by gut L cells; however, under certain circumstances α cells can express the prohormone convertase required for proglucagon processing to GLP-1, prohormone convertase 1/3 (PC1/3), and can produce GLP-1. However, the mechanisms through which this occurs are poorly defined. Understanding the mechanisms by which α cell PC1/3 expression can be activated may reveal new targets for diabetes treatment. Here, we demonstrate that the GLP-1 receptor (GLP-1R) agonist, liraglutide, increased α cell GLP-1 expression in a ß cell GLP-1R-dependent manner. We demonstrate that this effect of liraglutide was translationally relevant in human islets through application of a new scRNA-seq technology, DART-Seq. We found that the effect of liraglutide to increase α cell PC1/3 mRNA expression occurred in a subcluster of α cells and was associated with increased expression of other ß cell-like genes, which we confirmed by IHC. Finally, we found that the effect of liraglutide to increase bihormonal insulin+ glucagon+ cells was mediated by the ß cell GLP-1R in mice. Together, our data validate a high-sensitivity method for scRNA-seq in human islets and identify a potentially novel GLP-1-mediated pathway regulating human α cell function.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Proproteína Convertasa 1/metabolismo , Animales , Femenino , Técnicas de Silenciamiento del Gen , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/deficiencia , Receptor del Péptido 1 Similar al Glucagón/genética , Células Secretoras de Glucagón/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Técnicas In Vitro , Células Secretoras de Insulina/efectos de los fármacos , Liraglutida/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 117(33): 20149-20158, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747560

RESUMEN

The C2 domain containing protein extended synaptotagmin (E-Syt) plays important roles in both lipid homeostasis and the intracellular signaling; however, its role in physiology remains largely unknown. Here, we show that hypothalamic E-Syt3 plays a critical role in diet-induced obesity (DIO). E-Syt3 is characteristically expressed in the hypothalamic nuclei. Whole-body or proopiomelanocortin (POMC) neuron-specific ablation of E-Syt3 ameliorated DIO and related comorbidities, including glucose intolerance and dyslipidemia. Conversely, overexpression of E-Syt3 in the arcuate nucleus moderately promoted food intake and impaired energy expenditure, leading to increased weight gain. Mechanistically, E-Syt3 ablation led to increased processing of POMC to α-melanocyte-stimulating hormone (α-MSH), increased activities of protein kinase C and activator protein-1, and enhanced expression of prohormone convertases. These findings reveal a previously unappreciated role for hypothalamic E-Syt3 in DIO and related metabolic disorders.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Obesidad/inducido químicamente , Obesidad/genética , Sinaptotagminas/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Predisposición Genética a la Enfermedad , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo , Sinaptotagminas/genética
11.
Metabolism ; 111: 154324, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32712220

RESUMEN

BACKGROUND: Clinical trials and animal studies have shown that sodium-glucose co-transporter type 2 (SGLT2) inhibitors improve pancreatic beta cell function. Our study aimed to investigate the effect of dapagliflozin on islet morphology and cell phenotype, and explore the origin and possible reason of the regenerated beta cells. METHODS: Two diabetic mouse models, db/db mice and pancreatic alpha cell lineage-tracing (glucagon-ß-gal) mice whose diabetes was induced by high fat diet combined with streptozotocin, were used. Mice were treated by daily intragastric administration of dapagliflozin (1 mg/kg) or vehicle for 6 weeks. The plasma insulin, glucagon and glucagon-like peptide-1 (GLP-1) were determined by using ELISA. The evaluation of islet morphology and cell phenotype was performed with immunofluorescence. Primary rodent islets and αTC1.9, a mouse alpha cell line, were incubated with dapagliflozin (0.25-25 µmol/L) or vehicle in the presence or absence of GLP-1 receptor antagonist for 24 h in regular or high glucose medium. The expression of specific markers and hormone levels were determined. RESULTS: Treatment with dapagliflozin significantly decreased blood glucose in the two diabetic models and upregulated plasma insulin and GLP-1 levels in db/db mice. The dapagliflozin treatment increased islet and beta cell numbers in the two diabetic mice. The beta cell proliferation as indicated by C-peptide and BrdU double-positive cells was boosted by dapagliflozin. The alpha to beta cell conversion, as evaluated by glucagon and insulin double-positive cells and confirmed by using alpha cell lineage-tracing, was facilitated by dapagliflozin. After the dapagliflozin treatment, some insulin-positive cells were located in the duct compartment or even co-localized with duct cell markers, suggestive of duct-derived beta cell neogenesis. In cultured primary rodent islets and αTC1.9 cells, dapagliflozin upregulated the expression of pancreatic endocrine progenitor and beta cell specific markers (including Pdx1) under high glucose condition. Moreover, dapagliflozin upregulated the expression of Pcsk1 (which encodes prohormone convertase 1/3, an important enzyme for processing proglucagon to GLP-1), and increased GLP-1 content and secretion in αTC1.9 cells. Importantly, the dapagliflozin-induced upregulation of Pdx1 expression was attenuated by GLP-1 receptor antagonist. CONCLUSIONS: Except for glucose-lowering effect, dapagliflozin has extra protective effects on beta cells in type 2 diabetes. Dapagliflozin enhances beta cell self-replication, induces alpha to beta cell conversion, and promotes duct-derived beta cell neogenesis. The promoting effects of dapagliflozin on beta cell regeneration may be partially mediated via GLP-1 secreted from alpha cells.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Endocrinas/efectos de los fármacos , Células Secretoras de Glucagón/efectos de los fármacos , Glucósidos/farmacología , Regeneración/efectos de los fármacos , Animales , Glucemia/metabolismo , Péptido C/metabolismo , Modelos Animales de Enfermedad , Células Endocrinas/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Proproteína Convertasa 1/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2
12.
Metabolism ; 109: 154290, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32522488

RESUMEN

BACKGROUND: Males absent on the first (Mof) is implicated in gene control of diverse biological processes, such as cell growth, differentiation, apoptosis and autophagy. However, the relationship between glucose regulation and Mof-mediated transcription events remains unexplored. We aimed to unravel the role of Mof in glucose regulation by using global and pancreatic α-cell-specific Mof-deficient mice in vivo and α-TC1-6 cell line in vitro. METHODS: We used tamoxifen-induced temporal Mof-deficient mice first to show Mof regulate glucose homeostasis, islet cell proportions and hormone secretion. Then we used α-cell-specific Mof-deficient mice to clarify how α-cell subsets and ß-cell mass were regulated and corresponding hormone level alterations. Ultimately, we used small interfering RNA (siRNA) to knockdown Mof in α-TC1-6 and unravel the mechanism regulating α-cell mass and glucagon secretion. RESULTS: Mof was mainly expressed in α-cells. Global Mof deficiency led to lower glucose levels, attributed by decreased α/ß-cell ratio and glucagon secretion. α-cell-specific Mof-deficient mice exhibited similar alterations, with more reduced prohormone convertase 2 (PC2)-positive α-cell mass, responsible for less glucagon, and enhanced prohormone convertase 1 (PC1/3)-positive α-cell mass, leading to more glucagon-like peptide-1 (GLP-1) secretion, thus increased ß-cell mass and insulin secretion. In vitro, increased DNA damage, dysregulated autophagy, enhanced apoptosis and altered cell fate factors expressions upon Mof knockdown were observed. Genes and pathways linked to impaired glucagon secretion were uncovered through transcriptome sequencing. CONCLUSION: Mof is a potential interventional target for glucose regulation, from the aspects of both α-cell subset mass and glucagon, intra-islet GLP-1 secretion. Upon Mof deficiency, Up-regulated PC1/3 but down-regulated PC2-positive α-cell mass, leads to more GLP-1 and insulin but less glucagon secretion, and contributed to lower glucose level.


Asunto(s)
Glucemia/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Glucagón/citología , Glucagón/metabolismo , Histona Acetiltransferasas/fisiología , Homeostasis , Animales , Línea Celular , Histona Acetiltransferasas/deficiencia , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 2/metabolismo
13.
J Neuroendocrinol ; 32(4): e12851, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32319174

RESUMEN

Transcription factor cAMP responsive element-binding protein 3 like 1 (Creb3l1) is a non-classical endoplasmic reticulum stress molecule that is emerging as an important component for cellular homeostasis, particularly within cell types with high peptide secretory capabilities. We have previously shown that Creb3l1 serves an important role in body fluid homeostasis through its transcriptional control of the gene coding for antidiuretic hormone arginine vasopressin in the neuropeptide-rich magnocellular neurones of the supraoptic nucleus. In response to osmotic stimuli such as dehydration, vasopressin magnocellular neurones undergo remarkable transcriptome changes, including increased Creb3l1 expression, to ensure that the supply of vasopressin meets demand. To determine where else Creb3l1 fits into the secretory cell supply chain, we performed RNA-sequencing of Creb3l1 knockdown anterior pituitary mouse corticotroph cell line AtT20. The target chosen for further investigation was Pcsk1, which encodes proprotein convertase enzyme 1 (PC1/3). PC1/3 is crucial for processing of neuropeptides and peptide hormones such as pro-opiomelanocortin (POMC), proinsulin, proglucagon, vasopressin and oxytocin. Viral manipulations in supraoptic nuclei by over-expression of Creb3l1 increased Pcsk1, whereas Creb3l1 knockdown decreased Pcsk1 expression. In vitro promoter activity and binding studies showed that Creb3l1 was a transcription factor of the Pcsk1 gene binding directly to a G-box motif in the promoter. In the dehydrated rat anterior pituitary, Creb3l1 and Pcsk1 expression decreased in parallel compared to control, supporting our findings from manipulations in AtT20 cells and the supraoptic nucleus. No relationship was observed between Creb3l1 and Pcsk1 expression in the neurointermediate lobe of the pituitary, indicating a different mechanism of PC1/3 synthesis by these POMC-synthesising cells. Therefore, Creb3l1, by regulating the expression of Pcsk1, does not control the processing of POMC peptides in the intermediate lobe.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Presión Osmótica/fisiología , Hipófisis/metabolismo , Proproteína Convertasa 1/metabolismo , Núcleo Supraóptico/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Masculino , Ratones , Proopiomelanocortina/metabolismo , Ratas , Ratas Sprague-Dawley
14.
Food Chem ; 324: 126857, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32344342

RESUMEN

Glucagon-like peptide-1 (GLP-1) is an important signal in the peripheral and neural systems, which contributes to the maintenance of glucose and energy homeostasis. In this study, 1H NMR validated polyphenols and polysaccharides extracted from sprouted quinoa yoghurt were used as isolates and conjugates to upregulate the stimulation of GLP-1 release in NCI-H716 cells. In addition, we explored their effect on proglucagon and prohormone convertase 3 mRNA expressions, HNF-3γ and CCK-2R gene protein expression, as well as cytosolic calcium release. Variations in concentration showed a dose-dependent GLP-1 stimulation, and were significantly optimized by germination. Proglucagon mRNA expression in NCI-H716 cells was upregulated, and was relatively highest with QYPSP1 treatments in a 2.68 fold. The results suggested that the conjugates had greater potential to stimulate GLP-1 release than their isolates. Sprouted quinoa yoghurt could therefore be a potential functional food useful to regulate glucose and energy homeostasis.


Asunto(s)
Chenopodium quinoa/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptido 1 Similar al Glucagón/metabolismo , Polifenoles/química , Polisacáridos/química , Yogur/análisis , Calcio/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chenopodium quinoa/crecimiento & desarrollo , Chenopodium quinoa/metabolismo , Cromatografía Líquida de Alta Presión , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Germinación , Humanos , Polifenoles/análisis , Polifenoles/aislamiento & purificación , Polisacáridos/análisis , Polisacáridos/aislamiento & purificación , Proglucagón/antagonistas & inhibidores , Proglucagón/genética , Proglucagón/metabolismo , Proproteína Convertasa 1/antagonistas & inhibidores , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo
15.
Biochem Biophys Res Commun ; 526(3): 618-625, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32248978

RESUMEN

Glucose mediated insulin biosynthesis is tightly regulated and shared between insulin granule proteins such as its processing enzymes, prohormone convertases, PC1/3 and PC2. However, the molecular players involved in the co-ordinated translation remain elusive. The trans-acting factors like PABP (Poly A Binding Protein) and PDI (Protein Disulphide Isomerize) binds to a conserved sequence in the 5'UTR of insulin mRNA and regulates its translation. Here, we demonstrate that 5'UTR of PC1/3 and PC2 also associate with PDI and PABP. We show that a' and RRM 3-4 domains of PDI and PABP respectively, are necessary for RNA binding activity to the 5'UTRs of insulin and its processing enzymes.


Asunto(s)
Insulina/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 2/metabolismo , Biosíntesis de Proteínas , Proteína Disulfuro Isomerasas/metabolismo , Regiones no Traducidas 5' , Animales , Línea Celular , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Insulina/genética , Ratones , Proteínas de Unión a Poli(A)/genética , Proproteína Convertasa 1/genética , Proproteína Convertasa 2/genética , Proteína Disulfuro Isomerasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Mamm Genome ; 31(1-2): 17-29, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31974728

RESUMEN

The proprotein convertase subtilisin/Kexin type 1 (PCSK1/PC1) protein processes inactive pro-hormone precursors into biologically active hormones in a number of neuroendocrine and endocrine cell types. Patients with recessive mutations in PCSK1 exhibit a complex spectrum of traits including obesity, diarrhoea and endocrine disorders. We describe here a new mouse model with a point mutation in the Pcsk1 gene that exhibits obesity, hyperphagia, transient diarrhoea and hyperproinsulinaemia, phenotypes consistent with human patient traits. The mutation results in a pV96L amino acid substitution and changes the first nucleotide of mouse exon 3 leading to skipping of that exon and in homozygotes very little full-length transcript. Overexpression of the exon 3 deleted protein or the 96L protein results in ER retention in Neuro2a cells. This is the second Pcsk1 mouse model to display obesity phenotypes, contrasting knockout mouse alleles. This model will be useful in investigating the basis of endocrine disease resulting from prohormone processing defects.


Asunto(s)
Diabetes Mellitus/genética , Obesidad/genética , Proproteína Convertasa 1/genética , Alelos , Animales , Línea Celular , Diarrea/genética , Retículo Endoplásmico/metabolismo , Exones , Femenino , Intolerancia a la Glucosa/genética , Homocigoto , Hiperfagia/genética , Masculino , Ratones , Mutación , Proproteína Convertasa 1/metabolismo , Empalme del ARN
17.
Endocrinology ; 160(11): 2630-2645, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504391

RESUMEN

Common mutations in the human prohormone convertase (PC)1/3 gene (PCKSI) are linked to increased risk of obesity. Previous work has shown that the rs6232 single-nucleotide polymorphism (N221D) results in slightly decreased activity, although whether this decrease underlies obesity risk is not clear. We observed significantly decreased activity of the N221D PC1/3 enzyme at the pH of the trans-Golgi network; at this pH, the mutant enzyme was less stable than wild-type enzyme. Recombinant N221D PC1/3 also showed enhanced susceptibility to heat stress. Enhanced susceptibility to tunicamycin-induced endoplasmic reticulum stress was observed in AtT-20/PC2 cell clones in which murine PC1/3 was replaced by human N221D PC1/3, as compared with wild-type human PC1/3. However, N221D PC1/3-expressing AtT-20/PC2 clones processed proopiomelanocortin to α-MSH similarly to wild-type PC1/3. We also generated a CRISPR-edited mouse line expressing the N221D mutation in the PCKSI gene. When homozygous N221D mice were fed either a standard or a high-fat diet, we found no increase in body weight compared with their wild-type sibling controls. Sexual dimorphism was observed in pituitary ACTH for both genotypes, with females exhibiting lower levels of pituitary ACTH. In contrast, hypothalamic α-MSH content for both genotypes was higher in females compared with males. Hypothalamic corticotropin-like intermediate peptide content was higher in wild-type females compared with wild-type, but not N221D, males. Taken together, these data suggest that the increased obesity risk linked to the N221D allele in humans may be due in part to PC1/3-induced loss of resilience to stressors rather than strictly to decreased enzymatic activity on peptide precursors.


Asunto(s)
Obesidad/genética , Proproteína Convertasa 1/metabolismo , Animales , Estrés del Retículo Endoplásmico , Estabilidad de Enzimas , Femenino , Intolerancia a la Glucosa , Humanos , Concentración de Iones de Hidrógeno , Hipotálamo/metabolismo , Masculino , Ratones , Neuropéptido Y/metabolismo , Hipófisis/metabolismo , Polimorfismo de Nucleótido Simple , Proopiomelanocortina/metabolismo , Proproteína Convertasa 1/genética , Caracteres Sexuales , alfa-MSH/metabolismo
18.
Redox Biol ; 20: 451-457, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30439686

RESUMEN

Metabolic reprogramming is a feature of cancer cells and crucial for tumor growth and metastasis. Interferon-γ (IFNγ) is a cytokine that plays a pivotal role in host antitumor immunity. However, little is known about the roles of metabolic reprogramming in immune responses. Here, we show that colon cancer cells reprogram metabolism to coordinate proper cellular responses to IFNγ by downregulating mitochondrial pyruvate carrier (MPC)1 and 2 via STAT3 signaling. Forced overexpression of MPC promote the production of reactive oxygen species and enhance the apoptosis induced by IFNγ in colon cancer cells. Moreover, inhibiting STAT3 sensitize the antitumor efficacy of IFN-γ against colon cancer cells. Our findings present a previously unrecognized mechanism that colon cancer manipulate to resist IFNγ mediated antitumor immunity that have implications for targeting a unique aspect of this disease.


Asunto(s)
Neoplasias del Colon/metabolismo , Interferón gamma/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Piruvatos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Transporte Biológico , Línea Celular Tumoral , Neoplasias del Colon/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones , Mitocondrias/genética , Modelos Biológicos , Oxidación-Reducción , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo
19.
Med Sci Monit ; 24: 7614-7624, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30356033

RESUMEN

BACKGROUND Recent studies have illustrated that the transcription co-repressor, C-terminal binding protein 1 (CtBP1), links the metabolic alterations to transcription controls in proliferation, EMT, genome stability, metabolism, and lifespan, but whether CtBP1 affects the cellular redox homeostasis is unexplored. This study was designed to investigate the mechanism of CtBP1-mediated transcription repression that contributes to the metabolic reprogramming. MATERIAL AND METHODS Knockdown of CtBP1 in both mouse MEF cells and human melanoma cells changed cell redox homeostasis. Further, chromatin immunoprecipitation (ChIP) and luciferase reporter assay were performed for identification of CtBP1 downstream targets, pyruvate carrier 1 and 2 genes (MPC1 and MPC2), which contribute to redox homeostasis and are transcriptionally regulated by CtBP1. Moreover, blockage of the cellular NADH level with the glycolysis inhibitor 2-Deoxy-D-Glucose (2-DG) rescued MPC1 and MPC2 expression. MTT assay and scratch assay were performed to investigate the effect of MPC1 and MPC2 expression on malignant properties of melanoma cells. RESULTS The data demonstrated that CtBP1 directly bound to the promoters of MPC1 and MPC2 and transcriptionally repressed them, leading to increased levels of free NADH in the cytosol and nucleus, thus positively feeding back CtBP1's functions. Consequently, restoring MPC1 and MPC2 in human tumor cells decreases free NADH and inhibits melanoma cell proliferation and migration. CONCLUSIONS Our data indicate that MPC1 and MPC2 are principal mediators that link CtBP1-mediated transcription regulation to NADH production. The discovery of CtBP1 as an NADH regulator in addition to being an NADH sensor shows that CtBP1 is at the center of tumor metabolism and transcription control.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Unión al ADN/metabolismo , Melanoma/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Oxidorreductasas de Alcohol/genética , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Expresión Génica , Humanos , Melanoma/genética , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos , Oxidación-Reducción , Regiones Promotoras Genéticas , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , Factores de Transcripción/metabolismo
20.
Cancer Lett ; 431: 190-200, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29800682

RESUMEN

One hallmark of pancreatic cancer (PC) is the high prevalence of pancreatic cancer-associated diabetes mellitus (PC-DM), but the mechanisms remain to be elucidated. Patients with PC who are diagnosed with new-onset diabetes/prediabetes have recently been shown to display significantly lower levels of glucose-dependent insulinotropic peptide (GIP) secreted mainly by enteroendocrine cells. We hypothesized that PC-derived exosomes are responsible for the decreased levels of incretins in patients with PC-DM. In this study, exosomes were successfully isolated from PANC-1, MIA PaCa-2 and SW620 cells and characterized. Only the exosomes from MIA PaCa-2 cells (Exo-Mia) reduce the production of GIP and glucagon-like peptide-1 (GLP-1) from STC-1 cells in vitro in a concentration- and time-dependent manner. Moreover, Exo-Mia increased the levels of the Gip and proglucagon mRNAs and decreased the expression of proprotein convertase subtilisin/kexin type 1/3 (PCSK1/3), which is responsible for the post-translational processing of Gip and proglucagon. Furthermore, differentially expressed exosomal miRNAs (miR-6796-3p, miR-6763-5p, miR-4750-3p and miR-197-3p) were identified and considered to be responsible for the inhibitory effects on GIP and GLP-1 production. To further determine the approach of cancer-derived exosomes reaching enteroendocrine cells, we analyzed the uptake and distribution of exosomes in animal model. It was observed that exosomes infused into the intestinal cavity were more easily internalized by the intestinal epithelium than exosomes injected into blood. In conclusion, pancreatic cancer-derived exosomes (Exo-Mia) suppress the synthesis of GIP and GLP-1 from STC-1 cells in vitro by down-regulating the PCSK1/3. Moreover, it may be the pancreatic juice that transport cancer-derived exosomes to target cells (K and L cells) in the gut.


Asunto(s)
Exosomas/metabolismo , Furina/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Neoplasias Pancreáticas/metabolismo , Proproteína Convertasa 1/metabolismo , Anciano , Animales , Glucemia/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA