Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.225
Filtrar
1.
Molecules ; 29(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124908

RESUMEN

In a landmark study, oleocanthal (OLC), a major phenolic in extra virgin olive oil (EVOO), was found to possess anti-inflammatory activity similar to ibuprofen, involving inhibition of cyclooxygenase (COX) enzymes. EVOO is a rich source of bioactive compounds including fatty acids and phenolics; however, the biological activities of only a small subset of compounds associated with Olea europaea have been explored. Here, the OliveNetTM library (consisting of over 600 compounds) was utilized to investigate olive-derived compounds as potential modulators of the arachidonic acid pathway. Our first aim was to perform enzymatic assays to evaluate the inhibitory activity of a selection of phenolic compounds and fatty acids against COX isoforms (COX-1 and COX-2) and 15-lipoxygenase (15-LOX). Olive compounds were found to inhibit COX isoforms, with minimal activity against 15-LOX. Subsequent molecular docking indicated that the olive compounds possess strong binding affinities for the active site of COX isoforms, and molecular dynamics (MD) simulations confirmed the stability of binding. Moreover, olive compounds were predicted to have favorable pharmacokinetic properties, including a readiness to cross biological membranes as highlighted by steered MD simulations and umbrella sampling. Importantly, olive compounds including OLC were identified as non-inhibitors of the human ether-à-go-go-related gene (hERG) channel based on patch clamp assays. Overall, this study extends our understanding of the bioactivity of Olea-europaea-derived compounds, many of which are now known to be, at least in part, accountable for the beneficial health effects of the Mediterranean diet.


Asunto(s)
Antiinflamatorios , Inhibidores de la Ciclooxigenasa , Simulación del Acoplamiento Molecular , Olea , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química , Olea/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Humanos , Simulación de Dinámica Molecular , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/química , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 1/química , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/química , Aceite de Oliva/química , Prostaglandina-Endoperóxido Sintasas/metabolismo , Fenoles/química , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Monoterpenos Ciclopentánicos , Simulación por Computador , Aldehídos
2.
Molecules ; 29(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930898

RESUMEN

Research over the last 25 years related to structural elucidations and biological investigations of the specialized pro-resolving mediators has spurred great interest in targeting these endogenous products in total synthesis. These lipid mediators govern the resolution of inflammation as potent and stereoselective agonists toward individual G-protein-coupled receptors, resulting in potent anti-inflammatory activities demonstrated in many human disease models. Specialized pro-resolving mediators are oxygenated polyunsaturated products formed in stereoselective and distinct biosynthetic pathways initiated by various lipoxygenase and cyclooxygenase enzymes. In this review, the reported stereoselective total synthesis and biological activities of the specialized pro-resolving mediators biosynthesized from the polyunsaturated fatty acid n-3 docosapentaenoic acid are presented.


Asunto(s)
Ácidos Grasos Insaturados , Humanos , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/síntesis química , Animales , Prostaglandina-Endoperóxido Sintasas/metabolismo , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
3.
Prostaglandins Other Lipid Mediat ; 173: 106851, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38740361

RESUMEN

Menopause is a normal stage in the human female aging process characterized by the cessation of menstruation and the ovarian production of estrogen and progesterone hormones. Menopause is associated with an increased risk of several different diseases. Cardiovascular diseases are generally less common in females than in age-matched males. However, this female advantage is lost after menopause. Cardiac hypertrophy is a disease characterized by increased cardiac size that develops as a response to chronic overload or stress. Similar to other cardiovascular diseases, the risk of cardiac hypertrophy significantly increases after menopause. However, the exact underlying mechanisms are not yet fully elucidated. Several studies have shown that surgical or chemical induction of menopause in experimental animals is associated with cardiac hypertrophy, or aggravates cardiac hypertrophy induced by other stressors. Arachidonic acid (AA) released from the myocardial phospholipids is metabolized by cardiac cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes to produce several eicosanoids. AA-metabolizing enzymes and their respective metabolites play an important role in the pathogenesis of cardiac hypertrophy. Menopause is associated with changes in the cardiovascular levels of CYP, COX, and LOX enzymes and the levels of their metabolites. It is possible that these changes might play a role in the increased risk of cardiac hypertrophy after menopause.


Asunto(s)
Ácido Araquidónico , Cardiomegalia , Menopausia , Cardiomegalia/metabolismo , Cardiomegalia/patología , Ácido Araquidónico/metabolismo , Humanos , Animales , Femenino , Menopausia/metabolismo , Posmenopausia/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Lipooxigenasa/metabolismo , Modelos Animales de Enfermedad
4.
J Appl Physiol (1985) ; 136(5): 1226-1237, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545661

RESUMEN

Cyclooxygenase (COX) products of arachidonic acid metabolism, specifically prostaglandins, play a role in evoking and transmitting the exercise pressor reflex in health and disease. Individuals with type 2 diabetes mellitus (T2DM) have an exaggerated exercise pressor reflex; however, the mechanisms for this exaggerated reflex are not fully understood. We aimed to determine the role played by COX products in the exaggerated exercise pressor reflex in T2DM rats. The exercise pressor reflex was evoked by static muscle contraction in unanesthetized, decerebrate, male, adult University of California Davis (UCD)-T2DM (n = 8) and healthy Sprague-Dawley (n = 8) rats. Changes (Δ) in peak mean arterial pressure (MAP) and heart rate (HR) during muscle contraction were compared before and after intra-arterial injection of indomethacin (1 mg/kg) into the contracting hindlimb. Data are presented as means ± SD. Inhibition of COX activity attenuated the exaggerated peak MAP (Before: Δ32 ± 13 mmHg and After: Δ18 ± 8 mmHg; P = 0.004) and blood pressor index (BPi) (Before: Δ683 ± 324 mmHg·s and After: Δ361 ± 222 mmHg·s; P = 0.006), but not HR (Before: Δ23 ± 8 beats/min and After Δ19 ± 10 beats/min; P = 0.452) responses to muscle contraction in T2DM rats. In healthy rats, COX activity inhibition did not affect MAP, HR, or BPi responses to muscle contraction. Inhibition of COX activity significantly reduced local production of prostaglandin E2 in T2DM and healthy rats. We conclude that peripheral inhibition of COX activity attenuates the pressor response to muscle contraction in T2DM rats, suggesting that COX products partially contribute to the exaggerated exercise pressor reflex in those with T2DM.NEW & NOTEWORTHY We compared the pressor and cardioaccelerator responses to static muscle contraction before and after inhibition of cyclooxygenase (COX) activity within the contracting hindlimb in decerebrate, unanesthetized type 2 diabetic mellitus (T2DM) and healthy rats. The pressor responses to muscle contraction were attenuated after peripheral inhibition of COX activity in T2DM but not in healthy rats. We concluded that COX products partially contribute to the exaggerated pressor reflex in those with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Contracción Muscular , Músculo Esquelético , Reflejo , Animales , Masculino , Ratas , Presión Arterial/fisiología , Presión Sanguínea/fisiología , Presión Sanguínea/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/farmacología , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/metabolismo , Frecuencia Cardíaca/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Indometacina/farmacología , Contracción Muscular/fisiología , Músculo Esquelético/fisiopatología , Condicionamiento Físico Animal/fisiología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas Sprague-Dawley , Reflejo/fisiología
5.
Mar Environ Res ; 196: 106395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382127

RESUMEN

Prostaglandins (Pgs) are eicosanoid lipid mediators detected in all vertebrates, in some marine invertebrates, macroalgae and in diatoms, a class of eukaryotic microalgae composing the phytoplankton. The enzymes involved in the Pgs pathway were found to be differentially expressed in two strains of the diatom Skeletonema marinoi, named FE7 and FE60, already known to produce different levels of oxylipins, a class of secondary metabolites involved in the defence of diatoms against copepod predation, with FE7 being higher producer than FE60. In the present study we investigated the response of genes involved in the production of oxylipins and Pgs, evaluating their expression after the exposure to the copepod Temora stylifera. Our results highlighted a grazer feeding preference for FE60, the strain having low oxylipins content and reduced expression of Pgs enzymes, and an impact on the gene expression of the enzymes involved in oxylipins (i.e. lipoxygenase) and Pgs (i.e. cyclooxygenase) biosynthesis, especially in FE7. A time course evaluation of the gene expression over 24 h showed an upregulation of the essential enzyme in the Pgs pathway, the cyclooxygenase, in FE60 after 6 h of exposure to the grazer, differently from FE7 where no upregulation of gene expression in the presence of copepods was revealed. These results provide preliminary indications regarding the existence of a complex involvement of the Pgs pathway in the prey-predator interaction that requires further investigations.


Asunto(s)
Diatomeas , Animales , Diatomeas/metabolismo , Prostaglandinas/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Oxilipinas/metabolismo , Fitoplancton
6.
BMC Vet Res ; 20(1): 46, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310284

RESUMEN

BACKGROUND: Intrauterine devices (IUD) are used in the veterinary practice as the non-pharmacological method of oestrus suppression in mares. When placed in the uterus, IUD create a physical contact with the endometrium that mimics the presence of an equine embryo. However, the mechanism of their action has not been fully elucidated. The objective of the present study was to examine the effect of mechanical stimulation of IUD on mare`s endometrium in both in vitro and in vivo study. For this purpose, we demonstrated the effect of IUD on prostaglandin (PG) F2α and PGE2 secretion, and mRNA transcription of genes involved in PG synthesis pathway in equine endometrial cells in vitro. In the in vivo study, we aimed to compare short-term effect of IUD inserted on day 0 (oestrus) with day 5-6 post-ovulation (the specific time when embryo reaches uterus after fertilization) on PG secretion from equine endometrium. To determine the long-term effect on PG synthase mRNA transcription, a single endometrial biopsy was taken only once within each group of mares at certain time points of the estrous cycle from mares placement with IUD on days 0 or 5-6 post-ovualtion. RESULTS: We showed for the first time that the incubation of the endometrial cells with the presence of IUD altered the pattern of PG synthase mRNA transcription in equine epithelial and stromal endometrial cells. In vivo, in mares placement with IUD on day 0, PGE2 concentrations in blood plasma were upregulated between 1 and 6, and at 10 h after the IUD insertion, compared with the control mares (P < 0.05). Moreover, the decrease of PTGFS mRNA transcription on day 16- 18, associated with an elevation in PTGES mRNA transcription on day 20 -21 of the estrous cycle in endometrial biopsies collected from mares placement with IUD on days 5-6 suggest an antiluteolytic action of IUD during the estrous cycle. CONCLUSION: We conclude that the application of IUD may mimic the equine conceptus presence through the physical contact with the endometrium altering PG synthase transcription, and act as a potent modulator of endometrial PG secretion both in vitro and in vivo.


Asunto(s)
Dinoprostona , Dispositivos Intrauterinos , Caballos/genética , Animales , Femenino , Dinoprostona/metabolismo , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandinas F/metabolismo , Endometrio/metabolismo , Dispositivos Intrauterinos/veterinaria , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Pharmacol Ther ; 256: 108612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369063

RESUMEN

Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.


Asunto(s)
Neoplasias , Oxilipinas , Humanos , Oxilipinas/metabolismo , Lipooxigenasas , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Citocromos , Neoplasias/tratamiento farmacológico , Sistema Enzimático del Citocromo P-450/metabolismo
8.
Mol Biol Rep ; 51(1): 84, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183522

RESUMEN

PURPOSE: Investigate the role of COX signaling in activating the PGE2-EP2 pathway. METHODS: Utilized a marine Mycobacterium infection model in zebrafish. Marine mycobacteria were stained with fluorescein isothiocyanate. The COX inhibitor indomethacin, EP2 receptor inhibitor AH6809, EP4 receptor inhibitor AH23848 and clodronate Liposomes were used to investigate the role of COX, EP2, EP4 and macrophage whether participating in combat marine mycobacterial infection. The expression level of the target gene was detected using real-time fluorescence quantitative PCR instrument. RESULTS: The findings revealed that larvae exposed to the COX inhibitor indomethacin or the EP2 receptor inhibitor AH6809 demonstrated a significantly higher mortality rate due to marine mycobacterium infection than those in the control group. Administration of exogenous prostaglandin E2 (PGE2) rescued the survival of zebrafish infected with marine mycobacteria and treated with indomethacin. Additionally, a significant reduction in survival rate was noted in macrophage-depleted zebrafish infected with marine mycobacteria. CONCLUSION: The host may combat marine mycobacterium infection via COX signaling, which activates the PGE2-EP2 pathway and mediates macrophage resistance.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium marinum , Animales , Dinoprostona , Prostaglandina-Endoperóxido Sintasas , Pez Cebra , Indometacina/farmacología
9.
Anat Histol Embryol ; 53(1): e12980, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37788129

RESUMEN

Prostaglandins are synthesized from arachidonic acid through the catalytic activities of cyclooxygenase, while the production of different prostaglandin types, prostaglandin F2 alpha (PGF) and prostaglandin E2 (PGE), are regulated by specific prostaglandin synthases (PGFS and PGES). Prostaglandin ligands (PGF and PGE) bind to specific high-affinity receptors and initiate biologically distinct signalling pathways. In the ovaries, prostaglandins are known to be important endocrine regulators of female reproduction, in addition to maintaining local function through autocrine and/or paracrine effect. Many research groups in different animal species have already identified a variety of factors and molecular mechanisms that are responsible for the regulation of prostaglandin functions. In addition, prostaglandins stimulate their intrafollicular and intraluteal production via the pathway of prostaglandin self-regulation in the ovary. Therefore, the objective of the review article is to discuss recent findings about local regulation patterns of prostaglandin ligands PGF and PGE during different physiological stages of ovarian function in domestic ruminants, especially in bovine. In conclusion, the discussed local regulation mechanisms of prostaglandins in the ovary may stimulate further research activities in different methodological approaches, especially during final follicle maturation and ovulation, as well as corpus luteum formation and function.


Asunto(s)
Ovario , Prostaglandinas , Femenino , Bovinos , Animales , Prostaglandinas/metabolismo , Ovario/fisiología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Rumiantes/metabolismo , Folículo Ovárico/fisiología , Cuerpo Lúteo/metabolismo
10.
Int J Cancer ; 154(5): 873-885, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855394

RESUMEN

Urinary prostaglandin (PG) E metabolite (PGE-M) and 11-dehydro (d)-thromboxane (TX) B2 are biomarkers of cyclooxygenase-dependent prostanoid synthesis. We investigated (1) the effect of aspirin 300 mg daily and eicosapentaenoic acid (EPA) 2000 mg daily, alone and in combination, on urinary biomarker levels and, (2) whether urinary biomarker levels predicted colorectal polyp risk, during participation in the seAFOod polyp prevention trial. Urinary PGE-M and 11-d-TXB2 were measured by liquid chromatography-tandem mass spectrometry. The relationship between urinary biomarker levels and colorectal polyp outcomes was investigated using negative binomial (polyp number) and logistic (% with one or more polyps) regression models. Despite wide temporal variability in PGE-M and 11-d-TXB2 levels within individuals, both aspirin and, to a lesser extent, EPA decreased levels of both biomarkers (74% [P ≤ .001] and 8% [P ≤ .05] reduction in median 11-d-TXB2 values, respectively). In the placebo group, a high (quartile [Q] 2-4) baseline 11-d-TXB2 level predicted increased polyp number (incidence rate ratio [IRR] [95% CI] 2.26 [1.11,4.58]) and risk (odds ratio [95% CI] 3.56 [1.09,11.63]). A low (Q1) on-treatment 11-d-TXB2 level predicted reduced colorectal polyp number compared to placebo (IRR 0.34 [0.12,0.93] for combination aspirin and EPA treatment) compared to high on-treatment 11-d-TXB2 values (0.61 [0.34,1.11]). Aspirin and EPA both inhibit PGE-M and 11-d-TXB2 synthesis in keeping with shared in vivo cyclooxygenase inhibition. Colorectal polyp risk and treatment response prediction by 11-d-TXB2 is consistent with a role for platelet activation during early colorectal carcinogenesis. The use of urinary 11-d-TXB2 measurement for a precision approach to colorectal cancer risk prediction and chemoprevention requires prospective evaluation.


Asunto(s)
Aspirina , Pólipos del Colon , Humanos , Aspirina/farmacología , Aspirina/uso terapéutico , Ácido Eicosapentaenoico , Prostaglandina-Endoperóxido Sintasas , Tromboxano B2/orina , Biomarcadores , Prostaglandinas , Activación Plaquetaria
11.
J Biomol Struct Dyn ; 42(5): 2410-2423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37154526

RESUMEN

The multifaceted action of new ibuprofen analogs has been investigated against inflammation, neurological and pro-inflammation factors. On the basis of ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, molecular docking as well as molecular dynamics simulation, compound 3 was thought to have good anti-inflammatory activity. As the presence of structural interactions such as conventional hydrogen bonds and electrostatic interactions through the nitrogen atoms of the linker in compound 3 gave strong evidence of its potency. The major finding of the current work is that the presence of appropriate number of hetero atoms (NH, OH) in a compound makes it more efficient than the number of labile groups (i.e., hydroxyl groups). Additionally, the position of hetero atoms in a compound and orientation also play a vital role in its efficacy. It was also screened for in vitro anti-inflammatory activity by membrane stability method, where it has shown 90.8% protection of RBC hemolysis. Thus, compound 3 with effective structural features may have good anti-inflammatory activity.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Ibuprofeno , Interleucina-6 , Prostaglandina-Endoperóxido Sintasas , Humanos , Antiinflamatorios/farmacología , Ibuprofeno/farmacología , Inflamación/tratamiento farmacológico , Isoenzimas/efectos de los fármacos , Simulación del Acoplamiento Molecular , Prostaglandina-Endoperóxido Sintasas/efectos de los fármacos
12.
Purinergic Signal ; 20(2): 145-155, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37052777

RESUMEN

The role of extracellular nucleotides as modulators of inflammation and cell stress is well established. One of the main actions of these molecules is mediated by the activation of purinergic receptors (P2) of the plasma membrane. P2 receptors can be classified according to two different structural families: P2X ionotropic ion channel receptors, and P2Y metabotropic G protein-coupled receptors. During inflammation, damaged cells release nucleotides and purinergic signaling occurs along the temporal pattern of the synthesis of pro-inflammatory and pro-resolving mediators by myeloid and lymphoid cells. In macrophages under pro-inflammatory conditions, the expression and activity of cyclooxygenase 2 significantly increases and enhances the circulating levels of prostaglandin E2 (PGE2), which exerts its effects both through specific plasma membrane receptors (EP1-EP4) and by activation of intracellular targets. Here we review the mechanisms involved in the crosstalk between PGE2 and P2Y receptors on macrophages, which is dependent on several isoforms of protein kinase C and protein kinase D1. Due to this crosstalk, a P2Y-dependent increase in calcium is blunted by PGE2 whereas, under these conditions, macrophages exhibit reduced migratory capacity along with enhanced phagocytosis, which contributes to the modulation of the inflammatory response and tissue repair.


Asunto(s)
Inflamación , Prostaglandina-Endoperóxido Sintasas , Humanos , Prostaglandina-Endoperóxido Sintasas/metabolismo , Inflamación/metabolismo , Nucleótidos/metabolismo , Macrófagos/metabolismo , Receptores Purinérgicos/metabolismo
13.
Braz. j. oral sci ; 23: e241181, 2024. ilus
Artículo en Inglés | LILACS, BBO | ID: biblio-1527016

RESUMEN

Aim: Cyclooxygenase enzymes (COX) catalyze the conversion of arachidonic acid to prostaglandins and thromboxanes during pain and inflammation conditions. These enzymes have also been linked to several other conditions and diseases, and hence, in dentistry, it is crucial to identify the processes that increase the levels of these mediators. This paper aims to describe the significance of COX in dental practice through a narrative review. Methods: Articles relating to COX upregulation published in English and Spanish over the last 51 years in databases such as EBSCO, Google Scholar, Science Direct, PubMed, and Web of Science; were analyzed. Results: A total of 115 articles demonstrating the relationship between COX upregulation and multiple conditions and diseases of importance in prosthodontics, periodontics, oral pathology, orthodontics, and endodontics were included. Conclusions: COX upregulation is related to inflammatory and malignant diseases in oral tissues, such as periodontitis, pulpitis, and oral cancer, nevertheless, its expression is advantageous in other fields of study such as orthodontics. Additionally, is well documented that dental materials provoke an undesired increase in COX expression, which could be a significant factor that directly affects pulpal health


Asunto(s)
Periodontitis , Neoplasias de la Boca , Dinoprostona , Prostaglandina-Endoperóxido Sintasas
14.
J Lipid Res ; 64(11): 100452, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37783389

RESUMEN

Previously, we and others reported a rapid and dramatic increase in brain prostanoids (PG), including prostaglandins, prostacyclins, and thromboxanes, under ischemia that is traditionally explained through the activation of esterified arachidonic acid (20:4n6) release by phospholipases as a substrate for cyclooxygenases (COX). However, the availability of another required COX substrate, oxygen, has not been considered in this mechanism. To address this mechanism for PG upregulation through oxygen availability, we analyzed mouse brain PG, free 20:4n6, and oxygen levels at different time points after ischemic onset using head-focused microwave irradiation (MW) to inactivate enzymes in situ before craniotomy. The oxygen half-life in the ischemic brain was 5.32 ± 0.45 s and dropped to undetectable levels within 12 s of ischemia onset, while there were no significant free 20:4n6 or PG changes at 30 s of ischemia. Furthermore, there was no significant PG increase at 2 and 10 min after ischemia onset compared to basal levels, while free 20:4n6 was increased ∼50 and ∼100 fold, respectively. However, PG increased ∼30-fold when ischemia was followed by craniotomy of nonMW tissue that provided oxygen for active enzymes. Moreover, craniotomy performed under anoxic conditions without MW did not result in PG induction, while exposure of these brains to atmospheric oxygen significantly induced PG. Our results indicate, for the first time, that oxygen availability is another important regulatory factor for PG production under ischemia. Further studies are required to investigate the physiological role of COX/PG regulation through tissue oxygen concentration.


Asunto(s)
Isquemia Encefálica , Prostaglandinas , Ratones , Animales , Oxígeno , Prostaglandina-Endoperóxido Sintasas , Isquemia
15.
Ceska Slov Farm ; 72(4): 172-183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37805263

RESUMEN

Neuroinflammation plays an important role in the pathogenesis of epilepsy, so it is necessary to clarify the influence of standard antiepileptic drugs as well as adjuvant agents (e.g., cardiac glycoside digoxin, which previously showed a clear anticonvulsant potential) on cyclooxygenase pathway and neuron-specific enolase under the conditions of chronic epileptogenesis. The aim of the article is to determine the effect of digoxin, sodium valproate, and celecoxib per se, as well as the combination of digoxin with sodium valproate on the content of cyclooxygenase 1 and 2 types, prostaglandins E2, F2α, I2, thromboxane B2, 8-isoprostane and neuron-specific enolase in the brain of mice in the pentylenetetrazole-induced kindling model. It was found that only the combination of sodium valproate with digoxin provides a complete protective effect (absence of seizures) and shows the clearest influence on neuroinflammation markers and neuronal damage than monotherapy with each of these drugs and celecoxib, which appeared to be an ineffective anticonvulsant. The obtained results indicate that digoxin is a promising adjuvant drug to classical antiepileptic drugs (mostly sodium valproate) in epilepsy treatment.c.


Asunto(s)
Epilepsia , Ácido Valproico , Ratas , Ratones , Animales , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Pentilenotetrazol/farmacología , Pentilenotetrazol/uso terapéutico , Celecoxib/farmacología , Celecoxib/uso terapéutico , Prostaglandina-Endoperóxido Sintasas/uso terapéutico , Digoxina/uso terapéutico , Enfermedades Neuroinflamatorias , Ratas Wistar , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Fosfopiruvato Hidratasa/uso terapéutico
16.
Eur J Pharmacol ; 958: 176045, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37708986

RESUMEN

It was suggested that impaired ß-adrenergic relaxation in spontaneously hypertensive rats (SHR) might contribute to their high blood pressure (BP). Our study was focused on isoprenaline-induced dilatation of conduit femoral or resistance mesenteric arteries and on isoprenaline-induced BP reduction in SHR and Wistar-Kyoto rats (WKY). We confirmed decreased ß-adrenergic relaxation of SHR femoral arteries due to the absence of its endothelium-independent component, whereas endothelium-dependent component of ß-adrenergic smooth muscle relaxation was similar in both strains. Conversely, isoprenaline-induced relaxation of resistance mesenteric arteries was similar in both strains and this was true for endothelium-dependent and endothelium-independent components. We observed moderately reduced sensitivity of SHR mesenteric arteries to salmeterol (ß2-adrenergic agonist) and this strain difference disappeared after endothelium removal. However, there was no difference in mesenteric arteries relaxation by dobutamine (ß1-adrenergic agonist) which was independent of endothelium. The increasing isoprenaline doses elicited similar BP decrease in both rat strains, although BP sensitivity to isoprenaline was slightly decreased in SHR. The blockade of cyclooxygenase (indomethacin) and NO synthase (L-NAME) further reduced BP sensitivity to isoprenaline in SHR. On the other hand, salmeterol elicited similar BP decrease in both strains and the blockade of cyclooxygenase and NO synthase increased BP sensitivity to salmeterol in SHR as compared to WKY. In conclusion, attenuated ß-adrenergic vasodilatation of conduit arteries of SHR but similar ß-adrenergic relaxation of resistance mesenteric arteries from WKY and SHR and their similar BP response to ß-adrenergic agonists do not support major role of altered ß-adrenergic vasodilatation for high BP in genetic hypertension.


Asunto(s)
Adrenérgicos , Hipertensión , Ratas , Animales , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Isoproterenol/farmacología , Prostaglandina-Endoperóxido Sintasas , Arterias Mesentéricas , Agonistas Adrenérgicos beta/farmacología , Óxido Nítrico Sintasa , Xinafoato de Salmeterol , Endotelio Vascular , Resistencia Vascular
17.
Sci Rep ; 13(1): 14471, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660155

RESUMEN

The formation of protein aggregates is a hallmark of many neurodegenerative diseases and systemic amyloidoses. These disorders are associated with the fibrillation of a variety of proteins/peptides, which ultimately leads to cell toxicity and tissue damage. Understanding how amyloid aggregation occurs and developing compounds that impair this process is a major challenge in the health science community. Here, we demonstrate that pathogenic proteins associated with Alzheimer's disease, diabetes, AL/AA amyloidosis, and amyotrophic lateral sclerosis can aggregate within stress-inducible physiological amyloid-based structures, termed amyloid bodies (A-bodies). Using a limited collection of small molecule inhibitors, we found that diclofenac could repress amyloid aggregation of the ß-amyloid (1-42) in a cellular setting, despite having no effect in the classic Thioflavin T (ThT) in vitro fibrillation assay. Mapping the mechanism of the diclofenac-mediated repression indicated that dysregulation of cyclooxygenases and the prostaglandin synthesis pathway was potentially responsible for this effect. Together, this work suggests that the A-body machinery may be linked to a subset of pathological amyloidosis, and highlights the utility of this model system in the identification of new small molecules that could treat these debilitating diseases.


Asunto(s)
Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Humanos , Diclofenaco/farmacología , Proteínas Amiloidogénicas , Prostaglandina-Endoperóxido Sintasas
18.
Chem Biodivers ; 20(9): e202300349, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37574856

RESUMEN

The current study aimed to evaluate the anti-inflammatory activity of Dicliptera bupleuroides Nees aerial parts methanol extract and its different fractions namely hexane, chloroform, ethyl acetate and butanol in vitro using cyclooxygenase inhibitory assay (COX-2). In vivo anti-inflammatory evaluation was performed using carrageenan and formalin induced inflammation in rat models followed by molecular docking. High performance liquid chromatography (HPLC) and gas chromatography coupled with mass chromatography (GC/MS) analyses were used for chemical analyses of the tested samples. The tested samples showed significant inhibition in COX-2 inhibitory assay where methanol extract (DBM) showed the highest inhibitory potential at 100 µg/mL estimated by 67.86 %. At a dose of 400 mg/kg, all of the examined samples showed pronounced results in carrageenan induced acute inflammation in rat model at 4th h interval with DBM showed the highest efficiency displaying 65.32 % inhibition as compared to the untreated rats. Formalin model was employed for seven days and DBM exhibited 65.33 % and 69.39 % inhibition at 200 and 400 mg/kg, respectively approaching that of the standard on the 7th day. HPLC revealed the presence of caffeic acid, gallic acid and sinapic acid, quercetin and myricetin in DBM. GC/MS analysis of its hexane fraction revealed the presence of 16 compounds belonging mainly to fatty acids and sterols that account for 85.26 % of the total detected compounds. Molecular docking showed that hexadecanoic acid followed by decanedioic acid and isopropyl myristate showed the best fitting within cyclooxygenase-II (COX-II) while nonacosane followed by hexatriacontane and isopropyl myristate revealed the most pronounced fitting within the 5-lipoxygenase (5-LOX) active sites. Absorption, metabolism, distribution and excretion and toxicity prediction (ADMET/ TOPKAT) concluded that most of the detected compounds showed reasonable pharmacokinetic, pharmacodynamic and toxicity properties that could be further modified to be more suitable for incorporation in pharmaceutical dosage forms combating inflammation and its undesirable consequences.


Asunto(s)
Hexanos , Extractos Vegetales , Ratas , Animales , Carragenina/análisis , Carragenina/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Metanol/química , Simulación del Acoplamiento Molecular , Prostaglandina-Endoperóxido Sintasas/análisis , Prostaglandina-Endoperóxido Sintasas/uso terapéutico , Formaldehído/análisis , Formaldehído/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Componentes Aéreos de las Plantas/química
19.
Enzyme Microb Technol ; 169: 110282, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37393814

RESUMEN

Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.


Asunto(s)
Lactobacillus , Prostaglandina-Endoperóxido Sintasas , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/biosíntesis , Fermentación , Glutamato Descarboxilasa/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Lactobacillus/enzimología , Lipooxigenasas/metabolismo
20.
Placenta ; 139: 99-111, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37354692

RESUMEN

INTRODUCTION: The mechanisms that govern fibroblast behavior during the vascular adaptations of the uterus at early pregnancy remain unknown. Anandamide, an endocannabinoid, binds to cannabinoid receptors (CBs), and regulates gestation and angiogenesis. Its tone is regulated by fatty acid amide hydrolase (FAAH) within the uterus. We investigated the role of anandamide in endometrial fibroblasts migration and whether anandamide modulates fibroblasts-endothelial crosstalk. METHODS: T-hESC and EA.hy926 cell lines were used as models of endometrial stromal and endothelial cells, respectively. T-hESC were incubated with anandamide plus different agents. Migration was tested (wound healing assay and phalloidin staining). Protein expression and localization were studied by Western blot and immunofluorescence. To test fibroblast-endothelial crosstalk, EA.hy926 cells were incubated with fibroblast conditioned media obtained after T-hESC migration. RESULTS: Anandamide 1 nM increased T-hESC migration via CB1 and CB2. Cyclooxygenase-2 participated in anandamide-stimulated fibroblast migration. Prostaglandin F2alpha, and not prostaglandin E2, increased fibroblast wound closure. CB1, CB2, cyclooxygenase-2 and FAAH were expressed in T-hESC. Anandamide did not alter cyclooxygenase-2 localization but induced its cytoplasmic and nuclear expression through CB1 and CB2. URB-597, a FAAH selective inhibitor, also increased T-hESC migration via both CBs, and augmented cyclooxygenase-2 expression. Conditioned media from anandamide-induced T-hESC wound healing closure stimulated endothelial migration and did not alter their proliferation. Soluble factors from cyclooxygenase-2 were secreted by T-hESC and participated in T-hESC-induced EA.hy926 migration. Although anandamide-conditioned media augmented in EA.hy926 the expression of γH2AX, a marker of DNA damage, cyclooxygenase-2 was not involved in this effect. DISCUSSION: Our results provide novel evidence about an active role of anandamide on endometrial fibroblast behavior as a mechanism regulating uterine vascular adaptations in early gestation.


Asunto(s)
Endocannabinoides , Células Endoteliales , Embarazo , Femenino , Humanos , Endocannabinoides/farmacología , Células Endoteliales/metabolismo , Medios de Cultivo Condicionados , Prostaglandina-Endoperóxido Sintasas , Fibroblastos/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...