Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.023
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 222, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123206

RESUMEN

BACKGROUND: The mechanisms enabling dynamic shifts between drug-resistant and drug-sensitive states in cancer cells are still underexplored. This study investigated the role of targeted autophagic protein degradation in regulating ovarian cancer stem cell (CSC) fate decisions and chemo-resistance. METHODS: Autophagy levels were compared between CSC-enriched side population (SP) and non-SP cells (NSP) in multiple ovarian cancer cell lines using immunoblotting, immunofluorescence, and transmission electron microscopy. The impact of autophagy modulation on CSC markers and differentiation was assessed by flow cytometry, immunoblotting and qRT-PCR. In silico modeling and co-immunoprecipitation identified ID1 interacting proteins. Pharmacological and genetic approaches along with Annexin-PI assay, ChIP assay, western blotting, qRT-PCR and ICP-MS were used to evaluate effects on cisplatin sensitivity, apoptosis, SLC31A1 expression, promoter binding, and intracellular platinum accumulation in ID1 depleted backdrop. Patient-derived tumor spheroids were analyzed for autophagy and SLC31A1 levels. RESULTS: Ovarian CSCs exhibited increased basal autophagy compared to non-CSCs. Further autophagy stimulation by serum-starvation and chemical modes triggered proteolysis of the stemness regulator ID1, driving the differentiation of chemo-resistant CSCs into chemo-sensitive non-CSCs. In silico modeling predicted TCF12 as a potent ID1 interactor, which was validated by co-immunoprecipitation. ID1 depletion freed TCF12 to transactivate the cisplatin influx transporter SLC31A1, increasing intracellular cisplatin levels and cytotoxicity. Patient-derived tumor spheroids exhibited a functional association between autophagy, ID1, SLC31A1, and platinum sensitivity. CONCLUSIONS: This study reveals a novel autophagy-ID1-TCF12-SLC31A1 axis where targeted autophagic degradation of ID1 enables rapid remodeling of CSCs to reverse chemo-resistance. Modulating this pathway could counter drug resistance in ovarian cancer.


Asunto(s)
Autofagia , Resistencia a Antineoplásicos , Proteína 1 Inhibidora de la Diferenciación , Células Madre Neoplásicas , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteína 1 Inhibidora de la Diferenciación/genética , Línea Celular Tumoral , Cisplatino/farmacología
2.
Mol Biol Rep ; 51(1): 806, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001993

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the second most deathly worldwide and third most common cancer, CRC is a very heterogeneous disease where tumors can form by both environmental and genetic risk factors and includes epigenetic and genetic alternations. Inhibitors of DNA binding proteins (ID) are a class of helix-loop-helix transcription regulatory factors; these proteins are considered a family of four highly preserved transcriptional regulators (ID1-4), shown to play significant roles in many processes that are associated with tumor development. ID family plays as negatively dominant antagonists of other essential HLH proteins, concluding the creation of non-functional heterodimers and regulation of the transcription process. MATERIALS AND METHODS: 120 Fresh tissue and blood samples Forty (40) samples of fresh tissue and blood were collected from patients diagnosed with CRC, twenty (20) samples were collected from a patient diagnosed as healthy. The (qRT-PCR) method is a sensitive technique for the quantifying of steady-state mRNA levels that used to evaluation the expression levels of ID (1-4) gene. RESULTS: The findings indicate downregulation in ID1 in tissue with a highly significant change between patients and control groups, where upregulation in the ID1 gene is shown in blood samples.ID2 gene also demonstrated high significant change where show upregulation in tissue and downregulation in blood sample. ID3 and ID4 genes show downregulation in tissue and blood samples with a significant change in ID3 blood samples between patient and blood groups. CONCLUSION: Because of the regulation function of the ID family in many processes, the up or down regulation of IDs genes in tumors Proves how important its tumor development, and therefore those proteins can be used as an indicator for CRC.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Proteínas Inhibidoras de la Diferenciación , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Irak , Masculino , Regulación Neoplásica de la Expresión Génica/genética , Femenino , Persona de Mediana Edad , Anciano , Adulto , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo
3.
J Cancer Res Clin Oncol ; 150(7): 366, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052126

RESUMEN

PURPOSE: Kinase interacting with stathmin (KIS) is a serine/threonine kinase involved in RNA processing and protein phosphorylation. Increasing evidence has suggested its involvement in cancer progression. The aim of this study was to investigate the role of KIS in the development of lung adenocarcinoma (LUAD). Dual luciferase assay was used to explore the relationship between KIS and SOX4, and its effect on ID1/ß-catenin pathway. METHODS: Real-time qPCR and western blot were used to assess the levels of KIS and other factors. Cell proliferation, migration, and invasion were monitored, and xenograft animal model were established to investigate the biological functions of KIS in vitro and in vivo. RESULTS: In the present study, KIS was found to be highly expressed in LUAD tissues and cell lines. KIS accelerated the proliferative, migratory and invasive abilities of LUAD cells in vitro, and promoted the growth of LUAD in a mouse tumor xenograft model in vivo. Mechanistically, KIS activated the ß-catenin signaling pathway by modulating the inhibitor of DNA binding 1 (ID1) and was transcriptionally regulated by SOX4 in LUAD cells. CONCLUSION: KIS, a target of SOX4, regulates the ID1-mediated enhancement of ß-catenin to facilitate LUAD cell invasion and metastasis.


Asunto(s)
Adenocarcinoma del Pulmón , Proliferación Celular , Proteína 1 Inhibidora de la Diferenciación , Neoplasias Pulmonares , Factores de Transcripción SOXC , beta Catenina , Humanos , Animales , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteína 1 Inhibidora de la Diferenciación/genética , beta Catenina/metabolismo , Ratones , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Ratones Desnudos , Metástasis de la Neoplasia , Movimiento Celular , Ratones Endogámicos BALB C , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cell Death Dis ; 15(4): 292, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658527

RESUMEN

Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.


Asunto(s)
Activinas , Inhibidores de la Angiogénesis , Bevacizumab , Resistencia a Antineoplásicos , Glioblastoma , Proteína 1 Inhibidora de la Diferenciación , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/irrigación sanguínea , Humanos , Animales , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteína 1 Inhibidora de la Diferenciación/genética , Ratones , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Activinas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Ratones Desnudos , Apoptosis/efectos de los fármacos
5.
Immunology ; 172(3): 408-419, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38501859

RESUMEN

Although the roles of E proteins and inhibitors of DNA-binding (Id) in T follicular helper (TFH) and T follicular regulatory (TFR) cells have been previously reported, direct models demonstrating the impact of multiple E protein members have been lacking. To suppress all E proteins including E2A, HEB and E2-2, we overexpressed Id1 in CD4 cells using a CD4-Id1 mouse model, to observe any changes in TFH and TFR cell differentiation. Our objective was to gain better understanding of the roles that E proteins and Id molecules play in the differentiation of TFH and TFR cells. The CD4-Id1 transgenic (TG) mice that we constructed overexpressed Id1 in CD4 cells, inhibiting E protein function. Our results showed an increase in the proportion and absolute numbers of Treg, TFH and TFR cells in the spleen of TG mice. Additionally, the expression of surface characterisation molecules PD-1 and ICOS was significantly upregulated in TFH and TFR cells. The study also revealed a downregulation of the marginal zone B cell precursor and an increase in the activation and secretion of IgG1 in spleen B cells. Furthermore, the peripheral TFH cells of TG mice enhanced the function of assisting B cells. RNA sequencing results indicated that a variety of TFH-related functional molecules were upregulated in TFH cells of Id1 TG mice. In conclusion, E proteins play a crucial role in regulating TFH/TFR cell differentiation and function and suppressing E protein activity promotes germinal centre humoral immunity, which has important implications for immune regulation and treating related diseases.


Asunto(s)
Diferenciación Celular , Proteína 1 Inhibidora de la Diferenciación , Ratones Transgénicos , Células T Auxiliares Foliculares , Linfocitos T Reguladores , Animales , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteína 1 Inhibidora de la Diferenciación/genética , Ratones , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Regulación hacia Arriba , Linfocitos B/inmunología , Linfocitos B/metabolismo , Centro Germinal/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Activación de Linfocitos , Ratones Endogámicos C57BL , Inmunoglobulina G/inmunología
6.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256056

RESUMEN

Hepatocellular carcinoma (HCC) is a highly lethal malignant neoplasm, and the involvement of bone morphogenetic protein 9 (BMP9) has been implicated in the pathogenesis of liver diseases and HCC. Our goal was to investigate the role of BMP9 signaling in regulating N6-methyladenosine (m6A) methylation and cell cycle progression, and evaluate the therapeutic potential of BMP receptor inhibitors for HCC treatment. We observed that elevated levels of BMP9 expression in tumor tissues or serum samples from HCC patients were associated with a poorer prognosis. Through in vitro experiments utilizing the m6A dot blotting assay, we ascertained that BMP9 reduced the global RNA m6A methylation level in Huh7 and Hep3B cells, thereby facilitating their cell cycle progression. This effect was mediated by an increase in the expression of the inhibitor of DNA-binding protein 1 (ID1). Additionally, using methylated RNA immunoprecipitation qPCR(MeRIP-qPCR), we showed that the BMP9-ID1 pathway promoted CyclinD1 expression by decreasing the m6A methylation level in the 5' UTR of mRNA. This occurred through the upregulation of the fat mass and obesity-associated protein (FTO) in Huh7 and Hep3B cells. In our in vivo mouse xenograft models, we demonstrated that blocking the BMP receptor with LDN-212854 effectively suppressed HCC growth and induced global RNA m6A methylation. Overall, our findings indicate that the BMP9-ID1 pathway promotes HCC cell proliferation by down-regulating the m6A methylation level in the 5' UTR of CyclinD1 mRNA. Targeting the BMP9-ID1 pathway holds promise as a potential therapeutic strategy for treating HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Regiones no Traducidas 5' , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Receptores de Proteínas Morfogenéticas Óseas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Factor 2 de Diferenciación de Crecimiento/genética , Proteína 1 Inhibidora de la Diferenciación , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
7.
FEBS Open Bio ; 14(1): 127-137, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37964494

RESUMEN

Sorafenib resistance greatly restricts its clinical application in patients with hepatocellular carcinoma (HCC). Numerous studies have reported that ID1 exerts a crucial effect in cancer initiation and development. Our previous research revealed an inhibitory role of ID1 in sorafenib resistance. However, the upstream regulatory mechanism of ID1 expression is unclear. Here, we discovered that ID1 expression is negatively correlated with promoter methylation, which is regulated by DNMT3B. Knockdown of DNMT3B significantly inhibited ID1 methylation status and resulted in an increase of ID1 expression. The demethylating agent 5-aza-2'-deoxycytidine (5-aza) remarkably upregulated ID1 expression. The combination of 5-aza with sorafenib showed a synergistic effect on the inhibition of cell viability.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Azacitidina/farmacología , Metilación , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo
9.
Nat Commun ; 14(1): 7661, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996458

RESUMEN

Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.


Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Macrófagos/metabolismo , Inmunoterapia , Linfocitos T CD8-positivos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , Linfocitos T/metabolismo , Microambiente Tumoral/genética , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo
10.
Cells ; 12(18)2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37759448

RESUMEN

Emerging evidence indicates that intracellular calcium (Ca2+) levels and their regulatory proteins play essential roles in normal stem cell proliferation and differentiation. Cancer stem-like cells (CSCs) are subpopulations of cancer cells that retain characteristics similar to stem cells and play an essential role in cancer progression. Recent studies have reported that the Orai3 calcium channel plays an oncogenic role in human cancer. However, its role in CSCs remains underexplored. In this study, we explored the effects of Orai3 in the progression and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC). During the course of OSCC progression, the expression of Orai3 exhibited a stepwise augmentation. Notably, Orai3 was highly enriched in CSC populations of OSCC. Ectopic Orai3 expression in non-tumorigenic immortalized oral epithelial cells increased the intracellular Ca2+ levels, acquiring malignant growth and CSC properties. Conversely, silencing of the endogenous Orai3 in OSCC cells suppressed the CSC phenotype, indicating a pivotal role of Orai3 in CSC regulation. Moreover, Orai3 markedly increased the expression of inhibitor of DNA binding 1 (ID1), a stemness transcription factor. Orai3 and ID1 exhibited elevated expression within CSCs compared to their non-CSC counterparts, implying the functional importance of the Orai3/ID1 axis in CSC regulation. Furthermore, suppression of ID1 abrogated the CSC phenotype in the cell with ectopic Orai3 overexpression and OSCC. Our study reveals that Orai3 is a novel functional CSC regulator in OSCC and further suggests that Orai3 plays an oncogenic role in OSCC by promoting cancer stemness via ID1 upregulation.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Neoplasias Orofaríngeas , Humanos , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Canales de Calcio , Hiperplasia , Proteína 1 Inhibidora de la Diferenciación
11.
Eur J Pharmacol ; 957: 176017, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673367

RESUMEN

Phosgene is widely used as an industrial chemical, and phosgene inhalation causes acute lung injury (ALI), which may further progress into pulmonary edema. Currently, an antidote for phosgene poisoning is not known. Alpha-1 antitrypsin (α1-AT) is a protease inhibitor used to treat patients with emphysema who are deficient in α1-AT. Recent studies have revealed that α1-AT has both anti-inflammatory and anti-SARS-CoV-2 effects. Herein, we aimed to investigate the role of α1-AT in phosgene-induced ALI. We observed a time-dependent increase in α1-AT expression and secretion in the lungs of rats exposed to phosgene. Notably, α1-AT was derived from neutrophils but not from macrophages or alveolar type II cells. Moreover, α1-AT knockdown aggravated phosgene- and lipopolysaccharide (LPS)-induced inflammation and cell death in human bronchial epithelial cells (BEAS-2B). Conversely, α1-AT administration suppressed the inflammatory response and prevented death in LPS- and phosgene-exposed BEAS-2B cells. Furthermore, α1-AT treatment increased the inhibitor of DNA binding 1 (ID1) gene expression, which suppressed NF-κB pathway activation, reduced inflammation, and inhibited cell death. These data demonstrate that neutrophil-derived α1-AT acts as a self-protective mechanism, which protects against phosgene-induced ALI by activating the ID1-dependent anti-inflammatory response. This study may provide novel strategies for the treatment of patients with phosgene-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Fosgeno , Animales , Humanos , Ratas , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Células Epiteliales Alveolares , Proteína 1 Inhibidora de la Diferenciación , Lipopolisacáridos , Fosgeno/toxicidad
12.
Cancer Biol Ther ; 24(1): 2246206, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37607071

RESUMEN

Transcription factor 3 (TCF3) is a member of the basic Helix - Loop - Helix (bHLH) transcription factor (TF) family and is encoded by the TCF3 gene (also known as E2A). It has been shown that TCF3 functions as a key transcription factor in the pathogenesis of several human cancers and plays an important role in stem cell maintenance and carcinogenesis. However, the effect of TCF3 in the progression of esophageal squamous cell carcinoma (ESCC) is poorly known. In our study, TCF3 was found to express highly and correlated with cancer stage and prognosis. TCF3 was shown to promote ESCC invasion, migration, and drug resistance both from the results of in vivo and in vitro assays. Moreover, further studies suggested that TCF3 played these roles through transcriptionally regulating Inhibitor of DNA binding 1(ID1). Notably, we also found that TCF3 or ID1 was associated with ESCC stemness. Furthermore, TCF3 was correlated with the expression of cancer stemness markers CD44 and CD133. Therefore, maintaining cancer stemness might be the underlying mechanism that TCF3 transcriptionally regulated ID1 and further promoted ESCC progression and drug resistance.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinogénesis , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Proteína 1 Inhibidora de la Diferenciación/genética , Factor de Transcripción 3 , Factores de Transcripción
13.
Int Immunopharmacol ; 123: 110456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37494836

RESUMEN

BACKGROUND: Few effective anti-fibrotic therapies are currently available for liver cirrhosis. Mesenchymal stromal cells (MSCs) ameliorate liver fibrosis and contribute to liver regeneration after cirrhosis, attracting much attention as a potential therapeutic strategy for the disease. However, the underlying molecular mechanism of their therapeutic effect is still unclear. Here, we investigated the effect of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) in treating liver cirrhosis and their underlying mechanisms. METHODS: We used carbon tetrachloride (CCl4)-induced mice as liver cirrhosis models and treated them with hUC-MSCs via tail vein injection. We assessed the changes in liver function, inflammation, and fibrosis by histopathology and serum biochemistry and explored the mechanism of hUC-MSCs by RNA sequencing (RNA-seq) using liver tissues. In addition, we investigated the effects of hUC-MSCs on hepatic stellate cells (HSC) and macrophages by in vitro co-culture experiments. RESULTS: We found that hUC-MSCs considerably improved liver function and attenuated liver inflammation and fibrosis in CCl4-injured mice. We also showed that these cells exerted therapeutic effects by regulating the Hippo/YAP/Id1 axis in vivo. Our in vitro experiments demonstrated that hUC-MSCs inhibit HSC activation by regulating the Hippo/YAP signaling pathway and targeting Id1. Moreover, hUC-MSCs also alleviated liver inflammation by promoting the transformation of macrophages to an anti-inflammatory phenotype. CONCLUSIONS: Our study reveals that hUC-MSCs relieve liver cirrhosis in mice through the Hippo/YAP/Id1 pathway and macrophage-dependent mechanisms, providing a theoretical basis for the future use of these cells as a potential therapeutic strategy for patients with liver cirrhosis.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Humanos , Ratones , Fibrosis , Inflamación/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/terapia , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical , Vía de Señalización Hippo , Proteínas Señalizadoras YAP/metabolismo , Proteína 1 Inhibidora de la Diferenciación/metabolismo
14.
Int J Biol Sci ; 19(10): 3184-3199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416767

RESUMEN

Metastasis is a significant cause of high mortality in lung cancer. Lymph node (LN) metastasis is the most common metastatic pathway in non-small cell lung cancer and the most crucial factor affecting the prognosis of NSCLC. Nevertheless, the molecular mechanism underlying metastasis is unknown. We demonstrated that higher NADK expression suggests worsened survival prognosis, and NADK expression positively correlates with the lymph node metastasis rate and TNM and AJCC stages in NSCLC patients. Moreover, patients with LN metastasis show higher NADK expression than those without LN metastasis. NADK can promote NSCLC progression by enhancing the migration, invasion, lymph node metastasis and growth of NSCLC cells. Mechanistically, NADK inhibits the ubiquitination and degradation of BMPR1A by interacting with Smurf1, further activating the BMPs signalling pathway and promoting ID1 transcription. In conclusion, NADK may be a potential diagnostic indicator and a novel therapeutic target for metastatic NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , NAD/metabolismo , Metástasis Linfática , Transducción de Señal/genética , Regulación Neoplásica de la Expresión Génica/genética , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo
15.
Blood ; 142(10): 903-917, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37319434

RESUMEN

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Asunto(s)
Proteína 7 Similar a la Angiopoyetina , Proteína 1 Inhibidora de la Diferenciación , Leucemia Mieloide Aguda , Animales , Ratones , Proteína 7 Similar a la Angiopoyetina/genética , Proteína 7 Similar a la Angiopoyetina/metabolismo , Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Microambiente Tumoral , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo
16.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373188

RESUMEN

BACKGROUND: High expression of inhibitor of DNA binding 1 (ID1) correlates with poor prognosis in colorectal cancer (CRC). Aberrant enhancer activation in regulating ID1 transcription is limited. METHODS: Immunohistochemistry (IHC), quantitative RT-PCR (RT-qPCR) and Western blotting (WB) were used to determine the expression of ID1. CRISPR-Cas9 was used to generate ID1 or enhancer E1 knockout cell lines. Dual-luciferase reporter assay, chromosome conformation capture assay and ChIP-qPCR were used to determine the active enhancers of ID1. Cell Counting Kit 8, colony-forming, transwell assays and tumorigenicity in nude mice were used to investigate the biological functions of ID1 and enhancer E1. RESULTS: Human CRC tissues and cell lines expressed a higher level of ID1 than normal controls. ID1 promoted CRC cell proliferation and colony formation. Enhancer E1 actively regulated ID1 promoter activity. Signal transducer and activator of transcription 3 (STAT3) bound to ID1 promoter and enhancer E1 to regulate their activity. The inhibitor of STAT3 Stattic attenuated ID1 promoter and enhancer E1 activity and the expression of ID1. Enhancer E1 knockout down-regulated ID1 expression level and cell proliferation in vitro and in vivo. CONCLUSIONS: Enhancer E1 is positively regulated by STAT3 and contributes to the regulation of ID1 to promote CRC cell progression and might be a potential target for anti-CRC drug studies.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Animales , Ratones , Humanos , Factor de Transcripción STAT3/metabolismo , Ratones Desnudos , Secuencias Reguladoras de Ácidos Nucleicos , Proliferación Celular , Neoplasias del Colon/genética , ADN , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Movimiento Celular , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo
17.
Cell Cycle ; 22(10): 1215-1231, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37032592

RESUMEN

Decitabine (DAC) is an inhibitor of DNA methyltransferase used to treat leukemia, but primary or secondary resistance to DAC may develop during therapy. The mechanisms related to DAC resistance remain poorly understood. In this study, we find that miR-29b expression was decreased in various leukemia cell lines and AML patients and was associated with poor prognosis. In DAC-sensitive cells, miR-29b inhibited cell growth, promoted apoptosis, and increased the sensitivity to DAC. Similarly, it exerted anti-leukemic effects in DAC-resistant cells. When the miR-29b promoter in DAC-resistant cells was demethylated, its expression was not up-regulated. Furthermore, the expression of ID1, one of the target genes of miR-29b, was down-regulated in miR-29b transfected leukemic cells. ID1 promoted cell growth, inhibited cell apoptosis, and decreased DAC sensitivity in leukemic cells in vitro and in vivo. ID1 was down-regulated in DAC-sensitive cells treated with DAC, while it was up-regulated in DAC-resistant cells. Interestingly, the ID1 promoter region was completely unmethylated in both DAC-resistant cells and sensitive cells before DAC treatment. The growth inhibition, increased DAC sensitivity, and apoptosis induced by miR-29b can be eliminated by increasing ID1 expression. These results suggested that DAC regulates ID1 expression by acting on miR-29b. Abnormal ID1 expression of ID1 that is methylation independent and induced by miR-29b may be involved in the process of leukemia cells acquiring DAC resistance.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Decitabina/farmacología , Transducción de Señal , Leucemia/tratamiento farmacológico , Leucemia/genética , Apoptosis/genética , Línea Celular Tumoral , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteína 1 Inhibidora de la Diferenciación/genética
18.
Adv Sci (Weinh) ; 10(18): e2300350, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37085918

RESUMEN

The malignant transformation of hepatic progenitor cells (HPCs) in the inflammatory microenvironment is the root cause of hepatocarcinogenesis. However, the potential molecular mechanisms are still elusive. The HPCs subgroup is identified by single-cell RNA (scRNA) sequencing and the phenotype of HPCs is investigated in the primary HCC model. Bulk RNA sequencing (RNA-seq) and proteomic analyses are also performed on HPC-derived organoids. It is found that tumors are formed from HPCs in peritumor tissue at the 16th week in a HCC model. Furthermore, it is confirmed that the macrophage-derived TWEAK/Fn14 promoted the expression of inhibitor of differentiation-1 (ID1) in HPCs via NF-κB signaling and a high level of ID1 induced aberrant differentiation of HPCs. Mechanistically, ID1 suppressed differentiation and promoted proliferation in HPCs through the inhibition of HNF4α and Rap1GAP transcriptions. Finally, scRNA sequencing of HCC patients and investigation of clinical specimens also verified that the expression of ID1 is correlated with aberrant differentiation of HPCs into cancer stem cells, patients with high levels of ID1 in HPCs showed a poorer prognosis. This study provides important intervention targets and a theoretical basis for the clinical diagnosis and treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteómica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transducción de Señal/genética , Carcinogénesis/genética , Células Madre/metabolismo , Microambiente Tumoral , Proteína 1 Inhibidora de la Diferenciación/genética
19.
Int J Oncol ; 62(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36928315

RESUMEN

Photodynamic therapy (PDT) is an effective and low­invasive tumour therapy. However, it can induce tumour angiogenesis, which is a main factor leading to tumour recurrence and metastasis. Activin receptor­like kinase­1 (ALK1) is a key factor regulating angiogenesis. However, it remains unclear whether ALK1 plays an unusual role in low­dose PDT­induced tumour angiogenesis. In the present study, human umbilical vein endothelial cells (HUVECs) co­cultured with breast cancer MDA­MB­231 cells (termed HU­231 cells) were used to construct an experimental model of tumour angiogenesis induced by low­dose PDT. The viability, and the proliferative, invasive, migratory, as well as the tube­forming ability of the HU­231 cells were evaluated following low­dose PDT. In particular, ALK1 inhibitor and and an adenovirus against ALK1 were used to further verify the role of ALK1 in low­dose PDT­induced tumour angiogenesis. Moreover, the expression of ALK1, inhibitor of DNA binding 1 (ID1), Smad 1, p­Smad1/5, AKT and PI3K were detected in order to verify the underlying mechanisms. The findings indicated that low­dose PDT enhanced the proliferative ability of the HU­231 cells and reinforced their migratory, invasive and tube formation capacity. However, these effects were reversed with the addition of an ALK1 inhibitor or by the knockdown of ALK1 using adenovirus. These results indicated that ALK1 was involved and played a critical role in tumour angiogenesis induced by low­dose PDT. Furthermore, ALK1 was found to participate in PDT­induced tumour angiogenesis by activating the Smad1/5­ID1 pathway, as opposed to the PI3K/AKT pathway. On the whole, the present study, for the first time, to the best of our knowledge, demonstrates that ALK1 is involved in PDT­induced tumour angiogenesis. The inhibition of ALK1 can suppress PDT­induced tumour angiogenesis, which can enhance the effects of PDT and may thus provide a novel treatment strategy for PDT.


Asunto(s)
Neovascularización Patológica , Fotoquimioterapia , Transducción de Señal , Humanos , Células Endoteliales de la Vena Umbilical Humana , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fotoquimioterapia/efectos adversos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Smad/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación
20.
Neuro Oncol ; 25(1): 54-67, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35605606

RESUMEN

BACKGROUND: Diffuse midline gliomas (DMG) are highly invasive brain tumors with rare survival beyond two years past diagnosis and limited understanding of the mechanism behind tumor invasion. Previous reports demonstrate upregulation of the protein ID1 with H3K27M and ACVR1 mutations in DMG, but this has not been confirmed in human tumors or therapeutically targeted. METHODS: Whole exome, RNA, and ChIP-sequencing was performed on the ID1 locus in DMG tissue. Scratch-assay migration and transwell invasion assays of cultured cells were performed following shRNA-mediated ID1-knockdown. In vitro and in vivo genetic and pharmacologic [cannabidiol (CBD)] inhibition of ID1 on DMG tumor growth was assessed. Patient-reported CBD dosing information was collected. RESULTS: Increased ID1 expression in human DMG and in utero electroporation (IUE) murine tumors is associated with H3K27M mutation and brainstem location. ChIP-sequencing indicates ID1 regulatory regions are epigenetically active in human H3K27M-DMG tumors and prenatal pontine cells. Higher ID1-expressing astrocyte-like DMG cells share a transcriptional program with oligo/astrocyte-precursor cells (OAPCs) from the developing human brain and demonstrate upregulation of the migration regulatory protein SPARCL1. Genetic and pharmacologic (CBD) suppression of ID1 decreases tumor cell invasion/migration and tumor growth in H3.3/H3.1K27M PPK-IUE and human DIPGXIIIP* in vivo models of pHGG. The effect of CBD on cell proliferation appears to be non-ID1 mediated. Finally, we collected patient-reported CBD treatment data, finding that a clinical trial to standardize dosing may be beneficial. CONCLUSIONS: H3K27M-mediated re-activation of ID1 in DMG results in a SPARCL1+ migratory transcriptional program that is therapeutically targetable with CBD.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Humanos , Ratones , Encéfalo/patología , Neoplasias Encefálicas/genética , Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular/genética , Glioma/genética , Histonas/genética , Proteína 1 Inhibidora de la Diferenciación/genética , Mutación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...