Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.100
Filtrar
1.
Free Radic Biol Med ; 210: 237-245, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042224

RESUMEN

Nitrite (NO2-) interacts with hemoglobin (Hb) in various ways to regulate blood flow. During hypoxic vasodilation, nitrite is reduced by deoxyHb to yield nitric oxide (NO). While NO, a hydrophobic gas, could freely diffuse across the cell membrane, how the reactant nitrite anion could permeate through the red blood cell (RBC) membrane remains unclear. We hypothesized that Cl-/HCO3- anion exchanger-1 (AE1; band 3) abundantly embedded in the RBC membrane could transport NO2-, as HCO3- and NO2- exhibit similar hydrated radii. Here, we monitored NO/N2O3 generated from NO2- inside human RBCs by DAF-FM fluorophore. NO2-, not NO3-, increased intraerythrocytic DAF-FM fluorescence. To test the involvement of AE1-mediated transport in intraerythrocytic NO/N2O3 production from nitrite, we lowered Cl- or HCO3- in the RBC-incubating buffer by 20 % and indeed observed slower rise of the DAF-FM fluorescence. Anti-extracellular AE1, but not anti-intracellular AE1 antibodies, reduced the rates of NO formation from nitrite. The AE1 blocker DIDS similarly reduced the rates of NO/N2O3 production from nitrite in a dose-dependent fashion, confirming that nitrite entered RBCs through AE1. Nitrite inside the RBCs reacted with both deoxyHb and oxyHb, as evidenced by 6.1 % decrease in deoxyHb, 14.7 % decrease in oxyHb, and 20.7 % increase in methemoglobin (metHb). Lowering Cl- in the milieu equally delayed metHb production from nitrite-oxyHb and nitrite-deoxyHb reactions. Thus, AE1-mediated NO2- transport facilitates NO2--Hb reactions inside the red cells, supporting NOx metabolism in circulation.


Asunto(s)
Óxido Nítrico , Nitritos , Humanos , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Dióxido de Nitrógeno/metabolismo , Hemoglobinas/química , Eritrocitos/metabolismo , Metahemoglobina , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Membrana Eritrocítica/metabolismo
2.
Nat Struct Mol Biol ; 30(10): 1495-1504, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37679563

RESUMEN

Anion exchanger 1 (AE1), a member of the solute carrier (SLC) family, is the primary bicarbonate transporter in erythrocytes, regulating pH levels and CO2 transport between lungs and tissues. Previous studies characterized its role in erythrocyte structure and provided insight into transport regulation. However, key questions remain regarding substrate binding and transport, mechanisms of drug inhibition and modulation by membrane components. Here we present seven cryo-EM structures in apo, bicarbonate-bound and inhibitor-bound states. These, combined with uptake and computational studies, reveal important molecular features of substrate recognition and transport, and illuminate sterol binding sites, to elucidate distinct inhibitory mechanisms of research chemicals and prescription drugs. We further probe the substrate binding site via structure-based ligand screening, identifying an AE1 inhibitor. Together, our findings provide insight into mechanisms of solute carrier transport and inhibition.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Bicarbonatos , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Bicarbonatos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sitios de Unión , Dominios Proteicos
3.
CNS Neurosci Ther ; 29(7): 1889-1897, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36883266

RESUMEN

AIM: The molecular mechanism underlying Alzheimer's disease (AD) pathologies remains unclear. The brain is extremely sensitive to oxygen deprivation, and brief interruptions in oxygen supply may lead to permanent brain damage. The objective here was to access the red blood cell (RBC) physiological alterations and the changes in blood oxygen saturation of an AD model as well as to explore the possible mechanism underlying these pathologies. METHODS: We used female APPswe /PS1ΔE9 mice as AD models. Data were collected at the age of 3, 6, and 9 months. In addition to examining classic features of AD, namely cognitive deficiency and Aß depositions, 24 h blood oxygen saturation was monitored by Plus oximeters in real time. In addition, RBC physiological parameters were measured by blood cell counter using peripheral blood from the epicanthal veins. Furthermore, in the mechanism investigations, the expression of phosphorylated band 3 protein was examined by a series of Western blot analyses, and the levels of soluble Aß40 and Aß42 on the membrane of RBCs were determined by ELISA. RESULTS: Our results showed that the blood oxygen saturation in the AD mice was significantly reduced as early as at 3 months of age, preceding the neuropathological changes and cognitive impairments. Meanwhile, the expression of phosphorylated band 3 protein and levels of soluble Aß40 and Aß42 were all elevated in the erythrocytes of the AD mice. CONCLUSION: APPswe /PS1ΔE9 mice exhibited decreased oxygen saturation together with reduced RBC counts and hemoglobin concentrations at the early stage, which may aid in the development of predictive markers for AD diagnosis. The increased expression of band 3 protein and elevated Aß40 and Aß42 levels may contribute to the deformation of RBCs and, in turn, cause the subsequent AD development.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Femenino , Animales , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Saturación de Oxígeno , Cognición , Eritrocitos/patología , Oxígeno , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Presenilina-1/genética , Presenilina-1/metabolismo
4.
Cells ; 12(3)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36766766

RESUMEN

Mercury is a toxic heavy metal widely dispersed in the natural environment. Mercury exposure induces an increase in oxidative stress in red blood cells (RBCs) through the production of reactive species and alteration of the endogenous antioxidant defense system. Recently, among various natural antioxidants, the polyphenols from extra-virgin olive oil (EVOO), an important element of the Mediterranean diet, have generated growing interest. Here, we examined the potential protective effects of hydroxytyrosol (HT) and/or homovanillyl alcohol (HVA) on an oxidative stress model represented by human RBCs treated with HgCl2 (10 µM, 4 h of incubation). Morphological changes as well as markers of oxidative stress, including thiobarbituric acid reactive substance (TBARS) levels, the oxidation of protein sulfhydryl (-SH) groups, methemoglobin formation (% MetHb), apoptotic cells, a reduced glutathione/oxidized glutathione ratio, Band 3 protein (B3p) content, and anion exchange capability through B3p were analyzed in RBCs treated with HgCl2 with or without 10 µM HT and/or HVA pre-treatment for 15 min. Our data show that 10 µM HT and/or HVA pre-incubation impaired both acanthocytes formation, due to 10 µM HgCl2, and mercury-induced oxidative stress injury and, moreover, restored the endogenous antioxidant system. Interestingly, HgCl2 treatment was associated with a decrease in the rate constant for SO42- uptake through B3p as well as MetHb formation. Both alterations were attenuated by pre-treatment with HT and/or HVA. These findings provide mechanistic insights into benefits deriving from the use of naturally occurring polyphenols against oxidative stress induced by HgCl2 on RBCs. Thus, dietary supplementation with polyphenols might be useful in populations exposed to HgCl2 poisoning.


Asunto(s)
Antioxidantes , Mercurio , Humanos , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cloruros/metabolismo , Eritrocitos/metabolismo , Cloruro de Mercurio/toxicidad , Cloruro de Mercurio/metabolismo , Mercurio/toxicidad , Aceite de Oliva/farmacología , Estrés Oxidativo
5.
Stem Cell Res ; 67: 103043, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791635

RESUMEN

Distal renal tubular acidosis (dRTA), a disease characterized by the failure of the distal nephron to secrete acid into the urine, can be caused by mutations in SLC4A1 gene encoding erythroid and kidney anion exchanger 1 (AE1). Here, an induced pluripotent stem cell (iPSC) line was generated from a patient with dRTA and hemolytic anemia carrying compound heterozygous SLC4A1 mutations containing c.1199_1225del (p.Ala400_Ala408del), resulting in Southeast Asian ovalocytosis (SAO), and c.1331C>A (p.Thr444Asn). Peripheral blood mononuclear cells (PBMCs) were reprogrammed using Sendai viral reprogramming. The established iPSC line, MUSIi019-A, exhibited pluripotent property and retained the same mutations observed in the patients.


Asunto(s)
Acidosis Tubular Renal , Células Madre Pluripotentes Inducidas , Humanos , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Acidosis Tubular Renal/genética , Leucocitos Mononucleares/metabolismo , Mutación
6.
Vox Sang ; 118(2): 147-152, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36510386

RESUMEN

BACKGROUND AND OBJECTIVES: Early studies indicate that red cell A and B antigens are attached primarily onto band 3 and GLUT1 on the erythrocyte membrane and little onto glycophorin A (GPA) and glycophorin B (GPB). But as GPA and band 3 form stable protein complexes and GPA is much more heavily glycosylated than band 3, this study re-examined the association between ABO antigens and GPA/GPB. MATERIALS AND METHODS: Band 3/GPA-associated protein complexes were first immunoprecipitated, followed by differential enzymatic deglycosylation that removed sialic acids, N-glycans and O-glycans. Serological anti-A (BIRMA 1) and anti-B IgM (GAMA 110) could be used for western blot (WB); however, only the anti-B IgM showed significant reactivity for the immunoprecipitates isolated by anti-band 3. The expression of the B antigen in un-deglycosylated and differentially deglycosylated band 3 immunoprecipitates was thus compared. RESULTS: Besides attachment to band 3, red cell B antigen expressed substantially on GPA monomer and homodimer, GPA*GPB heterodimer, and GPB monomer and dimer via attachments through the N- and O-glycans. CONCLUSION: Immunoprecipitation (IP), as a means of protein separation and concentration, was used in combination with a WB to differentiate glycosylation on different proteins and oligomers. This study implemented differential enzymatic deglycosylation during IP of the band 3 complexes. This combined approach allowed separate identification of the B antigen on GPA/GPB monomer and dimer and GPA*GPB heterodimer, and band 3 on the WB and verified non-trivial expression of the B antigen on GPA and GPB on the erythrocyte surface.


Asunto(s)
Antígenos de Grupos Sanguíneos , Glicoforinas , Humanos , Glicoforinas/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Eritrocitos , Antígenos de Grupos Sanguíneos/metabolismo , Carbohidratos , Inmunoglobulina M
7.
J Ethnopharmacol ; 300: 115716, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36122792

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C.A. Mey (PG) is famous for "Qi-tonifying" effect, which has a medicinal history of more than 2 millennia. Modern pharmacology has confirmed that the "Qi-tonifying" effect of PG may be closely related to its pharmacological properties such as anti-oxidation, antineoplastic and treatment of cardiovascular disease. As one of the earliest cells affected by oxidative stress, RBCs are widely used in the diagnosis of diseases. Ginseng polysaccharide (GPS), is one of the major active components of PG, which plays an important role in resisting oxidative stress, affecting energy metabolism and other effects. However, the molecular mechanism explaining the "Qi-tonifying" effect of GPS from the perspective of RBCs oxidative damage has not been reported. AIM OF THE STUDY: This study aimed to investigate the protective effect of GPS on oxidatively damaged RBCs using in vitro and in vivo models and explore the molecular mechanisms from the perspective of glycolysis and gluconeogenesis pathways. To provides a theoretical basis for the future research of antioxidant drugs. MATERIALS AND METHODS: Established three different in vitro and in vivo research models: an in vitro model of RBCs exposed to hydrogen peroxide (H2O2) (40 mM), an in vivo model of RBCs from rats subjected to exhaustive swimming, and an in vitro model of BRL-3A cells exposed to H2O2 (25 µM). All three models were also tested in the presence of different concentrations of GPS. RESULTS: The findings showed that GPS was the most potent antagonist of H2O2-induced hemolysis and redox inbalance in RBCs. In exhaustive exercise rats, GPS ameliorated RBVs hemolysis, including reducing whole-blood viscosity (WBV), improving deformability, oxygen-carrying and -releasing capacities, which was related to the enhancing of antioxidant capacity. Moreover, GPS promoted RBCs glycolysis in rats with exhaustive exercise by recovering the activities of glycolysis-related enzymes and increasing band 3 protein expression, thereby regulating the imbalance of energy metabolism caused by oxidative stress. Furthermore, we demonstrated that GPS improved antioxidant defense system, enhanced energy metabolism, and regulated gluconeogenesis via activating PPAR gamma co-activator 1 alpha (PGC-1α) pathway in H2O2-exposed BRL-3A cells. Mechanistically, GPS promoted glycolysis and protected RBCs from oxidative injury was partly dependent on the regulation of gluconeogenesis, as inhibition of gluconeogenesis by metformin (Met) attenuates the regulation of antioxidant enzymes and key enzymes of glycolytic by GPS in exhaustive exercise rats. CONCLUSION: This study demonstrates that GPS protects RBCs from oxidative stress damage by promoting RBCs glycolysis and liver gluconeogenesis pathways. These results may contribute to the study of new RBCs treatments to boost antioxidant capacity and protect RBCs against oxidative stress.


Asunto(s)
Metformina , Panax , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Eritrocitos , Gluconeogénesis , Glucólisis , Hemólisis , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Metformina/farmacología , Estrés Oxidativo , Oxígeno/metabolismo , PPAR gamma/metabolismo , Polisacáridos/farmacología , Ratas
8.
Commun Biol ; 5(1): 1372, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517642

RESUMEN

Anion exchanger 1 (AE1, band 3) is a major membrane protein of red blood cells and plays a key role in acid-base homeostasis, urine acidification, red blood cell shape regulation, and removal of carbon dioxide during respiration. Though structures of the transmembrane domain (TMD) of three SLC4 transporters, including AE1, have been resolved previously in their outward-facing (OF) state, no mammalian SLC4 structure has been reported in the inward-facing (IF) conformation. Here we present the cryoEM structures of full-length bovine AE1 with its TMD captured in both IF and OF conformations. Remarkably, both IF-IF homodimers and IF-OF heterodimers were detected. The IF structures feature downward movement in the core domain with significant unexpected elongation of TM11. Molecular modeling and structure guided mutagenesis confirmed the functional significance of residues involved in TM11 elongation. Our data provide direct evidence for an elevator-like mechanism of ion transport by an SLC4 family member.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Proteínas de Transporte de Membrana , Bovinos , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microscopía por Crioelectrón , Dominios Proteicos , Transporte Iónico
9.
BMC Med Genomics ; 15(1): 228, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36320073

RESUMEN

BACKGROUND: Mutations in solute carrier family 4 member 1 (SLC4A1) encoding anion exchanger 1 (AE1) are the most common cause of autosomal recessive distal renal tubular acidosis (AR dRTA) in Southeast Asians. To explain the molecular mechanism of this disease with hematological abnormalities in an affected family, we conducted a genetic analysis of SLC4A1 and studied wild-type and mutant AE1 proteins expressed in human embryonic kidney 293T (HEK293T) cells. METHODS: SLC4A1 mutations in the patient and family members were analyzed by molecular genetic techniques. Protein structure modeling was initially conducted to evaluate the effects of mutations on the three-dimensional structure of the AE1 protein. The mutant kidney anion exchanger 1 (kAE1) plasmid construct was created to study protein expression, localization, and stability in HEK293T cells. RESULTS: We discovered that the patient who had AR dRTA coexisting with mild hemolytic anemia carried a novel compound heterozygous SLC4A1 mutations containing c.1199_1225del (p.Ala400_Ala408del), resulting in Southeast Asian ovalocytosis (SAO), and c.1331C > A (p.Thr444Asn). Homologous modeling and in silico mutagenesis indicated that these two mutations affected the protein structure in the transmembrane regions of kAE1. We found the wild-type and mutant kAE1 T444N to be localized at the cell surface, whereas the mutants kAE1 SAO and SAO/T444N were intracellularly retained. The half-life of the kAE1 SAO, T444N, and SAO/T444N mutants was shorter than that of the wild-type protein. CONCLUSION: These results suggest impaired trafficking and instability of kAE1 SAO/T444N as the likely underlying molecular mechanism explaining the pathogenesis of the novel SLC4A1 compound heterozygous mutation identified in this patient.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Riñón , Humanos , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células HEK293 , Riñón/metabolismo , Mutación
10.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232293

RESUMEN

During their lifespan, red blood cells (RBCs) are exposed to a large number of stressors and are therefore considered as a suitable model to investigate cell response to oxidative stress (OS). This study was conducted to evaluate the potential beneficial effects of the natural antioxidant quercetin (Q) on an OS model represented by human RBCs treated with H2O2. Markers of OS, including % hemolysis, reactive oxygen species (ROS) production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, CD47 and B3p expression, methemoglobin formation (% MetHb), as well as the anion exchange capability through Band 3 protein (B3p) have been analyzed in RBCs treated for 1 h with 20 mM H2O2 with or without pre-treatment for 1 h with 10 µM Q, or in RBCs pre-treated with 20 mM H2O2 and then exposed to 10 µM Q. The results show that pre-treatment with Q is more effective than post-treatment to counteract OS in RBCs. In particular, pre-exposure to Q avoided morphological alterations (formation of acanthocytes), prevented H2O2-induced OS damage, and restored the abnormal distribution of B3p and CD47 expression. Moreover, H2O2 exposure was associated with a decreased rate constant of SO42- uptake via B3p, as well as an increased MetHb formation. Both alterations have been attenuated by pre-treatment with 10 µM Q. These results contribute (1) to elucidate OS-related events in human RBCs, (2) propose Q as natural antioxidant to counteract OS-related alterations, and (3) identify B3p as a possible target for the treatment and prevention of OS-related disease conditions or aging-related complications impacting on RBCs physiology.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Antioxidantes , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antígeno CD47/metabolismo , Eritrocitos/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Metahemoglobina/metabolismo , Estrés Oxidativo , Quercetina/metabolismo , Quercetina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
11.
Front Cell Infect Microbiol ; 12: 1011692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250048

RESUMEN

The Plasmodium vivax reticulocyte invasion process is still poorly understood, with only a few receptor-ligand interactions identified to date. Individuals with the Southeast Asian ovalocytosis (SAO) phenotype have a deletion in the band 3 protein on the surface of erythrocytes, and are reported to have a lower incidence of clinical P. vivax malaria. Based on this observation, band 3 has been put forward as a receptor for P. vivax invasion, although direct proof is still lacking. In this study, we combined functional ex vivo invasion assays and transcriptome sequencing to uncover a band 3-mediated invasion pathway in P. vivax and potential band 3 ligands. Invasion by P. vivax field isolates was 67%-71% lower in SAO reticulocytes compared with non-SAO reticulocytes. Reticulocyte invasion was decreased by 40% and 27%-31% when blocking with an anti-band 3 polyclonal antibody and a PvTRAg38 peptide, respectively. To identify new band 3 receptor candidates, we mRNA-sequenced schizont-stage isolates used in the invasion assays, and observed high transcriptional variability in multigene and invasion-related families. Transcriptomes of isolates with low or high dependency on band 3 for invasion were compared by differential expression analysis, which produced a list of band 3 ligand candidates with high representation of PvTRAg genes. Our ex vivo invasion assays have demonstrated that band 3 is a P. vivax invasion receptor and confirm previous in vitro studies showing binding between PvTRAg38 and band 3, although the lower and variable inhibition levels observed suggest the involvement of other ligands. By coupling transcriptomes and invasion phenotypes from the same isolates, we identified a list of band 3 ligand candidates, of which the overrepresented PvTRAg genes are the most promising for future research.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Antígenos de Protozoos , Eliptocitosis Hereditaria , Eritrocitos , Humanos , Ligandos , Malaria Vivax/genética , Péptidos/metabolismo , Proteínas Protozoarias/metabolismo , ARN Mensajero/metabolismo , Reticulocitos/metabolismo
12.
Cell Physiol Biochem ; 56(5): 500-513, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36126286

RESUMEN

BACKGROUND/AIMS: Mercury (Hg) is a heavy metal widespread in all environmental compartments as one of the most hazardous pollutants. Human exposure to this natural element is detrimental for several cellular types including erythrocytes (RBC) that accumulate Hg mainly bound to the SH groups of different cellular components, including protein cysteine residues. The cellular membrane represents a major target of Hg-induced damage in RBC with loss of physiological phospholipid asymmetry, due to phosphatidylserine (PS) exposure to the external membrane leaflet. To investigate Hg-induced cytotoxicity at the molecular level, the possible interaction of this heavy metal with RBC membrane proteins was investigated. Furthermore, Hg-induced alterations in band 3 protein (B3p) transport function, PS-exposing macrovesicle (MVs) formation and morphological changes were assessed. METHODS: For this aim, human RBC were treated in vitro with different HgCl2 concentrations (range 10-40 µM) and the electrophoretic profile of membrane proteins as well as the expression levels of Ankyrin and Flottilin-2 evaluated by SDS-PAGE and Western blot, respectively. The effect of alterations in these proteins on RBC morphology was evaluated by digital holographic microscopy and anionic transport efficiency of B3p was evaluated as sulphate uptake. Finally, PS- bearing MVs were quantified by annexin-V binding using FACS analysis. RESULTS: Findings presented in this paper indicate that RBC exposure to HgCl2 induces modifications in the electrophoretic profile of membrane protein fraction. Furthermore, our study reveals the Hg induced alterations of specific membrane proteins, such as Ankyrin, a protein essential for membrane-cytoskeleton linkage and Flotillin-2, a major integral protein of RBC lipid rafts, likely responsible for decreased membrane stability and increased fragmentations. Accordingly, under the same experimental conditions, RBC morphological changes and PS-bearing MVs release are observed. Finally, RBC treatment significantly affects the B3p-mediated anionic transport, that we report reduced upon HgCl2 treatment in a dose dependent manner. CONCLUSION: Altogether, the findings reported in this paper confirm that RBC are particularly vulnerable to Hg toxic effect and provide new insight in the Hg-induced protein modification in human RBC affecting the complex biological system of cellular membrane. In particular, Hg could induce dismantle of vertical cohesion between the plasma membrane and cytoskeleton as well as destabilization of lateral linkages of functional domains. Consequently, decreased membrane deformability could impair RBC capacity to deal with the shear forces in the circulation increasing membrane fragmentations. Furthermore, findings described in this paper have also significant implication in RBC physiology, particularly related to gas exchanges.


Asunto(s)
Contaminantes Ambientales , Mercurio , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Ancirinas/metabolismo , Ancirinas/farmacología , Anexina A5/metabolismo , Cisteína/metabolismo , Eritrocitos/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Mercurio/metabolismo , Mercurio/toxicidad , Fosfatidilserinas/metabolismo , Fosfolípidos/metabolismo , Sulfatos/metabolismo
13.
Cell Signal ; 99: 110450, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36029940

RESUMEN

p38 MAPKs are key regulators of cellular adaptation to various stress stimuli, however, their role in mediating erythrocyte cell death and hemolysis is largely unknown. We hypothesized that activation of erythrocyte p38 MAPK is a common event in the stimulation of hemolysis, and that inhibition of p38 MAPK pathways could mitigate hemolysis in hemoglobinopathies. We exposed human erythrocytes to diamide-induced oxidative stress or to hypoosmotic shock in the presence or absence of p38 MAPK inhibitors (SCIO469, SB203580, CMPD1) and used immunoblotting to determine MAPK activity and to identify possible downstream effectors of p38 MAPK. We also evaluated the impact of p38 MAPK inhibitors on stress-induced hemolysis or hypoxia-induced sickling in erythrocytes from mouse models of sickle cell disease. We found that human erythrocytes express conventional MAPKs (MKK3, p38 MAPK, MAPKAPK2) and identified differential MAPK activation pathways in each stress condition. Specifically, p38 MAPK inhibition in diamide-treated erythrocytes was associated with decreased phosphorylation of Src tyrosine kinases and Band 3 protein. Conversely, hypoosmotic shock induced MAPKAPK2 and RSK2 phosphorylation, which was inhibited by SCIO469 or CMPD1. Relevant to hemoglobinopathies, sickle cell disease was associated with increased erythrocyte MKK3, p38 MAPK, and MAPKAPK2 expression and phosphorylation as compared with erythrocytes from healthy individuals. Furthermore, p38 MAPK inhibition was associated with decreased hemolysis in response to diamide treatments or osmotic shock, and with decreased erythrocyte sickling under experimental hypoxia. These findings provided insights into MAPK-mediated signaling pathways that regulate erythrocyte function and hemolysis in response to extracellular stressors or human diseases.


Asunto(s)
Anemia de Células Falciformes , Hemoglobinopatías , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Diamida , Activación Enzimática , Eritrocitos/metabolismo , Hemólisis , Humanos , Hipoxia , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo
14.
Cell Mol Biol (Noisy-le-grand) ; 68(4): 1-11, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35988288

RESUMEN

Red blood cells (RBCs) carry large cholesterol fractions and imbalance in them leads to several vascular complications. RBCs band 3 protein plays an important role in maintaining membrane integrity and there are many reports on cholesterol and band 3 protein interaction. Yet, RBCs band 3 protein role in regulating cholesterol homeostasis needs to be investigated. In this study, we induced cholesterol-depletion and band 3 inhibition in RBCs; both of which cause stress by decreasing band 3 channel activity with an increase in RBCs adhesion to endothelial cells (EC) by elevating band 3 phosphorylation (Tyr21), methemoglobin level and decreasing nitric oxide level. We hypothesized that nitric oxide (NO), a prominent determinant for RBC structural stability, would protect RBCs from stressors. To estimate this, we used three NO donors (SpNO, Sildenafil citrate and 8-Bromo-cGMP) and found that all 3 NO donors were able to recover, with 8-Bromo-cGMP being the most effective as it not only increased band 3 channel activity but also decreased RBC-EC adhesiveness and methemoglobin level in both stressors. Whereas NO donor's treatment did not display an ameliorative impact when both stresses were combined. Overall, these findings may shed light on the role of 8-bromo-cGMP in regulating RBC cholesterol homeostasis by maintaining band 3 function. Further studies in this direction might help identify targets for the therapeutic use of NO donors in the treatment of blood disorders.


Asunto(s)
Donantes de Óxido Nítrico , Óxido Nítrico , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Colesterol , GMP Cíclico/análogos & derivados , Células Endoteliales/metabolismo , Eritrocitos/metabolismo , Metahemoglobina/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología
15.
Nat Struct Mol Biol ; 29(7): 706-718, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35835865

RESUMEN

The stability and shape of the erythrocyte membrane is provided by the ankyrin-1 complex, but how it tethers the spectrin-actin cytoskeleton to the lipid bilayer and the nature of its association with the band 3 anion exchanger and the Rhesus glycoproteins remains unknown. Here we present structures of ankyrin-1 complexes purified from human erythrocytes. We reveal the architecture of a core complex of ankyrin-1, the Rhesus proteins RhAG and RhCE, the band 3 anion exchanger, protein 4.2, glycophorin A and glycophorin B. The distinct T-shaped conformation of membrane-bound ankyrin-1 facilitates recognition of RhCE and, unexpectedly, the water channel aquaporin-1. Together, our results uncover the molecular details of ankyrin-1 association with the erythrocyte membrane, and illustrate the mechanism of ankyrin-mediated membrane protein clustering.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Ancirinas , Proteína 1 de Intercambio de Anión de Eritrocito/análisis , Proteína 1 de Intercambio de Anión de Eritrocito/química , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Ancirinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Humanos , Espectrina
16.
Elife ; 112022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35635440

RESUMEN

Bicarbonate secretion is a fundamental process involved in maintaining acid-base homeostasis. Disruption of bicarbonate entry into airway lumen, as has been observed in cystic fibrosis, produces several defects in lung function due to thick mucus accumulation. Bicarbonate is critical for correct mucin deployment and there is increasing interest in understanding its role in airway physiology, particularly in the initiation of lung disease in children affected by cystic fibrosis, in the absence of detectable bacterial infection. The current model of anion secretion in mammalian airways consists of CFTR and TMEM16A as apical anion exit channels, with limited capacity for bicarbonate transport compared to chloride. However, both channels can couple to SLC26A4 anion exchanger to maximise bicarbonate secretion. Nevertheless, current models lack any details about the identity of the basolateral protein(s) responsible for bicarbonate uptake into airway epithelial cells. We report herein that the electrogenic, sodium-dependent, bicarbonate cotransporter, SLC4A4, is expressed in the basolateral membrane of human and mouse airways, and that it's pharmacological inhibition or genetic silencing reduces bicarbonate secretion. In fully differentiated primary human airway cells cultures, SLC4A4 inhibition induced an acidification of the airways surface liquid and markedly reduced the capacity of cells to recover from an acid load. Studies in the Slc4a4-null mice revealed a previously unreported lung phenotype, characterized by mucus accumulation and reduced mucociliary clearance. Collectively, our results demonstrate that the reduction of SLC4A4 function induced a CF-like phenotype, even when chloride secretion remained intact, highlighting the important role SLC4A4 plays in bicarbonate secretion and mammalian airway function.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Fibrosis Quística , Animales , Bicarbonatos/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mamíferos/metabolismo , Ratones , Fenotipo , Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/genética
17.
J Biol Chem ; 298(4): 101765, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202655

RESUMEN

Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) is an erythrocyte binding protein known to be involved in malarial parasite invasion. Although anti-GAMA antibodies have been shown to block GAMA attachment to the erythrocyte surface and subsequently inhibit parasite invasion, little is known about the molecular mechanisms by which GAMA promotes the invasion process. In this study, LC-MS analysis was performed on the erythrocyte membrane to identify the specific receptor that interacts with GAMA. We found that ankyrin 1 and the band 3 membrane protein showed affinity for GAMA, and characterization of their binding specificity indicated that both Plasmodium falciparum and Plasmodium vivax GAMA bound to the same extracellular loop of band 3 (loop 5). In addition, we show the interaction between GAMA and band 3 was sensitive to chymotrypsin. Furthermore, antibodies against band 3 loop 5 were able to reduce the binding activity of GAMA to erythrocytes and inhibit the invasion of P. falciparum merozoites into human erythrocytes, whereas antibodies against P. falciparum GAMA (PfGAMA)-Tr3 only slightly reduced P. falciparum invasion. The identification and characterization of the erythrocyte GAMA receptor is a novel finding that identifies an essential mechanism of parasite invasion of host erythrocytes.


Asunto(s)
Eritrocitos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Ancirinas/metabolismo , Eritrocitos/parasitología , Humanos , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium vivax/metabolismo , Proteínas Protozoarias/metabolismo
18.
Arch Physiol Biochem ; 128(5): 1242-1248, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32401056

RESUMEN

Objective: The impact of acute inflammation, revealed by C-reactive protein (CRP) plasma levels, has been studied on the erythrocytes anion exchanger Band 3 protein.Methods: Anion exchange capability through Band 3 protein, lipid peroxidation, -SH membrane groups and intracellular GSH levels have been measured on erythrocytes from patients with CRP >8 mg/L.Results: Under acute inflammation, a significant increase in anion exchange capability, increased lipid peroxidation, decreased-SH groups and GSH content were observed. Serum CRP levels recovery (after one week) was associated to -SH groups and GSH recovery, but not to anion exchange capability restoration. After 2 months, a total recovery of all parameters was observed.Conclusion: Band 3 protein anion exchange capability is affected by acute inflammation; the accelerated rate of anion exchange may be mainly due to lipid peroxidation, rather than to -SH groups oxidation; erythrocytes renewal could be needed to have a total recover of their function.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Proteína C-Reactiva , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Aniones/metabolismo , Proteína C-Reactiva/metabolismo , Eritrocitos/metabolismo , Humanos , Inflamación/metabolismo , Estrés Oxidativo
19.
J Cell Physiol ; 237(2): 1586-1596, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783011

RESUMEN

Aging, a time-dependent multifaceted process, affects both cell structure and function and involves oxidative stress as well as glycation. The present investigation focuses on the role of the band 3 protein (B3p), an anion exchanger essential to red cells homeostasis, in a d-galactose ( d-Gal)-induced aging model. Anion exchange capability, measured by the rate constant of SO4²- uptake through B3p, levels of lipid peroxidation, oxidation of membrane sulfhydryl groups, B3p expression, methemoglobin, glycated hemoglobin (Hb), and the reduced glutathione/oxidized glutathione ratio were determined after exposure of human erythrocytes to 25, 35, 50, and 100 mmol/L d-Gal for 24 h. Our results show that: (i) in vitro application of d-Gal is useful to model early aging in human erythrocytes; (ii) assessment of B3p ion transport function is a sensitive tool to monitor aging development; (iii) d-Gal leads to Hb glycation and produces substantial changes on the endogenous antioxidant system; (iv) the impact of aging on B3p function proceeds through steps, first involving Hb glycation and then oxidative events at the membrane level. These findings offer a useful tool to understand the mechanisms of aging in human erythrocytes and propose B3p as a possible target for new therapeutic strategies to counteract age-related disturbances.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito , Galactosa , Envejecimiento , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Eritrocitos/metabolismo , Galactosa/metabolismo , Galactosa/farmacología , Humanos , Estrés Oxidativo
20.
Cells ; 10(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34943876

RESUMEN

GP.Mur is a clinically important red blood cell (RBC) phenotype in Southeast Asia. The molecular entity of GP.Mur is glycophorin B-A-B hybrid protein that promotes band 3 expression and band 3-AQP1 interaction, and alters the organization of band 3 complexes with Rh/RhAG complexes. GP.Mur+ RBCs are more resistant to osmotic stress. To explore whether GP.Mur+ RBCs could be structurally more resilient, we compared deformability and osmotic fragility of fresh RBCs from 145 adults without major illness (47% GP.Mur). We also evaluated potential impacts of cellular and lipid factors on RBC deformability and osmotic resistivity. Contrary to our anticipation, these two physical properties were independent from each other based on multivariate regression analyses. GP.Mur+ RBCs were less deformable than non-GP.Mur RBCs. We also unexpectedly found 25% microcytosis in GP.Mur+ female subjects (10/40). Both microcytosis and membrane cholesterol reduced deformability, but the latter was only observed in non-GP.Mur and not GP.Mur+ normocytes. The osmotic fragility of erythrocytes was not affected by microcytosis; instead, larger mean corpuscular volume (MCV) increased the chances of hypotonic burst. From comparison with GP.Mur+ RBCs, higher band 3 expression strengthened the structure of RBC membrane and submembranous cytoskeletal networks and thereby reduced cell deformability; stronger band 3-AQP1 interaction additionally supported osmotic resistance. Thus, red cell deformability and osmotic resistivity involve distinct structural-functional roles of band 3.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Deformación Eritrocítica , Eritrocitos/metabolismo , Eritrocitos/patología , Fragilidad Osmótica , Adulto , Acuaporina 1/metabolismo , Colesterol/sangre , Colesterol/metabolismo , Recuento de Eritrocitos , Membrana Eritrocítica/metabolismo , Humanos , Modelos Biológicos , Análisis Multivariante , Unión Proteica , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA