Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(20): 14133-14149, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37782247

RESUMEN

Methyl-lysine reader p53 binding protein 1 (53BP1) is a central mediator of DNA break repair and is associated with various human diseases, including cancer. Thus, high-quality 53BP1 chemical probes can aid in further understanding the role of 53BP1 in genome repair pathways. Herein, we utilized focused DNA-encoded library screening to identify the novel hit compound UNC8531, which binds the 53BP1 tandem Tudor domain (TTD) with an IC50 of 0.47 ± 0.09 µM in a TR-FRET assay and Kd values of 0.85 ± 0.17 and 0.79 ± 0.52 µM in ITC and SPR, respectively. UNC8531 was cocrystallized with the 53BP1 TTD to guide further optimization efforts, leading to UNC9512. NanoBRET and 53BP1-dependent foci formation experiments confirmed cellular target engagement. These results show that UNC9512 is a best-in-class small molecule 53BP1 antagonist that can aid further studies investigating the role of 53BP1 in DNA repair, gene editing, and oncogenesis.


Asunto(s)
Reparación del ADN , Péptidos y Proteínas de Señalización Intracelular , Humanos , ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Dominio Tudor
2.
Nat Commun ; 13(1): 360, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042897

RESUMEN

Human 53BP1 is primarily known as a key player in regulating DNA double strand break (DSB) repair choice; however, its involvement in other biological process is less well understood. Here, we report a previously uncharacterized function of 53BP1 at heterochromatin, where it undergoes liquid-liquid phase separation (LLPS) with the heterochromatin protein HP1α in a mutually dependent manner. Deletion of 53BP1 results in a reduction in heterochromatin centers and the de-repression of heterochromatic tandem repetitive DNA. We identify domains and residues of 53BP1 required for its LLPS, which overlap with, but are distinct from, those involved in DSB repair. Further, 53BP1 mutants deficient in DSB repair, but proficient in LLPS, rescue heterochromatin de-repression and protect cells from stress-induced DNA damage and senescence. Our study suggests that in addition to DSB repair modulation, 53BP1 contributes to the maintenance of heterochromatin integrity and genome stability through LLPS.


Asunto(s)
Heterocromatina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Homólogo de la Proteína Chromobox 5/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Noqueados , Mutación/genética , Dominios Proteicos , Estrés Fisiológico , Proteína 1 de Unión al Supresor Tumoral P53/química
3.
Cell Rep ; 35(13): 109306, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34192545

RESUMEN

53BP1 is recruited to chromatin in the vicinity of DNA double-strand breaks (DSBs). We identify the nuclear kinesin, KIF18B, as a 53BP1-interacting protein and define its role in 53BP1-mediated DSB repair. KIF18B is a molecular motor protein involved in destabilizing astral microtubules during mitosis. It is primarily nuclear throughout the interphase and is constitutively chromatin bound. Our observations indicate a nuclear function during the interphase for a kinesin previously implicated in mitosis. We identify a central motif in KIF18B, which we term the Tudor-interacting motif (TIM), because of its interaction with the Tudor domain of 53BP1. TIM enhances the interaction between the 53BP1 Tudor domain and dimethylated lysine 20 of histone H4. TIM and the motor function of KIF18B are both required for efficient 53BP1 focal recruitment in response to damage and for fusion of dysfunctional telomeres. Our data suggest a role for KIF18B in efficient 53BP1-mediated end-joining of DSBs.


Asunto(s)
Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Cinesinas/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular Tumoral , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Unión Proteica , Proteína 1 de Unión al Supresor Tumoral P53/química
4.
Cell ; 184(4): 1081-1097.e19, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33606978

RESUMEN

Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.


Asunto(s)
Daño del ADN , Edición Génica , Pruebas Genéticas , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Camptotecina/farmacología , Línea Celular , Daño del ADN/genética , Reparación del ADN/genética , Femenino , Humanos , Mutación/genética , Fenotipo , Unión Proteica , Dominios Proteicos , ARN Guía de Kinetoplastida/genética , Inhibidores de Topoisomerasa/farmacología , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
J Zhejiang Univ Sci B ; 22(1): 38-46, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33448186

RESUMEN

Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break (DSB) signaling. P53-binding protein 1 (53BP1) plays a critical role in coordinating the DSB repair pathway choice and promotes the non-homologous end-joining (NHEJ)-mediated DSB repair pathway that rejoins DSB ends. New insights have been gained into a basic molecular mechanism that is involved in 53BP1 recruitment to the DNA lesion and how 53BP1 then recruits the DNA break-responsive effectors that promote NHEJ-mediated DSB repair while inhibiting homologous recombination (HR) signaling. This review focuses on the up- and downstream pathways of 53BP1 and how 53BP1 promotes NHEJ-mediated DSB repair, which in turn promotes the sensitivity of poly(ADP-ribose) polymerase inhibitor (PARPi) in BRCA1-deficient cancers and consequently provides an avenue for improving cancer therapy strategies.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína BRCA1/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Humanos , Proteínas Mad2/metabolismo , Modelos Biológicos , Poli ADP Ribosilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Pirofosfatasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química
6.
Biochem J ; 478(1): 135-156, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33439989

RESUMEN

Genomic integrity is most threatened by double-strand breaks, which, if left unrepaired, lead to carcinogenesis or cell death. The cell generates a network of protein-protein signaling interactions that emanate from the DNA damage which are now recognized as a rich basis for anti-cancer therapy development. Deciphering the structures of signaling proteins has been an uphill task owing to their large size and complex domain organization. Recent advances in mammalian protein expression/purification and cryo-EM-based structure determination have led to significant progress in our understanding of these large multidomain proteins. This review is an overview of the structural principles that underlie some of the key signaling proteins that function at the double-strand break site. We also discuss some plausible ideas that could be considered for future structural approaches to visualize and build a more complete understanding of protein dynamics at the break site.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Transducción de Señal/genética , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11/química , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
7.
Cancer Lett ; 501: 43-54, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33359708

RESUMEN

TP53 binding protein 1 (53BP1) plays an important role in DNA damage repair and maintaining genomic stability. However, the mutations of 53BP1 in human cancers have not been systematically examined. Here, we have analyzed 541 somatic mutations of 53BP1 across 34 types of human cancer from databases of The Cancer Genome Atlas, International Cancer Genome Consortium and Catalogue of Somatic Mutations in Cancer. Among these cancer-associated 53BP1 mutations, truncation mutations disrupt the nuclear localization of 53BP1 thus abolish its biological functions in DNA damage repair. Moreover, with biochemical analyses and structural modeling, we have examined the detailed molecular mechanism by which missense mutations in the key domains causes the DNA damage repair defects. Taken together, our results reveal the functional defects of a set of cancer-associated 53BP1 mutations.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Mutación Missense , Neoplasias/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Línea Celular Tumoral , Biología Computacional , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Modelos Moleculares , Proteína 1 de Unión al Supresor Tumoral P53/química
8.
Biochem Soc Trans ; 48(5): 2317-2333, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33084906

RESUMEN

Lamins are type V intermediate filament proteins which are ubiquitously present in all metazoan cells providing a platform for binding of chromatin and related proteins, thereby serving a wide range of nuclear functions including DNA damage repair. Altered expression of lamins in different subtypes of cancer is evident from researches worldwide. But whether cancer is a consequence of this change or this change is a consequence of cancer is a matter of future investigation. However changes in the expression levels of lamins is reported to have direct or indirect association with cancer progression or have regulatory roles in common neoplastic symptoms like higher nuclear deformability, increased genomic instability and reduced susceptibility to DNA damaging agents. It has already been proved that loss of A type lamin positively regulates cathepsin L, eventually leading to degradation of several DNA damage repair proteins, hence impairing DNA damage repair pathways and increasing genomic instability. It is established in ovarian cancer, that the extent of alteration in nuclear morphology can determine the degree of genetic changes and thus can be utilized to detect low to high form of serous carcinoma. In this review, we have focused on ovarian cancer which is largely caused by genomic alterations in the DNA damage response pathways utilizing proteins like RAD51, BRCA1, 53BP1 which are regulated by lamins. We have elucidated the current understanding of lamin expression in ovarian cancer and its implications in the regulation of DNA damage response pathways that ultimately result in telomere deformation and genomic instability.


Asunto(s)
Daño del ADN , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Laminina/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Animales , Proteína BRCA1/química , Catepsina L/metabolismo , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inestabilidad Genómica , Genómica , Humanos , Laminas/metabolismo , Ratones , Dominios Proteicos , Recombinasa Rad51/química , Telómero/metabolismo , Resultado del Tratamiento , Proteína 1 de Unión al Supresor Tumoral P53/química
9.
Phys Chem Chem Phys ; 22(11): 6136-6144, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32124883

RESUMEN

Histone lysine methylation regulates the recruitment of mammalian DNA repair factor 53BP1 to the histone H4 lysine 20 (H4K20), through specific recognition of the tandem Tudor domain of 53BP1. The di- and mono-methylated H4K20 bind to 53BP1 with high affinity, but the non- and tri-methylated H4K20 do not. Here, we develop a new approach to carry out computational study to unravel the binding mechanism of methylated H4K20 by 53BP1 and to compute relative binding affinities of different methylations of H4K20 by 53BP1. First, hot spots in 53BP1 were predicted by computational alanine scanning and aromatic cages formed by W1495, Y1500, Y1502, and Y1523 are found to provide the dominant binding to di- and mono-methylated H4K20 in addition to D1521. Secondly, a de-methylation method is proposed to predict relative binding free energies between 53BP1 and different methylated states of H4K20. Finally, the tri-methylated and non-methylated H4K20/53BP1 complexes are found to be dynamically unstable, explaining the experimental finding that neither can bind to 53BP1. The present work provides an important theoretical basis for our understanding of histone methylations of H4K20 and their recognition mechanism by DNA repair factor 53BP1.


Asunto(s)
Biología Computacional , Histonas/metabolismo , Modelos Moleculares , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Histonas/química , Lisina/química , Metilación , Unión Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Proteína 1 de Unión al Supresor Tumoral P53/química
10.
Chem Commun (Camb) ; 55(84): 12639-12642, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31580339

RESUMEN

Polyubiquitination with diverse linkages on histones provides another layer of accuracy and complexity for epigenetic regulation, which is rarely studied. Herein, K27 or K48-diubiquitin modified H2A analogues were chemically synthesized using thiirane linkers. These permitted in vitro binding studies suggested the plasticity of ubiquitin chains in 53BP1 recognition.


Asunto(s)
Histonas/química , Poliubiquitina/química , Sulfuros/química , Proteína 1 de Unión al Supresor Tumoral P53/química , Unión Proteica , Proteínas Recombinantes/química , Ubiquitinación
11.
Cell Death Dis ; 10(8): 550, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320608

RESUMEN

Although oxaliplatin is an effective chemotherapeutic drug for treatment of colorectal cancer (CRC), tumor cells can develop mechanisms to evade oxaliplatin-induced cell death and show high tolerance and acquired resistance to this drug. Heterogeneous nuclear ribonucleoprotein L (hnRNP L) has been proved to play a critical role in DNA repair during IgH class switch recombination (CSR) in B lymphocytes, while, its role in CRC and chemotherapeutic resistance remain unknown. Our study aims to uncover an unidentified mechanism of regulating DNA double-strand breaks (DSBs) by hnRNP L in CRC cells treated by oxaliplatin. In present study, we observed that knockdown of hnRNP L enhanced the level of DNA breakage and sensitivity of CRC cells to oxaliplatin. The expression of key DNA repair factors (BRCA1, 53BP1, and ATM) was unaffected by hnRNP L knockdown, thereby excluding the likelihood of hnRNP L mediation via mRNA regulation. Moreover, we observed that phosphorylation level of ATM changed oppositely to 53BP1 and BRCA1 in the CRC cells (SW620 and HCT116) which exhibit synergistic effect by oxaliplatin plus hnRNP L impairment. And similar phenomenon was observed in the foci formation of these critical repair factors. We also found that hnRNP L binds directly with these DNA repair factors through its RNA-recognition motifs (RRMs). Analysis of cell death indicated that the RRMs of hnRNP L are required for cell survival under incubation with oxaliplatin. In conclusion, hnRNP L is critical for the recruitment of the DNA repair factors in oxaliplatin-induced DSBs. Targeting hnRNP L is a promising new clinical approach that could enhance the effectiveness of current chemotherapeutic treatment in patients with resistance to oxaliplatin.


Asunto(s)
Antineoplásicos/farmacología , Proteína BRCA1/metabolismo , Neoplasias Colorrectales/metabolismo , Roturas del ADN de Doble Cadena , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Oxaliplatino/farmacología , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/química , Proteína BRCA1/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Humanos , Fosforilación , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética
12.
Artif Cells Nanomed Biotechnol ; 47(1): 2196-2204, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31159605

RESUMEN

Double-strand break (DSB) repair foci are important therapeutic targets. Here we describe platforms for delivery of macromolecules, nanomaterials and nanomedicines to repair foci. The strategy is based on the high affinity of the human 53BP1 protein for modified chromatin present at sites of DNA damage. As proof of concept, we created, expressed, and purified an engineered fragment of 53BP1 and coupled it to fluorescent streptavidin, a model cargo with no intrinsic affinity for repair foci. This binary complex was in turn coupled to the iron carrier protein, transferrin, which engages a high-affinity cell surface receptor. In a different version of the complex, transferrin was omitted and a protein transduction domain was incorporated directly into the primary structure of the 53BP1. These complexes were efficiently taken up into human osteosarcoma cells and synchronously released from endocytic vesicles by brief exposure to far-red light in the presence of the photosensitizer, disulfonated aluminum phthalocyanine. Upon release, the streptavidin cargo entered the nucleus and was recruited to repair foci. 53BP1-based platforms provide a method for targeted, temporally controlled delivery of macromolecular agents to sites of double-strand break repair. With the delivery platforms, we are capable to visualize, modify and redirect DSB repair pathways by coupling various nanomaterials to study machinery or manipulate for therapy purpose in the future.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Portadores de Fármacos/química , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Citoplasma/metabolismo , Colorantes Fluorescentes/química , Humanos , Transporte de Proteínas
13.
Elife ; 82019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31135337

RESUMEN

Coordination of the cellular response to DNA damage is organised by multi-domain 'scaffold' proteins, including 53BP1 and TOPBP1, which recognise post-translational modifications such as phosphorylation, methylation and ubiquitylation on other proteins, and are themselves carriers of such regulatory signals. Here we show that the DNA damage checkpoint regulating S-phase entry is controlled by a phosphorylation-dependent interaction of 53BP1 and TOPBP1. BRCT domains of TOPBP1 selectively bind conserved phosphorylation sites in the N-terminus of 53BP1. Mutation of these sites does not affect formation of 53BP1 or ATM foci following DNA damage, but abolishes recruitment of TOPBP1, ATR and CHK1 to 53BP1 damage foci, abrogating cell cycle arrest and permitting progression into S-phase. TOPBP1 interaction with 53BP1 is structurally complimentary to its interaction with RAD9-RAD1-HUS1, allowing these damage recognition factors to bind simultaneously to the same TOPBP1 molecule and cooperate in ATR activation in the G1 DNA damage checkpoint.


Asunto(s)
Proteínas Portadoras/química , Daño del ADN/genética , Proteínas de Unión al ADN/química , Complejos Multiproteicos/química , Proteínas Nucleares/química , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas Portadoras/genética , Puntos de Control del Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/química , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Metilación , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Fosforilación , Unión Proteica/genética , Conformación Proteica , Dominios Proteicos/genética , Procesamiento Proteico-Postraduccional/genética , Fase S/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitinación/genética
14.
Biochem Biophys Res Commun ; 510(2): 236-241, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30685087

RESUMEN

53BP1 (TP53-binding protein 1) plays a key role in DNA double-strand break repair by promoting non-homologous end joining (NHEJ) especially during G1 phase of the cell cycle. Nuclear import of 53BP1 is required for proper localization of 53BP1 and maintenance of genome integrity. 53BP1 has a classical bipartite nuclear localization signal (NLS) of sequence 1666-GKRKLITSEEERSPAKRGRKS-1686. Ser1678 within the 53BP1 NLS can be phosphorylated by CDK1/cyclin B, and a phosphomimetic substitution of Ser1678 with aspartate has been shown to negatively regulate nuclear import of 53BP1. Here, the X-ray crystal structures of the nuclear import adaptor importin-α1 bound to the wild-type 53BP1 NLS and the S1678D mutant of 53BP1 NLS are reported at resolutions of 1.9 and 1.7 Å, respectively. In the wild-type structure, not only the two basic clusters of the 53BP1 NLS but also the linker region between the basic clusters made extensive interactions with importin-α1. In the mutant structure, the linker region between the basic clusters in the 53BP1 NLS made fewer interactions with importin-α1 than those observed in the wild-type structure. However, biochemical binding assays using purified proteins showed that the 53BP1 mutation S1678D reduces the binding affinity to importin-α1 only to a modest extent. Implications of these findings for regulatory mechanism of 53BP1 nuclear import are discussed.


Asunto(s)
Transporte Activo de Núcleo Celular , Señales de Localización Nuclear/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , alfa Carioferinas/química , Núcleo Celular/metabolismo , Humanos , Cinética , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química
15.
DNA Repair (Amst) ; 73: 110-119, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30497961

RESUMEN

Maintenance of genome integrity and stability is a critical responsibility of the DNA damage response (DDR) within cells, such that any disruption in this kinase-based signaling pathway leads to development of various disorders, particularly cancer. The tumor suppressor P53-binding protein 1 (53BP1), as one of the main mediators of DDR, plays a pivotal role in orchestrating the choice of double-strand break (DSB) repair pathway and contains interaction surfaces for numerous DSB-responsive proteins. It has been extensively demonstrated that aberrant expression of 53BP1 contributes to tumor occurrence and development. 53BP1 loss of function in tumor tissues is also related to tumor progression and poor prognosis in human malignancies. Due to undeniable importance of this protein in various aspects of cancer initiation/progression, angiogenesis, metastasis and development of drug resistance, as well as its targeting in the treatment of cancer, this review focused on explaining the structure and function of 53BP1 and its contribution to cancer.


Asunto(s)
Daño del ADN , Neoplasias/genética , Neoplasias/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Genoma Humano/genética , Humanos , Neoplasias/patología , Transducción de Señal , Transcripción Genética , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética
16.
Proc Natl Acad Sci U S A ; 115(40): 10028-10033, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224481

RESUMEN

The KAT5 (Tip60/Esa1) histone acetyltransferase is part of NuA4, a large multifunctional complex highly conserved from yeast to mammals that targets lysines on H4 and H2A (X/Z) tails for acetylation. It is essential for cell viability, being a key regulator of gene expression, cell proliferation, and stem cell renewal and an important factor for genome stability. The NuA4 complex is directly recruited near DNA double-strand breaks (DSBs) to facilitate repair, in part through local chromatin modification and interplay with 53BP1 during the DNA damage response. While NuA4 is detected early after appearance of the lesion, its precise mechanism of recruitment remains to be defined. Here, we report a stepwise recruitment of yeast NuA4 to DSBs first by a DNA damage-induced phosphorylation-dependent interaction with the Xrs2 subunit of the Mre11-Rad50-Xrs2 (MRX) complex bound to DNA ends. This is followed by a DNA resection-dependent spreading of NuA4 on each side of the break along with the ssDNA-binding replication protein A (RPA). Finally, we show that NuA4 can acetylate RPA and regulate the dynamics of its binding to DNA, hence targeting locally both histone and nonhistone proteins for lysine acetylation to coordinate repair.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN de Hongos , Histona Acetiltransferasas , Proteínas de Saccharomyces cerevisiae , Acetilación , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
17.
Nat Struct Mol Biol ; 25(7): 591-600, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29967538

RESUMEN

Dynamic protein interaction networks such as DNA double-strand break (DSB) signaling are modulated by post-translational modifications. The DNA repair factor 53BP1 is a rare example of a protein whose post-translational modification-binding function can be switched on and off. 53BP1 is recruited to DSBs by recognizing histone lysine methylation within chromatin, an activity directly inhibited by the 53BP1-binding protein TIRR. X-ray crystal structures of TIRR and a designer protein bound to 53BP1 now reveal a unique regulatory mechanism in which an intricate binding area centered on an essential TIRR arginine residue blocks the methylated-chromatin-binding surface of 53BP1. A 53BP1 separation-of-function mutation that abolishes TIRR-mediated regulation in cells renders 53BP1 hyperactive in response to DSBs, highlighting the key inhibitory function of TIRR. This 53BP1 inhibition is relieved by TIRR-interacting RNA molecules, providing proof-of-principle of RNA-triggered 53BP1 recruitment to DSBs.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Cristalografía por Rayos X , Roturas del ADN de Doble Cadena , Reparación del ADN , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Ingeniería de Proteínas , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Pirofosfatasas/química , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Proteínas de Unión al ARN/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética
18.
Nat Commun ; 9(1): 2689, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002377

RESUMEN

53BP1 performs essential functions in DNA double-strand break (DSB) repair and it was recently reported that Tudor interacting repair regulator (TIRR) negatively regulates 53BP1 during DSB repair. Here, we present the crystal structure of the 53BP1 tandem Tudor domain (TTD) in complex with TIRR. Our results show that three loops from TIRR interact with 53BP1 TTD and mask the methylated lysine-binding pocket in TTD. Thus, TIRR competes with histone H4K20 methylation for 53BP1 binding. We map key interaction residues in 53BP1 TTD and TIRR, whose mutation abolishes complex formation. Moreover, TIRR suppresses the relocation of 53BP1 to DNA lesions and 53BP1-dependent DNA damage repair. Finally, despite the high-sequence homology between TIRR and NUDT16, NUDT16 does not directly interact with 53BP1 due to the absence of key residues required for binding. Taken together, our study provides insights into the molecular mechanism underlying TIRR-mediated suppression of 53BP1-dependent DNA damage repair.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Unión Competitiva , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Daño del ADN , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Mutación , Unión Proteica , Proteínas de Unión al ARN , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética
20.
Biochimie ; 149: 105-114, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29656054

RESUMEN

UHRF1 is a multi-domain protein comprising of a tandem tudor (UHRF1 TTD), a PHD finger, and a SET and RING-associated domain. It is required for the maintenance of CG methylation, heterochromatin formation and DNA repair. Isothermal titration calorimetry binding studies of unmodified and methylated lysine histone peptides establish that the UHRF1 TTD binds dimethylated Lys9 on histone H3 (H3K9me2). Further, MD simulation and binding studies reveal that TTD-PHD of UHRF1 (UHRF1 TTD-PHD) preferentially recognizes dimethyl-lysine status. Importantly, we show that Asp145 in the binding pocket determines the preferential recognition of the dimethyl-ammonium group of H3K9me2. Interestingly, PHD finger of the UHRF1 TTD-PHD has a negligible contribution to the binding affinity for recognition of K9me2 by the UHRF1 TTD. Surprisingly, Lys4 methylation on H3 peptide has an insignificant effect on combinatorial recognition of R2 and K9me2 on H3 by the UHRF1 TTD-PHD. We propose that subtle variations of key residues at the binding pocket determine status specific recognition of histone methyl-lysines by the reader domains.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/química , Metilación de ADN/genética , N-Metiltransferasa de Histona-Lisina/química , Dominios Proteicos , Sitios de Unión/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Calorimetría , Reparación del ADN/genética , Escherichia coli/genética , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/genética , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...