Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 735
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273316

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is almost entirely resistant to conventional chemotherapy and radiation therapy. A significant factor in this resistance appears to be the dense desmoplastic stroma, which contains various cancer-associated fibroblast (CAF) populations. However, our understanding of the communication between tumor cells and CAFs that contributes to this aggressive malignancy is still developing. Recently, we used an advanced three-dimensional heterospecies, heterospheroid co-culture model to investigate the signaling between human pancreatic tumor Panc1 cells and mouse pancreatic stellate cells (mPSCs) through global expression profiling. Upon discovering that CCN1 was significantly upregulated in Panc1 cells during co-culture, we decided to explore the role of CCN1 using CRISPR-Cas9 knockout technology. Panc1 cells lacking CCN1 showed reduced differentiation and decreased sensitivity to gemcitabine, primarily due to lower expression of genes involved in gemcitabine transport and metabolism. Additionally, we observed that stimulation with TGF-ß1 and lysophosphatidic acid increased CCN1 expression in Panc1 cells and induced a shift in mPSCs towards a more myofibroblastic CAF-like phenotype.


Asunto(s)
Técnicas de Cocultivo , Proteína 61 Rica en Cisteína , Desoxicitidina , Gemcitabina , Neoplasias Pancreáticas , Células Estrelladas Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Humanos , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/efectos de los fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Ratones , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
2.
Biochemistry ; 63(17): 2166-2182, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39133064

RESUMEN

The intricate regulation of gene expression is fundamental to the biological complexity of higher organisms, and is primarily governed by transcriptional and post-transcriptional mechanisms. The 3'-untranslated region (3'UTR) of mRNA is rich in cis-regulatory elements like G-quadruplexes (G4s), and plays a crucial role in post-transcriptional regulation. G4s have emerged as significant gene regulators, impacting mRNA stability, translation, and localization. In this study, we investigate the role of a robust parallel G4 structure situated within the 3'UTR of CCN1 mRNA in post-transcriptional regulation. This G4 structure is proximal to the stop codon of human CCN1, and evolutionarily conserved. We elucidated its interaction with the insulin-like growth factor 2 binding protein 1 (IGF2BP1), a noncanonical RNA N6-methyladenosine (m6A) modification reader, revealing a novel interplay between RNA modifications and G-quadruplex structures. Knockdown experiments and mutagenesis studies demonstrate that IGF2BP1 binds specifically to the G4 structure, modulating CCN1 mRNA stability. Additionally, we unveil the role of IGF2BP1's RNA recognition motifs in G4 recognition, highlighting this enthalpically driven interaction. Our findings offer fresh perspectives on the complex mechanisms of post-transcriptional gene regulation mediated by G4 RNA secondary structures.


Asunto(s)
Regiones no Traducidas 3' , Proteína 61 Rica en Cisteína , G-Cuádruplex , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Regiones no Traducidas 3'/genética , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Regulación de la Expresión Génica , Unión Proteica
3.
Matrix Biol ; 133: 14-32, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39098433

RESUMEN

BACKGROUND: Members of the cellular communication network family (CCN) of matricellular proteins, like CCN1, have long been implicated in the regulation of cellular processes underlying wound healing, tissue fibrogenesis, and collagen dynamics. While many studies suggest antifibrotic actions for CCN1 in the adult heart through the promotion of myofibroblast senescence, they largely relied on exogenous supplementation strategies in in vivo models of cardiac injury where its expression is already induced-which may confound interpretation of its function in this process. The objective of this study was to interrogate the role of the endogenous protein on fibroblast function, collagen structural dynamics, and its associated impact on cardiac fibrosis after myocardial infarction (MI). METHODS/RESULTS: Here, we employed CCN1 loss-of-function methodologies, including both in vitro siRNA-mediated depletion and in vivo fibroblast-specific knockout mice to assess the role of the endogenous protein on cardiac fibroblast fibrotic signaling, and its involvement in acute scar formation after MI. In vitro depletion of CCN1 reduced cardiac fibroblast senescence and proliferation. Although depletion of CCN1 decreased the expression of collagen processing and stabilization enzymes (i.e., P4HA1, PLOD1, and PLOD2), it did not inhibit myofibroblast induction or type I collagen synthesis. Alone, fibroblast-specific removal of CCN1 did not negatively impact ventricular performance or myocardial collagen content but did contribute to disorganization of collagen fibrils and increased matrix compliance. Similarly, Ccn1 ablated animals subjected to MI showed no discernible alterations in cardiac structure or function one week after permanent coronary artery ligation, but exhibited marked increases in incidence of mortality and cardiac rupture. Consistent with our findings that CCN1 depletion does not assuage myofibroblast conversion or type I collagen synthesis in vitro, Ccn1 knockout animals revealed no measurable differences in collagen scar width or mass compared to controls; however, detailed structural analyses via SHG and TEM of scar regions revealed marked alterations in their scar collagen topography-exhibiting changes in numerous macro- and micro-level collagen architectural attributes. Specifically, Ccn1 knockout mice displayed heightened ECM structural complexity in post-MI scar regions, including diminished local alignment and heightened tortuosity of collagen fibers, as well as reduced organizational coherency, packing, and size of collagen fibrils. Associated with these changes in ECM topography with the loss of CCN1 were reductions in fibroblast-matrix interactions, as evidenced by reduced fibroblast nuclear and cellular deformation in vivo and reduced focal-adhesion formation in vitro; findings that ultimately suggest CCN1's ability to influence fibroblast-led collagen alignment may in part be credited to its capacity to augment fibroblast-matrix interactions. CONCLUSIONS: These findings underscore the pivotal role of endogenous CCN1 in the scar formation process occurring after MI, directing the appropriate arrangement of the extracellular matrix's collagenous components in the maturing scar-shaping the mechanical properties that support its structural stability. While this suggests an adaptive role for CCN1 in regulating collagen structural attributes crucial for supporting scar integrity post MI, the long-term protracted expression of CCN1 holds maladaptive implications, potentially diminishing collagen structural complexity and compliance in non-infarct regions.


Asunto(s)
Cicatriz , Colágeno , Proteína 61 Rica en Cisteína , Fibrosis , Infarto del Miocardio , Miofibroblastos , Animales , Humanos , Masculino , Ratones , Cicatriz/metabolismo , Cicatriz/patología , Cicatriz/genética , Colágeno/metabolismo , Colágeno/genética , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Transducción de Señal
4.
FASEB J ; 38(15): e23859, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39082187

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with insulin resistance development. Hepatic lipid accumulation and inflammation are considered the main drivers of hepatic insulin resistance in MASLD. Cysteine-rich 61 (Cyr61 also called CCN1), a novel secretory matricellular protein, is implicated in liver inflammation, and its role in MASLD is not clearly understood. Therefore, we investigated the role of Cyr61 in hepatic insulin resistance and lipid metabolism as major factors in MASLD pathogenesis. In high-fat diet (HFD)-fed C57BL/6J mice, Cyr61 was downregulated or upregulated via viral transduction. Measurements of glucose homeostasis, histological assessment of liver tissues, and gene expression and signaling pathways of lipogenesis, fatty acid oxidation, and inflammation were performed using liver samples from these mice. Cyr61 levels in HepG2 cells were reduced using RNAi-mediated gene knockdown. Inflammation and insulin resistance were evaluated using real-time polymerase chain reaction and western blotting. HFD/AAV-shCyr61 mice exhibited enhanced glucose tolerance via the protein kinase B pathway, reduced hepatic inflammation, decreased lipogenesis, and increased fatty acid oxidation. Notably, HFD/AAV-shCyr61 mice showed elevated protein expression of sirtuin 6 and phosphorylated-AMP-activated protein kinase. In vitro experiments demonstrated that inhibition of Cyr61 downregulated pro-inflammatory cytokines such as interleukin-1 beta, IL-6, and tumor necrosis factor-alpha via the nuclear factor kappa B/c-Jun N-terminal kinase pathway, and alleviated insulin resistance. Cyr61 affected hepatic inflammation, lipid metabolism, and insulin resistance. Inhibition of Cyr61 reduced inflammation, recovered insulin resistance, and altered lipid metabolism in vivo and in vitro. Therefore, Cyr61 is a potential therapeutic target in MASLD.


Asunto(s)
Proteína 61 Rica en Cisteína , Dieta Alta en Grasa , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Animales , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Células Hep G2 , Humanos , Ratones , Dieta Alta en Grasa/efectos adversos , Masculino , Hígado/metabolismo , Lipogénesis
5.
Rev Assoc Med Bras (1992) ; 70(6): e20231673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045957

RESUMEN

OBJECTIVE: Investigating the potential role of CYR61 in recurrent pregnancy loss is critical for developing diagnostic approaches and treatments for recurrent pregnancy loss. METHODS: In this prospective case-control study, we have investigated the expression patterns of CYR61 in blood samples from participants with recurrent pregnancy loss in their medical history and control group (n=20 vs n=10). Peripheral blood mononuclear cells from study and control groups were isolated and the expression patterns of the CYR61 gene were determined by real-time semi-quantitative reverse transcriptase PCR. RESULTS: A significant decrease in CYR61 gene expression was demonstrated in patients with two or more clinically recognized miscarriages compared with patients without miscarriages or with a history of miscarriage (p<0.01), which may make the CYR61 gene a potential candidate for predicting the risk of recurrent pregnancy loss. DISCUSSION: This study provides a basis for a detailed investigation of candidate biomarkers and molecular players involved in the development of recurrent pregnancy loss and for the development of potential treatment approaches to prevent recurrent pregnancy loss.


Asunto(s)
Aborto Habitual , Proteína 61 Rica en Cisteína , Humanos , Femenino , Proteína 61 Rica en Cisteína/genética , Aborto Habitual/genética , Estudios de Casos y Controles , Embarazo , Estudios Prospectivos , Adulto , Reacción en Cadena en Tiempo Real de la Polimerasa , Biomarcadores/sangre , Expresión Génica/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Leucocitos Mononucleares/metabolismo
6.
Nano Lett ; 24(28): 8567-8574, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38959438

RESUMEN

Phagocytosis is an essential mechanism of the human immune system where pathogens are eliminated by immune cells. The CCN1 protein plays an important role in the phagocytosis of Staphylococcus aureus by favoring the bridging of the αVß3 integrin to the bacterial peptidoglycan (PG), through mechanical forces that remain unknown. Here, we employ single-molecule experiments to unravel the nanomechanics of the PG-CCN1-αVß3 ternary complex. While CCN1 binds αVß3 integrins with moderate force (∼60 pN), much higher binding strengths (up to ∼800 pN) are observed between CCN1 and PG. Notably, the strength of both CCN1-αVß3 and CCN1-PG bonds is dramatically enhanced by tensile loading, favoring a model in which mechanical stress induces the exposure of cryptic integrin binding sites in CCN1 and multivalent binding between CCN1 lectin sites and monosaccharides along the PG glycan chains.


Asunto(s)
Proteína 61 Rica en Cisteína , Integrina alfaVbeta3 , Fagocitosis , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología , Humanos , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/química , Integrina alfaVbeta3/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano/química , Unión Proteica , Sitios de Unión
7.
Anticancer Drugs ; 35(8): 709-719, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38900643

RESUMEN

Glioblastoma (GBM) is a highly angiogenic malignancy of the central nervous system that resists standard antiangiogenic therapy, in part because of an alternative process to angiogenesis termed vasculogenic mimicry. Intricately linked to GBM, dysregulation of the Hippo signaling pathway leads to overexpression of YAP/TEAD and several downstream effectors involved in therapy resistance. Little is known about whether vasculogenic mimicry and the Hippo pathway intersect in the GBM chemoresistance phenotype. This study seeks to investigate the expression patterns of Hippo pathway regulators within clinically annotated GBM samples, examining their involvement in vitro regarding vasculogenic mimicry. In addition, it aims to assess the potential for pharmacological targeting of this pathway. In-silico analysis of the Hippo signaling members YAP1 , TEAD1 , AXL , NF2 , CTGF , and CYR61 transcript levels in low-grade GBM and GBM tumor tissues was done by Gene Expression Profiling Interactive Analysis. Gene expression was analyzed by real-time quantitative PCR from human U87, U118, U138, and U251 brain cancer cell lines and in clinically annotated brain tumor cDNA arrays. Transient gene silencing was performed with specific small interfering RNA. Vasculogenic mimicry was assessed using a Cultrex matrix, and three-dimensional capillary-like structures were analyzed with Wimasis. CYR61 and CTGF transcript levels were elevated in GBM tissues and were further induced when in-vitro vasculogenic mimicry was assessed. Silencing of CYR61 and CTGF , or treatment with a small-molecule TEAD inhibitor LM98 derived from flufenamic acid, inhibited vasculogenic mimicry. Silencing of SNAI1 and FOXC2 also altered vasculogenic mimicry and reduced CYR61 / CTGF levels. Pharmacological targeting of the Hippo pathway inhibits in-vitro vasculogenic mimicry. Unraveling the connections between the Hippo pathway and vasculogenic mimicry may pave the way for innovative therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas , Factor de Crecimiento del Tejido Conjuntivo , Proteína 61 Rica en Cisteína , Glioblastoma , Factores de Transcripción , Humanos , Glioblastoma/irrigación sanguínea , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Factores de Transcripción/genética , Neovascularización Patológica/tratamiento farmacológico , Factores de Transcripción de Dominio TEA , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Señalizadoras YAP
8.
DNA Cell Biol ; 43(8): 401-413, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853745

RESUMEN

Patients with colorectal cancer (CRC) and diabetes share many risk factors. Despite a strong association between diabetes and CRC being widely studied and confirmed, further genetic research is needed. This study found higher AL049796.1 and TEA domain transcription factor 1 (TEAD1) levels (both mRNA and protein) in CRC tissues of diabetic patients compared with nondiabetics, but no significant difference in miR-200b-3p levels. A positive correlation between AL049796.1 and TEAD1 protein existed regardless of diabetes status, whereas miR-200b-3p was only negatively correlated with TEAD1 protein in nondiabetic CRC tissues. In vitro experiments have shown that high glucose (HG) treatment increased AL049796.1 in CRC cells, and AL049796.1 silencing reduced HG-induced proliferation, migration and invasion, as well as connective tissue growth factor, cysteine-rich angiogenic inducer 61, and epidermal growth factor receptor protein expression. Mechanistic investigations indicated that AL049796.1 could mitigate suppression of miR-200b-3p on TEAD1 posttranscriptionally by acting as a competitive binder. In vivo, subcutaneous CRC tumors in streptozotocin (STZ)-induced mice grew significantly faster; AL049796.1 silencing did not affect the growth of subcutaneous CRC tumors but significantly reduced that of STZ-induced mice. Our study suggests that AL049796.1 independently contributes to the risk of CRC in diabetic patients, highlighting its potential as both a therapeutic target and a novel biomarker for CRC among individuals with diabetes.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Glucosa , MicroARNs , Factores de Transcripción de Dominio TEA , Factores de Transcripción , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Animales , MicroARNs/genética , MicroARNs/metabolismo , Glucosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , Masculino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Movimiento Celular/genética , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Persona de Mediana Edad , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/metabolismo , Progresión de la Enfermedad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratones Desnudos
9.
Neuroscience ; 552: 54-64, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38908506

RESUMEN

The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in astrocytes has been found in the hypoxic-ischemic brain damage (HIBD) model. Cysteine rich angiogenic inducer 61 (CYR61) is secreted by reactive astrocytes. However, the effects of CYR61 on HIBD and its related mechanisms remain unclear. This study sought to explore the role of CYR61 in the activation of astrocytes and the NLRP3 inflammasome in neonatal HIBD. HIBD models were established in 7-day Sprague-Dawley rat pups. Neurobehavioral evaluation and 2,3,5-triphenyl-tetrazolium chloride staining were performed. In addition, rat primary astrocytes were used to establish the cell model of HIBD in vitro by oxygen-glucose deprivation/reperfusion (OGD/R). Then, CYR61-overexpression and sh-CYR61 viruses mediated by lentivirus were transduced into ODG/R-treated primary astrocytes. The expressions of related genes were evaluated using real-time quantitative PCR, western blot, immunofluorescence staining, and Enzyme-linked immunosorbent assay. The results showed that hypoxia-ischemia induced short-term neurological deficits, neuronal damage, and cerebral infarction in neonatal rats. In vivo, the expressions of CYR61, NLRP3, and glial fibrillary acidic protein (GFAP) were up-regulated in the HIBD model. In vitro, CYR61 exhibited high expression. CYR61 overexpression increased the expressions of GFAP and C3, whereas decreased S100A10 expression. CYR61 overexpression increased the expression of NLRP3, ASC, caspase-1 p20 and IL-1ß. CYR61 overexpression activated NF-κB by promoting the phosphorylation of IκBα and p65. Thus, CYR61 is involved in neonatal HIBD progress, which may be related to the activation of astrocytes, the NLRP3 inflammasome, and the NF-κB signaling pathway.


Asunto(s)
Animales Recién Nacidos , Astrocitos , Proteína 61 Rica en Cisteína , Hipoxia-Isquemia Encefálica , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Animales , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Astrocitos/metabolismo , Astrocitos/patología , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Ratas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Inflamasomas/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad
10.
Int J Biol Sci ; 20(8): 3140-3155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904029

RESUMEN

Cysteine-rich angiogenic inducer 61 (CYR61), also called CCN1, has long been characterized as a secretory protein. Nevertheless, the intracellular function of CYR61 remains unclear. Here, we found that CYR61 is important for proper cell cycle progression. Specifically, CYR61 interacts with microtubules and promotes microtubule polymerization to ensure mitotic entry. Moreover, CYR61 interacts with PLK1 and accumulates during the mitotic process, followed by degradation as mitosis concludes. The proteolysis of CYR61 requires the PLK1 kinase activity, which directly phosphorylates two conserved motifs on CYR61, enhancing its interaction with the SCF E3 complex subunit FBW7 and mediating its degradation by the proteasome. Mutations of phosphorylation sites of Ser167 and Ser188 greatly increase CYR61's stability, while deletion of CYR61 extends prophase and metaphase and delays anaphase onset. In summary, our findings highlight the precise control of the intracellular CYR61 by the PLK1-FBW7 pathway, accentuating its significance as a microtubule-associated protein during mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular , Proteína 61 Rica en Cisteína , Microtúbulos , Mitosis , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Humanos , Mitosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Microtúbulos/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Células HeLa , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
11.
Cell Commun Signal ; 22(1): 275, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755602

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a major cause of blindness and is characterized by dysfunction of the retinal microvasculature. Neutrophil stasis, resulting in retinal inflammation and the occlusion of retinal microvessels, is a key mechanism driving DR. These plugging neutrophils subsequently release neutrophil extracellular traps (NETs), which further disrupts the retinal vasculature. Nevertheless, the primary catalyst for NETs extrusion in the retinal microenvironment under diabetic conditions remains unidentified. In recent studies, cellular communication network factor 1 (CCN1) has emerged as a central molecule modulating inflammation in pathological settings. Additionally, our previous research has shed light on the pathogenic role of CCN1 in maintaining endothelial integrity. However, the precise role of CCN1 in microvascular occlusion and its potential interaction with neutrophils in diabetic retinopathy have not yet been investigated. METHODS: We first examined the circulating level of CCN1 and NETs in our study cohort and analyzed related clinical parameters. To further evaluate the effects of CCN1 in vivo, we used recombinant CCN1 protein and CCN1 overexpression for gain-of-function, and CCN1 knockdown for loss-of-function by intravitreal injection in diabetic mice. The underlying mechanisms were further validated on human and mouse primary neutrophils and dHL60 cells. RESULTS: We detected increases in CCN1 and neutrophil elastase in the plasma of DR patients and the retinas of diabetic mice. CCN1 gain-of-function in the retina resulted in neutrophil stasis, NETs extrusion, capillary degeneration, and retinal leakage. Pre-treatment with DNase I to reduce NETs effectively eliminated CCN1-induced retinal leakage. Notably, both CCN1 knockdown and DNase I treatment rescued the retinal leakage in the context of diabetes. In vitro, CCN1 promoted adherence, migration, and NETs extrusion of neutrophils. CONCLUSION: In this study, we uncover that CCN1 contributed to retinal inflammation, vessel occlusion and leakage by recruiting neutrophils and triggering NETs extrusion under diabetic conditions. Notably, manipulating CCN1 was able to hold therapeutic promise for the treatment of diabetic retinopathy.


Asunto(s)
Proteína 61 Rica en Cisteína , Retinopatía Diabética , Trampas Extracelulares , Neutrófilos , Animales , Femenino , Humanos , Masculino , Ratones , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Trampas Extracelulares/genética , Trampas Extracelulares/metabolismo , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Retina/patología , Retina/metabolismo
12.
Carcinogenesis ; 45(7): 510-519, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446998

RESUMEN

Cysteine-rich angiogenic inducer 61 (CYR61) is a protein from the CCN family of matricellular proteins that play diverse regulatory roles in the extracellular matrix. CYR61 is involved in cell adhesion, migration, proliferation, differentiation, apoptosis, and senescence. Here, we show that CYR61 induces chemoresistance in triple-negative breast cancer (TNBC). We observed that CYR61 is overexpressed in TNBC patients, and CYR61 expression correlates negatively with the survival of patients who receive chemotherapy. CYR61 knockdown reduced cell migration, sphere formation and the cancer stem cell (CSC) population and increased the chemosensitivity of TNBC cells. Mechanistically, CYR61 activated Wnt/ß-catenin signaling and increased survivin expression, which are associated with chemoresistance, the epithelial-mesenchymal transition, and CSC-like phenotypes. Altogether, our study demonstrates a novel function of CYR61 in chemotherapy resistance in breast cancer.


Asunto(s)
Proteína 61 Rica en Cisteína , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Survivin , Neoplasias de la Mama Triple Negativas , Humanos , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Survivin/metabolismo , Survivin/genética , Femenino , Resistencia a Antineoplásicos/genética , Vía de Señalización Wnt , Movimiento Celular , Línea Celular Tumoral , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Regulación hacia Arriba , Proliferación Celular , Apoptosis , Animales , Ratones
13.
J Biol Chem ; 300(4): 107208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521502

RESUMEN

Transforming growth factor-ß (TGF-ß) and Hippo signaling are two critical pathways engaged in cancer progression by regulating both oncogenes and tumor suppressors, yet how the two pathways coordinately exert their functions in the development of hepatocellular carcinoma (HCC) remains elusive. In this study, we firstly conducted an integrated analysis of public liver cancer databases and our experimental TGF-ß target genes, identifying CYR61 as a pivotal candidate gene relating to HCC development. The expression of CYR61 is downregulated in clinical HCC tissues and cell lines than that in the normal counterparts. Evidence revealed that CYR61 is a direct target gene of TGF-ß in liver cancer cells. In addition, TGF-ß-stimulated Smad2/3 and the Hippo pathway downstream effectors YAP and TEAD4 can form a protein complex on the promoter of CYR61, thereby activating the promoter activity and stimulating CYR61 gene transcription in a collaborative manner. Functionally, depletion of CYR61 enhanced TGF-ß- or YAP-mediated growth and migration of liver cancer cells. Consistently, ectopic expression of CYR61 was capable of impeding TGF-ß- or YAP-induced malignant transformation of HCC cells in vitro and attenuating HCC xenograft growth in nude mice. Finally, transcriptomic analysis indicates that CYR61 can elicit an antitumor program in liver cancer cells. Together, these results add new evidence for the crosstalk between TGF-ß and Hippo signaling and unveil an important tumor suppressor function of CYR61 in liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Proteína 61 Rica en Cisteína , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Factor de Crecimiento Transformador beta , Proteínas Señalizadoras YAP , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Movimiento Celular , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Minería de Datos , Regulación Neoplásica de la Expresión Génica/genética , Vía de Señalización Hippo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ratones Desnudos , Regiones Promotoras Genéticas , Transducción de Señal/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Factores de Transcripción de Dominio TEA/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Regulación hacia Arriba , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética
14.
J Cancer Res Clin Oncol ; 150(3): 159, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530432

RESUMEN

PURPOSE: Chemoresistance is a major challenge for acute lymphoblastic leukemia (ALL) treatment. Cysteine-rich protein 61 (Cyr61) plays an important role in drug resistance modulation of tumor cells, and Cyr61 levels are increased in the bone marrow of patients with ALL and contribute to ALL cell survival. However, the effect of Cyr61 on B cell acute lymphoblastic leukemia (B-ALL) cell chemosensitivity and the regulatory mechanisms underlying Cyr61 production in bone marrow remain unknown. METHODS: Nalm-6 and Reh human B-ALL cell lines were used in this study. Cyr61 levels were assessed using quantitative real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay. The effect of Cyr61 on B-ALL cell chemosensitivity to daunorubicin (DNR) was evaluated using cell viability and flow cytometry analyses. The regulatory mechanisms of Cyr61 production in bone marrow were examined using qRT-PCR and western blot analysis. RESULTS: Cyr61 knockdown and overexpression increased and decreased the chemosensitivity of B-ALL cells to DNR, respectively. Cyr61 attenuated chemotherapeutic drug-induced apoptosis by upregulating B cell lymphoma-2. Notably, DNR induced DNA damage response and increased Cyr61 secretion in B-ALL cells through the ataxia telangiectasia mutated (ATM)-dependent nuclear factor kappa B pathway. CONCLUSION: DNR induces Cyr61 production in B-ALL cells, and increased Cyr61 levels reduce the chemosensitivity of B-ALL cells. Consequently, targeting Cyr61 or related ATM signaling pathway may present a promising treatment strategy to enhance the chemosensitivity of patients with B-ALL.


Asunto(s)
Proteína 61 Rica en Cisteína , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/metabolismo , Línea Celular Tumoral , Transducción de Señal , FN-kappa B/metabolismo
15.
Cancer Res Commun ; 4(2): 556-570, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363129

RESUMEN

Melanoma is the leading cause of skin cancer-related death. As prognosis of patients with melanoma remains problematic, identification of new therapeutic targets remains essential. Matricellular proteins are nonstructural extracellular matrix proteins. They are secreted into the tumor microenvironment to coordinate behavior among different cell types, yet their contribution to melanoma is underinvestigated. Examples of matricellular proteins include those comprising the CCN family. The CCN family member, CCN1, is highly proangiogenic. Herein, we show that, in human patients with melanoma, although found in several tumor cell types, CCN1 is highly expressed by a subset of cancer-associated fibroblasts (CAF) in patients with melanoma and this expression correlates positively with expression of proangiogenic genes and progressive disease/resistance to anti-PD1 checkpoint inhibitors. Consistent with these observations, in a syngeneic C57BL6 mouse model of melanoma, loss of CCN1 expression from Col1A2-Cre-, herein identified as "universal," fibroblasts, impaired metastasis of subcutaneously injected B16F10 tumor cells to lung, concomitant with disrupted neovascularization and collagen organization. Disruption of the extracellular matrix in the loss of CCN1 was validated using a novel artificial intelligence-based image analysis platform that revealed significantly decreased phenotypic fibrosis and composite morphometric collagen scores. As drug resistance is linked to matrix deposition and neoangiogenesis, these data suggest that CCN1, due to its multifaceted role, may represent a novel therapeutic target for drug-resistant melanoma. Our data further emphasize the essential role that cancer-associated, (universal) Col1A2-Cre-fibroblasts and extracellular matrix remodeling play in coordinating behavior among different cell types within the tumor microenvironment. SIGNIFICANCE: In human patients, the expression of proangiogenic matricellular protein CCN1 in CAFs correlates positively with expression of stroma and angiogenic markers and progressive disease/resistance to checkpoint inhibitor therapy. In an animal model, loss of CCN1 from CAFs impaired metastasis of melanoma cells, neovascularization, and collagen deposition, emphasizing that CAFs coordinate cellular behavior in a tumor microenvironment and that CCN1 may be a novel target.


Asunto(s)
Fibroblastos Asociados al Cáncer , Melanoma , Animales , Humanos , Ratones , Inteligencia Artificial , Fibroblastos Asociados al Cáncer/metabolismo , Colágeno , Proteína 61 Rica en Cisteína/genética , Melanoma/genética , Neovascularización Patológica/genética , Microambiente Tumoral/genética
16.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396744

RESUMEN

Cysteine-rich angiogenic factor 61 (CCN1/Cyr61) is a matricellular protein that is induced and secreted in response to growth factors. Our previous work showed that 18:1-lysophosphatidic acid (LPA), which activates the G protein-coupled receptor LPAR1, induces CCN1 between 2-4 h in PC-3 human prostate cancer cells in a manner than enhances cell-substrate adhesion. While the time course of induction suggests that CCN1 contributes to intermediate events in LPA action, the roles of CCN1 in LPA-mediated signal transduction have not been fully elucidated. This study utilized a comprehensive global proteomics approach to identify proteins up- or down-regulated in response to treatment of PC-3 cells with LPA for three hours, during the time of peak CCN1 levels. In addition, the effects of siRNA-mediated CCN1 knockdown on LPA responses were analyzed. The results show that, in addition to CCN1, LPA increased the levels of multiple proteins. Proteins up-regulated by LPA included metastasis-associated in colon cancer protein 1 (MACC1) and thrombospondin-1 (TSP1/THBS1); both MACC1 and TSP1 regulated cancer cell adhesion and motility. LPA down-regulated thioredoxin interacting protein (TXNIP). CCN1 knockdown suppressed the LPA-induced up-regulation of 30 proteins; these included MACC1 and TSP1, as confirmed by immunoblotting. Gene ontology and STRING analyses revealed multiple pathways impacted by LPA and CCN1. These results indicate that CCN1 contributes to LPA signaling cascades that occur during the intermediate phase after the initial stimulus. The study provides a rationale for the development of interventions to disrupt the LPA-CCN1 axis.


Asunto(s)
Proteína 61 Rica en Cisteína , Neoplasias de la Próstata , Proteómica , Humanos , Masculino , Lisofosfolípidos/metabolismo , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/metabolismo
17.
Funct Integr Genomics ; 23(3): 270, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553503

RESUMEN

Even though circular RNAs (circRNAs), a class of non-coding endogenous RNA, play a crucial role in the progression of osteosarcoma (OS), the specific function of hsa_circ_0000028 (circUSP48) remains unclear. This study aims to elucidate the mechanism by which circUSP48 regulates OS. We employed qRT-PCR and western blot techniques to quantify circDOCK1, miR-186, and DNMT3A levels. Cell proliferation was assessed using the cell counting kit-8 (CCK-8), 5-Ethynyl-20-deoxyuridine (EdU) assay, and colony formation assay. Cell migration and invasion were evaluated through Transwell and cell scratch assays. Furthermore, we performed dual-luciferase reporter, RIP, and RNA pull-down assays to investigate the association between circUSP48, miR-365, and CYR61. In addition, an in vivo xenograft model was utilized to assess the functional role of circUSP48. High levels of circUSP48 and CYR61 were observed in OS tissues and cells, while miR-365 levels were low. Knockdown of circUSP48 suppressed the multiplication, motility, and invasion of OS cells, thereby reducing carcinoma growth. Moreover, inhibition of miR-365 reversed the OS cell-suppressive effect caused by circUSP48 knockdown through direct interaction with circUSP48. Additionally, circUSP48 upregulated the expression of CYR61 by sponging miR-365. The findings suggest that circUSP48 promotes malignant behavior in OS by regulating the expression of CYR61 through miR-365, making it a potential therapeutic target for OS.


Asunto(s)
Neoplasias Óseas , Carcinoma , Proteína 61 Rica en Cisteína , MicroARNs , Osteosarcoma , ARN Circular , Humanos , Neoplasias Óseas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteína 61 Rica en Cisteína/metabolismo , MicroARNs/genética , Osteosarcoma/genética , ARN Circular/genética , Animales
18.
Clin Immunol ; 247: 109235, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36681101

RESUMEN

PURPOSE: Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory disease characterized histologically by hyperplastic nasal epithelium and epithelial cells proliferation. Cysteine-rich angiogenic inducer 61 (CYR61) acts as a positive regulator of cell cycle process. Cyclin D1 (CCND1) and c-Myc play key roles in the processes of cell cycle and cell growth. The purpose of our research was to explore the expression and roles of CYR61, CCND1 and c-Myc in CRSwNP. METHODS: FeaturePlot and vlnPlot functions embedded in the seurat package (version 4.1.1) of R software (version 4.2.0) were applied to explore the cellular distribution of CYR61, CCND1 and c-Myc in the single-cell RNA sequencing (scRNA-seq) dataset of nasal tissue samples. CYR61, CCND1 and c-Myc immunolabeling and mRNA levels in nasal tissue samples were assessed by immunohistochemistry and real-time PCR. Co-localization of CYR61, CCND1 and c-Myc with basal epithelial cell marker P63 was assayed using double-label immunofluorescence staining. Furthermore, we collected and cultured human nasal epithelial cells (HNEC) to assess the regulation and role of CYR61 in vitro study. RESULTS: CYR61, CCND1 and c-Myc were primarily expressed by nasal epithelial cells. Significant upregulation of CYR61, CCND1 and c-Myc positive cells and increased levels of CYR61, CCND1 and c-Myc mRNA were found in nasal polyps in comparison to control samples. Of note, CYR61 mRNA and protein levels were altered by SEB, LPS, IFN-γ, IL-13, IL-17A and TGF-ß1 in HNEC. In addition, CYR61 intervention could increase CCND1 and c-Myc mRNA and protein levels to promote HNEC proliferation, and siRNA against ITGA2 (si-ITGA2) could reverse CYR61 induced upregulation of CCND1 and c-Myc mRNA and protein levels in HNEC and cell proliferation of HNEC. CONCLUSIONS: CYR61, CCND1 and c-Myc were primarily expressed by epithelial cells in nasal mucosa. CYR61, CCND1 and c-Myc expression levels were increased in CRSwNP compared with controls. CYR61 could interact with ITGA2 to enhance HNEC proliferation via upregulating CCND1 and c-Myc levels in the HNEC, leading to hyperplastic nasal epithelium in CRSwNP.


Asunto(s)
Proteína 61 Rica en Cisteína , Pólipos Nasales , Rinitis , Humanos , Proliferación Celular , Enfermedad Crónica , Ciclina D1/genética , Ciclina D1/metabolismo , Células Epiteliales/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasales/metabolismo , Rinitis/metabolismo , ARN Mensajero/metabolismo , Proteína 61 Rica en Cisteína/metabolismo
19.
Hum Exp Toxicol ; 42: 9603271231152831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36650058

RESUMEN

BACKGROUND: We investigated the level of Cysteine-rich 61 (CYR61) in premature ovarian failure as well as its regulatory molecular mechanism in this study. METHODS AND RESULTS: Cyclophosphamide (CTX) was used to induce OGCs (rat ovarian granulosa cells) and rats to establish in vivo and in vitro premature ovarian failure models. H&E staining was used to detect the pathological changes of ovarian histopathology. Si-NLRP3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3) and si-CYR61 were transfected into OGCs using lipofectamine 3000. RT-qPCR and western blot were used to detect the expressions of CYR61 in ovarian tissue and OGCs. It showed that the expression of CYR61 was significantly down-regulated in premature ovarian failure model. Cell viability was detected using a Cell Counting Kit-8 (CCK-8) kit. TUNEL (Terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling) staining was used to detect the apoptosis. 5-Ethynyl-2'-deoxyuridine (EdU) and SA-ß-gal (senescence-associated ß-galactosidase) staining were used to assess the proliferation and senescence. The expression of CYR61 in OGCs and ovarian tissues were detected by immunofluorescence and immunohistochemical staining. Overexpression of CYR61 significantly promoted OGCs proliferation and inhibited pyroptosis and apoptosis. Western blot was used to detect the protein expressions of p53 and p21 in OGCs. Flow cytometry was used to detect the pyroptosis. CYR61 overexpression inhibited the expression of NLRP3 and caspase-1 in CTX-induced OGCs according to western blot results. Moreover, we found that CYR61 overexpression down-regulated the protein expressions of p53 and p21 in CTX-induced OGCs. CONCLUSION: CYR61 inhibited CTX-induced OGCs senescence, and the mechanism may be related to the regulation of caspase-1/NLRP3-induced pyroptosis.


Asunto(s)
Proteína 61 Rica en Cisteína , Insuficiencia Ovárica Primaria , Piroptosis , Animales , Femenino , Humanos , Ratas , Caspasas/metabolismo , Proliferación Celular , Ciclofosfamida/toxicidad , Células de la Granulosa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Insuficiencia Ovárica Primaria/inducido químicamente , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/metabolismo
20.
Int Wound J ; 20(5): 1667-1677, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36541685

RESUMEN

The study aimed to explore the role of cellular communication network factor 1 (CCN1) an extracellular matrix protein in hADSC-treated wound healing. Immunofluorescence and enzyme-linked immunosorbent assays (ELISA) were used to demonstrate the secretion of CCN1 by hADSCs, isolated from human fat tissue. We investigated the role of CCN1 in wound healing by knockdown of CCN1 expression in hADSCs using CCN1 siRNA. Conditioned medium of hADSCs or hADSCs with CCN1 knocked down (hADSC-CMCCN1↓ ) was collected. After treatment with plain DMEM/F12, hADSC-CM, hADSC-CMCCN1↓ , or recombinant human CCN1 (rhCCN1), the wound healing abilities of human umbilical vascular endothelial cells (HUVECs) were assayed, and the AKT, also known as protein kinase B (PKB), signalling pathway was detected using western blotting. Next, we created full-thickness skin wounds on the backs of the mice and different treatments were applied to the wound surface. Wound size was measured using a digital camera on days 0-10, and evaluated. H&E and immunohistochemical staining were performed, and laser Doppler perfusion imaging was used to evaluate blood perfusion. The wound model and wound-healing assay showed that the hADSCs-CM and rhCCN1 groups had enhanced wound healing compared to the hADSCs-CMCCN1↓ group. Further, CCN1 and hADSCs-CM promoted the proliferation and migration of HUVECs through the AKT signalling pathway. We concluded that CCN1 secreted by hADSCs enhances wound healing and promotes angiogenesis by activating the AKT signalling pathway. CCN1 plays a vital role in the regulation of hADSCs-CM during wound healing.


Asunto(s)
Proteína 61 Rica en Cisteína , Células Endoteliales , Animales , Humanos , Ratones , Tejido Adiposo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Madre , Cicatrización de Heridas , Proteína 61 Rica en Cisteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...