Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 81(17): 3637-3649.e5, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478654

RESUMEN

The off-target activity of the CRISPR-associated nuclease Cas9 is a potential concern for therapeutic genome editing applications. Although high-fidelity Cas9 variants have been engineered, they exhibit varying efficiencies and have residual off-target effects, limiting their applicability. Here, we show that CRISPR hybrid RNA-DNA (chRDNA) guides provide an effective approach to increase Cas9 specificity while preserving on-target editing activity. Across multiple genomic targets in primary human T cells, we show that 2'-deoxynucleotide (dnt) positioning affects guide activity and specificity in a target-dependent manner and that this can be used to engineer chRDNA guides with substantially reduced off-target effects. Crystal structures of DNA-bound Cas9-chRDNA complexes reveal distorted guide-target duplex geometry and allosteric modulation of Cas9 conformation. These structural effects increase specificity by perturbing DNA hybridization and modulating Cas9 activation kinetics to disfavor binding and cleavage of off-target substrates. Overall, these results pave the way for utilizing customized chRDNAs in clinical applications.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Linfocitos T/metabolismo , Proteína 9 Asociada a CRISPR/fisiología , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/fisiología , ADN/genética , Endonucleasas/genética , Edición Génica/métodos , Técnicas Genéticas , Genoma/genética , Genómica/métodos , Humanos , Leucocitos Mononucleares/metabolismo , Conformación Molecular , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad , Linfocitos T/fisiología
2.
Commun Biol ; 4(1): 771, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34163001

RESUMEN

The clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 system is a research hotspot in gene therapy. However, the widely used Streptococcus pyogenes Cas9 (WT-SpCas9) requires an NGG protospacer adjacent motif (PAM) for target recognition, thereby restricting targetable disease mutations. To address this issue, we recently reported an engineered SpCas9 nuclease variant (SpCas9-NG) recognizing NGN PAMs. Here, as a feasibility study, we report SpCas9-NG-mediated repair of the abnormally expanded CAG repeat tract in Huntington's disease (HD). By targeting the boundary of CAG repeats with SpCas9-NG, we precisely contracted the repeat tracts in HD-mouse-derived embryonic stem (ES) cells. Further, we confirmed the recovery of phenotypic abnormalities in differentiated neurons and animals produced from repaired ES cells. Our study shows that SpCas9-NG can be a powerful tool for repairing abnormally expanded CAG repeats as well as other disease mutations that are difficult to access with WT-SpCas9.


Asunto(s)
Proteína 9 Asociada a CRISPR/fisiología , Edición Génica , Enfermedad de Huntington/genética , Repeticiones de Trinucleótidos , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR
3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33443184

RESUMEN

CRISPR-Cas9 from Streptococcus pyogenes is an RNA-guided DNA endonuclease, which has become the most popular genome editing tool. Coordinated domain motions of Cas9 prior to DNA cleavage have been extensively characterized but our understanding of Cas9 conformations postcatalysis is limited. Because Cas9 can remain stably bound to the cleaved DNA for hours, its postcatalytic conformation may influence genome editing mechanisms. Here, we use single-molecule fluorescence resonance energy transfer to characterize the HNH domain motions of Cas9 that are coupled with cleavage activity of the target strand (TS) or nontarget strand (NTS) of DNA substrate. We reveal an NTS-cleavage-competent conformation following the HNH domain conformational activation. The 3' flap generated by NTS cleavage can be rapidly digested by a 3' to 5' single-stranded DNA-specific exonuclease, indicating Cas9 exposes the 3' flap for potential interaction with the DNA repair machinery. We find evidence that the HNH domain is highly flexible post-TS cleavage, explaining a recent observation that the HNH domain was not visible in a postcatalytic cryo-EM structure. Our results illuminate previously unappreciated regulatory roles of DNA cleavage activity on Cas9's conformation and suggest possible biotechnological applications.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Edición Génica/métodos , Imagen Individual de Molécula/métodos , Proteína 9 Asociada a CRISPR/fisiología , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN/metabolismo , División del ADN , Transferencia Resonante de Energía de Fluorescencia/métodos , Conformación Molecular , Simulación de Dinámica Molecular , Dominios Proteicos/genética , ARN Guía de Kinetoplastida/metabolismo
4.
Nucleic Acids Res ; 47(22): 11880-11888, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31713616

RESUMEN

Cas9 has made a wide range of genomic manipulation possible. However, its specificity continues to be a challenge. Non-canonical gRNAs and new engineered variants of Cas9 have been developed to improve specificity, but at the cost of the on-target activity. DNA unwinding is a checkpoint before cleavage by Cas9, and was shown to be made more sensitive to sequence mismatches by specificity-enhancing mutations in engineered Cas9s. Here we performed single-molecule FRET-based DNA unwinding experiments using various combinations of non-canonical gRNAs and different Cas9s. All engineered Cas9s were less promiscuous than wild type when canonical gRNA was used, but HypaCas9 had much-reduced on-target unwinding. Cas9-HF1 and eCas9 showed the best balance between low promiscuity and high on-target activity with canonical gRNA. When extended gRNAs with one or two non-matching guanines added to the 5' end were used, Sniper1-Cas9 showed the lowest promiscuity while maintaining high on-target activity. Truncated gRNA generally reduced unwinding and adding a non-matching guanine to the 5' end of gRNA influenced unwinding in a sequence-context dependent manner. Our results are consistent with cell-based cleavage data and provide a mechanistic understanding of how various Cas9/gRNA combinations perform in genome engineering.


Asunto(s)
Proteína 9 Asociada a CRISPR/fisiología , División del ADN , ADN/química , ADN/metabolismo , Mutación con Ganancia de Función , ARN Guía de Kinetoplastida/farmacología , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , ADN/efectos de los fármacos , ADN Helicasas/fisiología , Edición Génica/métodos , Conformación de Ácido Nucleico/efectos de los fármacos , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/análisis , ARN Guía de Kinetoplastida/metabolismo , Imagen Individual de Molécula , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/genética
5.
Nat Med ; 25(7): 1123-1130, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270503

RESUMEN

Since most dominant human mutations are single nucleotide substitutions1,2, we explored gene editing strategies to disrupt dominant mutations efficiently and selectively without affecting wild-type alleles. However, single nucleotide discrimination can be difficult to achieve3 because commonly used endonucleases, such as Streptococcus pyogenes Cas9 (SpCas9), can tolerate up to seven mismatches between guide RNA (gRNA) and target DNA. Furthermore, the protospacer-adjacent motif (PAM) in some Cas9 enzymes can tolerate mismatches with the target DNA3,4. To circumvent these limitations, we screened 14 Cas9/gRNA combinations for specific and efficient disruption of a nucleotide substitution that causes the dominant progressive hearing loss, DFNA36. As a model for DFNA36, we used Beethoven mice5, which harbor a point mutation in Tmc1, a gene required for hearing that encodes a pore-forming subunit of mechanosensory transduction channels in inner-ear hair cells6. We identified a PAM variant of Staphylococcus aureus Cas9 (SaCas9-KKH) that selectively and efficiently disrupted the mutant allele, but not the wild-type Tmc1/TMC1 allele, in Beethoven mice and in a DFNA36 human cell line. Adeno-associated virus (AAV)-mediated SaCas9-KKH delivery prevented deafness in Beethoven mice up to one year post injection. Analysis of current ClinVar entries revealed that ~21% of dominant human mutations could be targeted using a similar approach.


Asunto(s)
Alelos , Edición Génica , Pérdida Auditiva Sensorineural/prevención & control , Proteínas de la Membrana/genética , Animales , Proteína 9 Asociada a CRISPR/fisiología , Línea Celular , Células Cultivadas , Dependovirus/genética , Modelos Animales de Enfermedad , Pérdida Auditiva Sensorineural/genética , Humanos , Ratones , Ratones Endogámicos C57BL
6.
Nat Commun ; 9(1): 2919, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30046034

RESUMEN

CRISPR-Cas systems are bacterial anti-viral systems, and bacterial viruses (bacteriophages, phages) can carry anti-CRISPR (Acr) proteins to evade that immunity. Acrs can also fine-tune the activity of CRISPR-based genome-editing tools. While Acrs are prevalent in phages capable of lying dormant in a CRISPR-carrying host, their orthologs have been observed only infrequently in virulent phages. Here we identify AcrIIA6, an Acr encoded in 33% of virulent Streptococcus thermophilus phage genomes. The X-ray structure of AcrIIA6 displays some features unique to this Acr family. We compare the activity of AcrIIA6 to those of other Acrs, including AcrIIA5 (also from S. thermophilus phages), and characterize their effectiveness against a range of CRISPR-Cas systems. Finally, we demonstrate that both Acr families from S. thermophilus phages inhibit Cas9-mediated genome editing of human cells.


Asunto(s)
Proteína 9 Asociada a CRISPR/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Bacteriófagos/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Edición Génica , Humanos , Virulencia/genética , Virulencia/fisiología
7.
Fungal Biol ; 122(2-3): 131-137, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29458716

RESUMEN

Genome engineering using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nucleases, such as Cas9 (CRISPR-associated protein 9), are revolutionising molecular biology. In this study, we established a Cas9-based genome editing system in Fusarium graminearum, a highly destructive fungal pathogen of cereal crops. Although the molecular toolkit of F. graminearum is well developed compared to other fungi, Cas9-mediated engineering offers a number of potential benefits, such as the ability to create marker free mutants in this species. Here we have used a codon-optimised Cas9 nuclease and dual ribozyme-based expression of a single guide RNA (sgRNA) to induce mutations. Cas9-mediated mutations were identified through a fungicide resistance-based phenotypic screen, which selects for null mutations in the FgOs1 gene encoding an osmosensor histidine kinase. In the absence of selection, however, mutations were identified at very low frequency. Examination of the mutant alleles identified suggests that, a microhomology-mediated end joining (MMEJ) DNA repair pathway is likely to be the predominant process involved in erroneous repairing of Cas9-induced double-stranded breaks in F. graminearum.


Asunto(s)
Proteína 9 Asociada a CRISPR/fisiología , Fusarium/genética , Edición Génica , Selección Genética , Reparación del ADN , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...