Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892056

RESUMEN

Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is increased in the circulation of patients with a poor cancer prognosis, we explored the putative role of the ADAM12-generated basigin ectodomain in cancer progression. We show that recombinant basigin ectodomain binds ß1 integrin and stimulates gelatin degradation and the migration of cancer cells in a matrix metalloproteinase (MMP)- and ß1-integrin-dependent manner. Subsequent in vitro and in vivo experiments demonstrated the altered expression of extracellular matrix proteins, including fibronectin and collagen type 5. Thus, we found increased deposits of collagen type 5 in the stroma of nude mice tumors of the human tumor cell line MCF7 expressing ADAM12-mimicking the desmoplastic response seen in human cancer. Our findings indicate a feedback loop between ADAM12 expression, basigin shedding, TGFß signaling, and extracellular matrix (ECM) remodeling, which could be a mechanism by which ADAM12-generated basigin ectodomain contributes to the regulation of desmoplasia, a key feature in human cancer progression.


Asunto(s)
Proteína ADAM12 , Basigina , Proteínas de la Matriz Extracelular , Animales , Femenino , Humanos , Ratones , Proteína ADAM12/metabolismo , Proteína ADAM12/genética , Basigina/metabolismo , Basigina/genética , Línea Celular Tumoral , Movimiento Celular , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Células MCF-7 , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Unión Proteica , Dominios Proteicos , Integrina beta1/metabolismo
2.
Reprod Domest Anim ; 59(1): e14497, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917556

RESUMEN

Milk production traits as the most important economic traits of dairy cows, they directly reflect the benefits of breeding and the economic benefits of pasture. In this study, A disintegrin and metalloproteinase-12 (ADAM12), Parkinson's disease gene 2 (PRKN) and dipeptidyl peptidase-like protein subtype 6 (DPP6) polymorphism in 384 Chinese Holstein cows were detected by time-of-flight mass spectrometry and through statistical analysis using software such as Popgene 32, SAS 9.4 and Origin 2022, the relationship between single nucleotide polymorphisms (SNPs) of three genes with four milk production traits such as daily milk yield (DMY), milk fat percentage (MFP), milk protein percentage (MPP) and somatic cell score (SCS) was verified at molecular level. The results showed that four polymorphic loci (116,467,133, 116,604,487, 116,618,268 and 116,835,111) of DPP6 gene, two polymorphic loci (97,665,052 and 97,159,837) of PRKN gene and two polymorphic loci (45,542,714 and 45,553,888) of ADAM12 gene were detected. PRKN-97665052, DPP6-116467133, ADAM12-45553888, DPP6-116604487 and DPP6-116835111 were all in Hardy-Weinberg equilibrium state (p > .05). ADAM12-45542714, PRKN-97159837 and PRKN-97665052 were moderately polymorphic (0.25 ≤ PIC <0.50) in Holstein. It is evident that the selection potential and genetic variation of these five loci are relatively large, and the genetic richness is relatively high. The correlation analysis of different genotypes between these eight loci and milk production traits of Holstein showed that ADAM12-45542714 and DPP6-116835111 (p < .01) had an extremely significant effects on the DMY of Chinese Holstein in Ningxia, while PRKN-97665052 had an extremely significant effect on MFP (p < .01). The effect of PRKN-97665052 and DPP6-116467133 on MPP of Holstein were extremely significant (p < .01). DPP6-116618268 had an extremely significant effect on the SCS of Holstein in Ningxia (p < .01), and AA genotype individuals showed a higher SCS than GG genotype individuals; the other two loci (ADAM12-45553888 and DPP6-116604487) had no significant effects on milk production traits of Holstein (p > .05). In addition, through the joint analysis of DPP6, PRKN and ADAM12 gene loci, it was found that the interaction effect between the three gene loci could significantly affect the DMY, SCS (p < .01) and MPP (p < .05). In conclusion, several different loci of DPP6, PRKN and ADAM12 genes can affect the milk production traits of Holstein to different degrees. PRKN, DPP6 and ADAM12 genes can be used as potential candidate genes for milk production traits of Holstein for marker-assisted selection, providing theoretical basis for breeding of Holstein.


Asunto(s)
Lactancia , Leche , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Femenino , Humanos , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/análisis , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Genotipo , Lactancia/genética , Leche/química , Proteínas de la Leche , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Canales de Potasio/análisis , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/genética
3.
Nat Immunol ; 24(11): 1867-1878, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798557

RESUMEN

The capacity to survive and thrive in conditions of limited resources and high inflammation is a major driver of tumor malignancy. Here we identified slow-cycling ADAM12+PDGFRα+ mesenchymal stromal cells (MSCs) induced at the tumor margins in mouse models of melanoma, pancreatic cancer and prostate cancer. Using inducible lineage tracing and transcriptomics, we demonstrated that metabolically altered ADAM12+ MSCs induced pathological angiogenesis and immunosuppression by promoting macrophage efferocytosis and polarization through overexpression of genes such as Gas6, Lgals3 and Csf1. Genetic depletion of ADAM12+ cells restored a functional tumor vasculature, reduced hypoxia and acidosis and normalized CAFs, inducing infiltration of effector T cells and growth inhibition of melanomas and pancreatic neuroendocrine cancer, in a process dependent on TGF-ß. In human cancer, ADAM12 stratifies patients with high levels of hypoxia and innate resistance mechanisms, as well as factors associated with a poor prognosis and drug resistance such as AXL. Altogether, our data show that depletion of tumor-induced slow-cycling PDGFRα+ MSCs through ADAM12 restores antitumor immunity.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Masculino , Ratones , Animales , Humanos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas Tirosina Quinasas Receptoras , Macrófagos , Hipoxia , Línea Celular Tumoral , Proteína ADAM12/genética
4.
Placenta ; 143: 69-79, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37864886

RESUMEN

INTRODUCTION: Preeclampsia was a serious complication often leaded to adverse pregnancy outcomes. Abnormal placental miR-135b-5p expression in preeclampsia was observed in our preliminary investigation. However, the role of miR-135b-5p in preeclampsia was unclear. METHODS: We determined the miR-135b-5p expression pattern at the fetomaternal interface and levels in placental tissue and exosomes. MiR-135b-5p expression in the trophoblast cell line HTR8/SVneo was manipulated by transient agomir or antagomir transfection or establishment of HTR8/SVneo cell line stably overexpressing miR-135b or miR-135b-5p-sponger. Then the function of miR-135b-5p on the motility of HTR8/SVneo cells, and its effects on cell viability was determined. Finally, we confirmed the relationship between miR-135b-5p and ADAM12. RESULTS: MiR-135b-5p exclusively expressed in the villous cytotrophoblast, and extravillous trophoblast. Significant miR-135b-5p upregulation was observed in the placenta and peripheral plasma exosomes in preeclampsia, and could be a highly sensitive molecular marker for preeclampsia. Elevated miR-135b-5p expression significantly promoted apoptosis and inhibited HTR8/SVneo cell invasion and migration. Binding of miR-135b-5p to the ADAM12 mRNA 3'-untranslated region was predicted by bioinformatics analysis and confirmed using a dual-luciferase reporter assay. High miR-135-5p levels inhibit the invasion and migration of trophoblastic cells, possibly by directly binding to the 3'-UTR of DADM12 and suppressing its translation efficiency, thereby nullifying the promotion of trophoblast invasion and migration via ADAM12. DISCUSSION: Abnormal upregulation of miR-135b-5p may be involved in preeclampsia through triggering trophoblast apoptosis and impeding trophoblast invasion and migration by targeting ADAM12.


Asunto(s)
MicroARNs , Preeclampsia , Femenino , Humanos , Embarazo , Proteína ADAM12/genética , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Trofoblastos/metabolismo
5.
Appl Immunohistochem Mol Morphol ; 31(10): 673-681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37751246

RESUMEN

There is a cellular crosstalk between Wnt/ß-catenin and Hippo/Yes-related protein 1 signaling paths in colon cancer (CC) which promotes EMT processes that mediate the metastatic progression of CC. We aimed to evaluate follistatin-like 3 (FSTL3), ADAM12, and FAT4 expressions in CC. A statistical analysis was done to establish how disease-free survival, overall survival (OS), and relapse all performed a prognostic role. High FSTL3 was detected in 68% of CC and significantly related to left-sided tumors ( P = 0.002) and the advanced tumor features, such as metastasis ( P = 0.010), pT ( P = 0.006), high grade ( P = 0.005), lymph node contribution ( P = 0.013), and advanced stage ( P = 0.003). Positive ADAM12 expression was observed in 60% and significantly related to left-sided tumors ( P = 0.001) and significantly common in high grade ( P = 0.028), lymph node involvement ( P < 0.001), and advanced stage ( P = 0.004). Low FAT4 expression was recognized in 76% and linked with the right-sided tumors ( P = 0.036). FAT4 expression was contrariwise linked with CC grade ( P < 0.001). Furthermore, FAT4 expression was inversely correlated with lymph node involvement ( P = 0.002), metastasis ( P = 0.046), and advanced stage ( P = 0.002). During the follow-up, 14 cases were relapsed and positively associated with high FSTL3 expression ( P = 0.001) and ADAM12 expression ( P < 0.001), but negatively linked with FAT4 expression ( P = 0.003). Shorter disease-free survival was substantially correlated with positive ADAM12, extreme FSTL3, and low FAT4 expression ( P < 0.001, P = 0.002, P = 0.003, consecutively). Moreover, Kaplan-Meier curves demonstrated a significant correlation between shorter OS with extreme FSTL3, positive ADAM12, and low FAT4 ( P = 0.004, <0.001, 0.019, consecutively). High FSTL3, positive ADAM12, and low FAT4 expression are unfavorable prognostic influences in CC that may be accountable for relapse and therapeutic resistance in CC.


Asunto(s)
Neoplasias del Colon , Recurrencia Local de Neoplasia , Humanos , Proteína ADAM12 , Cadherinas , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/patología , Pronóstico , Recurrencia , Proteínas Supresoras de Tumor
6.
Cancer Gene Ther ; 30(10): 1369-1381, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37495855

RESUMEN

Radiotherapy is one of the most common cancer treatments, yet, some patients require high doses to respond. Therefore, the development of new strategies leans toward personalizing therapy to avoid unnecessary burden on cancer patients. This approach prevents the administration of ineffective treatments or uses combination strategies to increase the sensitivity of cancer cells. ADAM12 has been shown to be upregulated in many cancers and correlate with poor survival and chemoresistance, thus making it a potential candidate responsible for radioresistance. Here, we show that ADAM12 expression is upregulated in response to irradiation in both mouse and human cancer cells in vitro, as well as in tumor tissues from rectal cancer patients. Interestingly, the expression of ADAM12 following radiotherapy correlates with the initial disease stage and predicts the response of rectal cancer patients to the treatment. While we found no cell-autonomous effects of ADAM12 on the response of colon cancer cells to irradiation in vitro, depletion of ADAM12 expression markedly reduced the tumor growth of irradiated cancer cells when subcutaneously transplanted in syngeneic mice. Interestingly, loss of cancer cell-derived ADAM12 expression increased the number of CD31+FAP- cells in murine tumors. Moreover, conditioned medium from ADAM12-/- colon cancer cells led to increased tube formation when added to endothelial cell cultures. Thus, it is tempting to speculate that altered tumor vascularity may be implicated in the observed effect of ADAM12 on response to radiotherapy in rectal cancer. We conclude that ADAM12 represents a promising prognostic factor for stratification of rectal cancer patients receiving radiotherapy and suggest that targeting ADAM12 in combination with radiotherapy could potentially improve the treatment response.


Asunto(s)
Neoplasias del Colon , Neoplasias del Recto , Animales , Humanos , Ratones , Proteína ADAM12/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/radioterapia , Regulación Neoplásica de la Expresión Génica , Pronóstico , Neoplasias del Recto/genética , Neoplasias del Recto/radioterapia
7.
Int Immunopharmacol ; 122: 110580, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37418984

RESUMEN

Lung adenocarcinoma (LUAD) is a malignant respiratory disease, resulting in a heavy social burden. Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance and tumor immune microenvironment are important directions in the treatment of LUAD. In this study, we confirmed the role of ADAM metallopeptidase domain 12 (ADAM12) in LUAD development and progression. Our bioinformatic analysis was conducted to screen ADAM12 was correlated with EGFR-TKI and immune infiltration in LUAD patients. Our results showed that the transcription and post-transcription level of ADAM12 is significantly increased in tumor samples compared to normal samples, and ADAM12 correlated with poor prognosis in LUAD patients. High level of ADAM12 accelerated the LUAD progression via promoting proliferation, cell cycle, apoptosis escaping, immune escaping, EGFR-TKI resistance, angiogenesis, invasion and migration based on experiment validation in vitro and in vivo, which could be attenuated by ADAM12 knockdown. Further mechanistic studies suggested that the PI3K/Akt/mTOR and RAS signaling pathways were activated after ADAM12 knockdown. Therefore, ADAM12 might be validated as a possible molecular therapy target and prognostic marker for patients with LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Microambiente Tumoral , Proteína ADAM12/genética , Proteína ADAM12/metabolismo
8.
J Orthop Surg Res ; 18(1): 149, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36855121

RESUMEN

BACKGROUND: Osteoarthritis of the knee is an irreversible disease that causes great pain, and genetic factors play an important role in its occurrence and development. There have been many studies on the correlation between ADAM12 polymorphisms and genetic susceptibility to osteoarthritis, but the results remain inconclusive. METHODS: Papers from PubMed, Web of Science, EMbase, Springer, SCOPUS, Google Scholar and other databases were systematically retrieved with a cut-off of January 2022. All case-control studies on ADAM12 rs3740199, rs1871054, rs1044122, and rs1278279 polymorphisms and osteoarthritis were searched. Fixed or random effects models were used for pooled analysis with OR values and 95% confidence intervals (CI), and publication bias was assessed. In addition, the false-positive reporting probability test was used to assess the confidence of a statistically significant association. RESULTS: Eleven articles were included, which included 3332 patients with osteoarthritis and 5108 healthy controls. Meta-analysis showed that the rs1871054 polymorphism of ADAM12 was associated with osteoarthritis in dominant, recessive, allelic, and homozygote genetic models [C vs. T: OR = 1.34 95% CI (1.05, 1.71), P < 0.001]. Our subgroup analysis revealed an association between the ADAM12 polymorphism rs1871054 in Asians and osteoarthritis [C vs. T: OR = 1.61, 95% CI (1.25, 2.08), P < 0.001], albeit this was only for three studies. In addition, the ADAM12 polymorphism rs1871054 is associated with osteoarthritis in patients younger than 60 years of age [C vs. T: OR = 1.39, 95% CI (1.01, 1.92), P = 0.289]; however, the ADAM12 gene rs3740199, rs1044122, and rs1278279 site polymorphisms were not significantly. Furthermore, when assessing the confidence of the positive results, the positive results were found to be credible (except for Age < 60). CONCLUSION: Polymorphism at the rs1871054 site of ADAM12 is associated with genetic susceptibility to osteoarthritis, but rs3740199, rs1044122, and rs1278279 site polymorphisms are not.


Asunto(s)
Proteína ADAM12 , Predisposición Genética a la Enfermedad , Osteoartritis , Humanos , Proteína ADAM12/genética , Estudios de Casos y Controles , Bases de Datos Factuales , Osteoartritis/genética , Polimorfismo Genético
9.
Int J Oncol ; 62(4)2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36866761

RESUMEN

A disintegrin and metalloprotease 12 (ADAM12) and epithelial­mesenchymal transition (EMT) are linked in the metastasis of various types of cancer. The present study aimed to assess the ability of ADAM12 to induce EMT and its potential as a therapeutic target for colorectal cancer (CRC). ADAM12 expression in CRC cell lines, CRC tissues and a mouse model of peritoneal metastasis was assessed. The effect of ADAM12 on CRC EMT and metastasis was investigated using ADAM12­pcDNA6­myc and ADAM12­pGFP­C­shLenti constructs. ADAM12 overexpression enhanced the proliferation, migration, invasion and EMT of CRC cells. The phosphorylation levels of factors associated with the PI3K/Akt pathway were also increased by ADAM12 overexpression. The knockdown of ADAM12 reversed these effects. ADAM12 expression and the loss of E­cadherin expression were significantly associated with poorer survival compared with other expression statuses of both proteins. In a mouse model of peritoneal metastasis, overexpression of ADAM12 induced increased tumor weight and peritoneal carcinomatosis index compared with that in the negative control group. Conversely, knockdown of ADAM12 reversed these effects. Furthermore, E­cadherin expression was significantly decreased by overexpression of ADAM12 compared with in the negative control group. By contrast, E­cadherin expression was increased by knockdown of ADAM12 compared with in the negative control group. ADAM12 overexpression contributed to CRC metastasis by regulating EMT. In addition, in the mouse model of peritoneal metastasis, ADAM12 knockdown exhibited strong anti­metastatic action. Consequently, ADAM12 may be considered a therapeutic target for CRC metastasis.


Asunto(s)
Proteína ADAM12 , Neoplasias Colorrectales , Neoplasias Peritoneales , Animales , Ratones , Cadherinas/genética , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Neoplasias Peritoneales/genética , Fosfatidilinositol 3-Quinasas , Proteína ADAM12/genética
10.
J Transl Med ; 21(1): 56, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717944

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a major worldwide health problem due to its high prevalence and mortality rate. A disintegrin and metalloproteinase 12 (ADAM12) is aberrantly expressed in various cancers and plays an important role in tumor progression. However, its explicit effect and molecular mechanism in ccRCC remain unclear. METHODS: We investigated the dysregulation of ADAM12 in ccRCC through public databases and bioinformatics analyses. The expression of ADAM12 was further verified in ccRCC tissues by RT-qPCR and immunohistochemistry (IHC). The relationship between ADAM12 expression and clinicopathological characteristics was analyzed statistically. The effects of ADAM12 on the proliferation, migration and invasion of ccRCC cells were examined by in vitro and in vivo experiments. RESULTS: ADAM12 was significantly upregulated in ccRCC tissues and associated with poor prognosis in ccRCC patients. ADAM12 promoted ccRCC cell proliferation, migration and invasion in vitro and the growth of subcutaneous tumors in vivo. Knockdown of ADAM12 successfully suppressed its oncogenic function. Mechanistically, its overexpression induced epithelial-mesenchymal transition (EMT) by downregulating E-cadherin and upregulating N-cadherin and Snail. Moreover, ADAM12 participated in the epidermal growth factor receptor (EGFR) pathway and activated the downstream signal ERK1/2 by shedding the EGFR ligand, thereby upregulating target genes including c-Myc, enhancing cell survival and invasion ability, and promoting tumor progression, metastasis and the induction of EMT. CONCLUSIONS: High expression of ADAM12 induced EMT and promoted cell proliferation, migration, and invasion by activating the EGFR/ERK signaling pathway in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Transducción de Señal/genética , Proliferación Celular/genética , Neoplasias Renales/patología , Receptores ErbB/metabolismo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteína ADAM12/genética , Proteína ADAM12/metabolismo
11.
Dig Liver Dis ; 55(3): 412-421, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35853821

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is an extremely aggressive malignant tumor associated with high migratory and invasive potential. The present study intends to explore regulatory mechanism of p53/microRNA (miR)-29c-3p/A disintegrin and metalloproteinase 12 (ADAM12) axis in HCC based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. METHODS: Putative miR-29c-3p binding sites on ADAM12 3'UTR were verified by a luciferase assay. The binding affinity of p53 to miR-29c-3p was assessed based on CRISPR/Cas9 technology to construct a p53 knockout (p53-/-) HCCLM3 cell line. Furthermore, the effect of p53/miR-29c-3p/ADAM12 was assessed on maligant phenotypes in vitro and tumor formation and metastasis in nude mice. RESULTS: ADAM12 was highly expressed but miR-29c-3p was poorly expressed in HCC. miR-29c-3p inhibited migratory and invasive abilities of HCC cells by targeting ADAM12 expression. p53 was found to target and upregulate miR-29c-3p, thus downregulating ADAM12 and conferring inhibitory effect on HCC cell activities. Moreover, ADAM12 knockout or p53 overexpression reduced HCC tumor formation and metastasis, which were reversed by further silencing of miR-29c-3p. CONCLUSION: The identification of the p53/miR-29c-3p/ADAM12 axis in migration and invasion of HCC may potentially further our understanding of mechanisms underpinning HCC, and also bear translational value as novel molecular targets.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Animales , Ratones , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Ratones Desnudos , MicroARNs/genética , Proteína p53 Supresora de Tumor/genética , Proteína ADAM12/metabolismo
12.
Oncoimmunology ; 12(1): 2158006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36545255

RESUMEN

Immunosuppressive tumor microenvironment (TME) impedes anti-tumor immune responses and contributes to immunotherapy resistance in triple-negative breast cancer (TNBC). ADAM12, a member of cell surface metalloproteases, is selectively upregulated in mesenchymal/claudin-low TNBCs, where its expression is largely restricted to tumor cells. The role of cancer cell-expressed ADAM12 in modulating the immune TME is not known. We show that Adam12 knockout in the T11 mouse syngeneic transplantation model of claudin-low TNBC leads to decreased numbers of tumor-infiltrating neutrophils (TINs)/polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and increased numbers of tumor-infiltrating B cells and T cells. ADAM12 loss in cancer cells increases chemotaxis of B cells in vitro and this effect is eliminated by inhibition of CXCR4, a receptor for CXCL12, or anti-CXCL12 blocking antibody. Importantly, ADAM12 loss in T11 cancer cells sensitizes tumors to anti-PD1/anti-CTLA4 combination therapy, although the initial responsiveness is followed by acquired therapy resistance. Depletion of B cells in mice eliminates the improved response to immune checkpoint blockade of Adam12 knockout T11 tumors. Analysis of gene expression data for claudin-low TNBCs from the METABRIC patient cohort shows significant inverse correlations between ADAM12 and gene expression signatures of several anti-tumor immune cell populations, as well as a significant positive correlation between ADAM12 and gene expression signature of TINs/PMN-MDSCs. Collectively, these results implicate ADAM12 in immunosuppression within the TME in TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Ratones , Proteína ADAM12/genética , Línea Celular Tumoral , Claudinas/metabolismo , Modelos Animales de Enfermedad , Linfocitos T , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral
13.
Clin Transl Oncol ; 25(5): 1425-1435, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36512304

RESUMEN

BACKGROUND: Gemcitabine (GEM)-based chemotherapy regimens is widely used in bladder cancer (BC) patients. However, GEM resistance may occur and result in treatment failure and disease progression. A disintegrin and metalloprotease 12 (ADAM12) plays a critical role in many cancers. However, the role of ADAM12 in GEM resistance of BC remains unclear. METHODS: We analyzed the relationship between ADAM12 expression and tumor characteristics using the data downloaded from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Then, we established GEM resistant BC cell lines and used quantitative real-time PCR, western blot, cell counting kit-8, immunohistochemistry, and xenograft mouse model to investigate the role of ADAM12 in GEM resistance. RESULTS: In general, ADAM12 was found to be upregulated in GEM resistant BC cells. ADAM12 knockdown increased the chemosensitivity of BC cells. We further proved that ADAM12 could promote GEM resistance by activating the epidermal growth factor receptor (EGFR) signaling pathway in BC. Furthermore, the epithelial-mesenchymal transition (EMT) phenotype was observed in GEM resistant BC cells. ADAM12 induced EMT process and promotes tumor progression in BC. CONCLUSION: Our findings suggested that ADAM12 was a key gene for GEM resistance and positively correlated with malignancy of BC. It might serve as a novel and valuable therapeutic target for BC.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Gemcitabina , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gemcitabina/farmacología , Gemcitabina/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Transducción de Señal/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
14.
Clin Transl Oncol ; 25(2): 473-481, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36183312

RESUMEN

BACKGROUND: ADAM metallopeptidase domain 12 (ADAM12) is generally upregulated in tissues of various tumors, emerging as a prognostic biomarker. However, the clinical significance of serum ADAM12 in tumors still remains to be fully elucidated. The present study aimed to investigate the expression and prognostic value of serum ADAM12 in tumor patients. MATERIALS AND METHODS: Serum samples were collected from healthy doners (HDs; n = 87) and patients (n = 238) with a clinical diagnosis of breast, liver, lung, stomach and esophageal (STES) and thyroid cancer. Serum ADAM12 protein and mRNA expression was detected by enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR), respectively. Receiver-operator characteristic (ROC) analysis was performed to explored the prognostic value of serum ADAM12 expression. RESULTS: The expression of serum ADAM12 in breast and liver cancer patients was significantly upregulated compared with HDs. In patients with breast cancer, the levels of serum ADAM12 protein and mRNA were significantly higher in tumor stages than that in HDs (p < 0.05), with AUC value of 0.82. In liver cancer, elevated levels of serum ADAM12 protein were significantly correlated with clinical stage (r = 0.74; p = 6.9e-4) and T stage (r = 0.74, p = 7.6e-4), and attained AUC value of 1. However, the clinical significance of serum ADAM12 expression in lung, STES and thyroid cancer had not been found. CONCLUSIONS: Serum ADAM12 expression showed high degree of tumor heterogeneity, and may be a valuable noninvasive diagnostic and prognostic biomarker for breast and liver cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hepáticas , Neoplasias de la Tiroides , Humanos , Femenino , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM12 , Neoplasias de la Mama/genética , Neoplasias Hepáticas/diagnóstico , ARN Mensajero/metabolismo , Biomarcadores
15.
Curr Med Sci ; 42(6): 1131-1139, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36542326

RESUMEN

OBJECTIVE: Pituitary adenomas (PAs) can adapt an aggressive phenotype by invading adjacent brain structures with rapid cellular proliferation. Previous studies demonstrated that excessive expression of metalloproteases ADAM12 and MMP-14 is instrumental for the active proliferation and invasiveness of PA cells in vitro and of tumors in vivo. However, the mechanisms regulating ADAM12 and MMP-14 expression in PAs remain unclear. METHODS: Target gene prediction and transcriptomic profiling of invasive vs. noninvasive human PA samples were performed to identify miRNA species potentially involved in the regulation of ADAM12 and MMP14. For cellular analyses of miRNA functions, two mouse PA cell lines (AtT20 and TtT/GF) were transfected with miR-149-3p and miR-149-5p, respectively. The effects of miR-149 (3p and 5p) on expression levels of ADAM12 and MMP14 were determined by Western blotting followed by an analysis of proliferation and colony formation assays, scratch migration assays, and invasion assays. RESULTS: A significant downregulation of miRNA-149 was observed in invasive vs. noninvasive PA (0.32 vs. 0.09, P<0.0001). In AtT-20 and TtT/GF mouse PAs cells, transfection of mimic miRNA-149 (3p and 5p) caused a significantly reduced cell proliferation and matrigel invasion, whilst the effect on cell migration was less pronounced. Both strands of miRNA-149 (3p and 5p) markedly reduced protein levels of ADAM12 and MMP-14 by at least 40% in both cell lines. CONCLUSION: This study proved that the invasiveness of PA cells is, at least partly, regulated by miRNA-149-dependent expression of ADAM12 and MMP-14.


Asunto(s)
MicroARNs , Neoplasias Hipofisarias , Ratones , Animales , Humanos , Neoplasias Hipofisarias/genética , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Proteína ADAM12/genética , Proteína ADAM12/metabolismo
16.
In Vivo ; 36(5): 2194-2204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36099146

RESUMEN

BACKGROUND/AIM: A disintegrin and metalloprotease (ADAM) 12 expression has been found up-regulated in various cancer types. The aim of the study was to evaluate whether ADAM12 affects oncogenic behavior of gastric cancer (GC) cells and investigate its prognostic value. MATERIALS AND METHODS: The effect of ADAM12 on tumor cell behavior was examined using the small interfering RNA and pcDNA6-myc vector in human GC cell lines. Expression of ADAM12 in GC tissues was confirmed by immunohistochemistry. Apoptosis and proliferation were determined by a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and immunohistochemical staining for Ki-67. RESULTS: ADAM12 overexpression enhanced tumor cell migration and invasion in AGS and SNU638 cells. Down-regulation of caspase-3 and PARP activity due to ADAM12 overexpression enhanced tumor cell proliferation and inhibited apoptosis. The expression of Snail and Vimentin increased and that of E-cadherin decreased following ADAM12 overexpression. In contrast, ADAM12 knockdown reversed these effects. ADAM12 overexpression increased the phosphorylation of Akt and GSK-3ß. The mean Ki-67 labeling index value of ADAM12-positive tumors was significantly higher compared to that of ADAM12-negative tumors. ADAM12 expression was associated with age, tumor size, cancer stage, depth of invasion, lymph node metastasis, and poor survival. CONCLUSION: ADAM12 enhances tumor progression by increasing cell mobility, enhancing cell proliferation, and inhibiting apoptosis in GC cells. Also, ADAM12 is associated with adverse clinicopathological features and poor survival. It may be used as a molecular marker for the prediction of clinical outcomes of patients with GC.


Asunto(s)
Neoplasias Gástricas , Proteína ADAM12/genética , Proliferación Celular/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Antígeno Ki-67 , Pronóstico , Neoplasias Gástricas/patología
17.
J Proteome Res ; 21(9): 2160-2172, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926154

RESUMEN

Gastric cancer is one of the cancers with the highest morbidity and mortality. Although several therapeutic approaches have been developed to treat this disease, the overall survival rate is still very low due to metastasis, drug resistance, and so forth. Therefore, it is necessary to discover new regulatory molecules and signaling pathways that modulate the metastasis of gastric cancer cells. A Disintegrin And Metalloprotease 12 (ADAM12) was highly expressed in gastric cancer tissues and presented in the patient urine. However, it is unclear whether and how ADAM12 regulates the migration of gastric cancer cells. In this work, we used the secretome protein enrichment with click sugars (SPECS) method to purify the secreted glycosylated proteins and performed quantitative proteomics to identify the secreted proteins that were differentially regulated by ADAM12S, the short and secreted form of ADAM12. Our proteomic and biochemical analyses revealed that ADAM12S upregulated the cell surface glycoprotein CD146, a cell adhesion molecule and melanoma marker, which was dependent on the catalytic residue of ADAM12S. Furthermore, we discovered that the ADAM12S-enhanced migration of gastric cancer cells was, at least partially, mediated by CD146. This work may help to evaluate whether ADAM12 could be a potential therapeutic target for the treatment of gastric cancer patients.


Asunto(s)
Proteómica , Neoplasias Gástricas , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM12/genética , Antígeno CD146 , Humanos , Proteínas de la Membrana/metabolismo , Proteómica/métodos , Neoplasias Gástricas/genética
18.
J Am Heart Assoc ; 11(16): e025727, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35946473

RESUMEN

Background Peripheral artery disease is caused by atherosclerotic occlusion of vessels outside the heart and most commonly affects vessels of the lower extremities. Angiogenesis is a part of the postischemic adaptation involved in restoring blood flow in peripheral artery disease. Previously, in a murine hind limb ischemia model of peripheral artery disease, we identified ADAM12 (a disintegrin and metalloproteinase gene 12) as a key genetic modifier of postischemic perfusion recovery. However, less is known about ADAM12 regulation in ischemia. MicroRNAs are a class of small, noncoding, single-stranded RNAs that regulate gene expression primarily through transcriptional repression of messenger RNA (mRNA). We showed microRNA-29a (miR-29a) modulates ADAM12 expression in the setting of diabetes and ischemia. However, how miR-29a modulates ADAM12 is not known. Moreover, the physiological effects of miR-29a modulation in a nondiabetic setting is not known. Methods and Results We overexpressed or inhibited miR-29a in ischemic mouse gastrocnemius and tibialis anterior muscles, and quantified the effect on perfusion recovery, ADAM12 expression, angiogenesis, and skeletal muscle regeneration. In addition, using RNA immunoprecipitation-based anti-miR competitive assay, we investigated the interaction of miR-29a and ADAM12 mRNA in mouse microvascular endothelial cell, skeletal muscle, and human endothelial cell lysates. Ectopic expression of miR-29a in ischemic mouse hind limbs decreased ADAM12 mRNA expression, increased skeletal muscle injury, decreased skeletal muscle function, and decreased angiogenesis and perfusion recovery, with no effect on skeletal muscle regeneration and myofiber cross-sectional area following hind limb ischemia. RNA immunoprecipitation-based anti-miR competitive assay studies showed miR-29a antagomir displaced miR-29a and ADAM12 mRNA from the AGO-2 (Argonaut-2) complex in a dose dependent manner. Conclusions Taken together, the data show miR-29a suppresses ADAM12 expression by directly binding to its mRNA, resulting in impaired skeletal muscle function, angiogenesis, and poor perfusion. Hence, elevated levels of miR-29a, as seen in diabetes and aging, likely contribute to vascular pathology, and modulation of miR-29a could be a therapeutic target.


Asunto(s)
Proteína ADAM12 , MicroARNs , Enfermedades Musculares , Enfermedad Arterial Periférica , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Animales , Antagomirs , Humanos , Isquemia/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica/fisiología , Perfusión , Enfermedad Arterial Periférica/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
BMC Med ; 20(1): 189, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610640

RESUMEN

BACKGROUND: Enhancer of zeste homolog 2 (EZH2)-mediated histone 3 lysine 27 trimethylation (H3K27me3) is a transcription silencing mark, which is indispensable for cell lineage specification at the early blastocyst stage. This epigenetic repression is maintained in placental cytotrophoblasts but is lifted when cytotrophoblasts differentiate into syncytiotrophoblasts. However, the physiological impact of this lift remains elusive. Here, we investigated whether lifting EZH2-mediated H3K27me3 during syncytialization upregulates the expression of a short secretory isoform of a disintegrin and metalloprotease 12 (ADAM12-S), a well-recognized placenta-derived protease that cleaves insulin-like growth factor binding protein 3 to increase insulin-like growth factor (IGF) bioavailability for the stimulation of fetoplacental growth. The transcription factor and the upstream signal involved were also explored. METHODS: Human placenta tissue and cultured primary human placental cytotrophoblasts were utilized to investigate the role of EZH2-mediated H3K27me3 in ADAM12-S expression and the associated transcription factor and upstream signal during syncytialization. A mouse model was used to examine whether inhibition of EZH2-mediated H3K27me3 regulates placental ADAM12-S expression and fetoplacental growth. RESULTS: EZH2 and ADAM12 are distributed primarily in villous cytotrophoblasts and syncytiotrophoblasts, respectively. Increased ADAM12-S expression, decreased EZH2 expression, and decreased EZH2/H3K27me3 enrichment at the ADAM12 promoter were observed during syncytialization. Knock-down of EZH2 further increased ADAM12-S expression in trophoblasts. Syncytialization was also accompanied by increased STAT5B expression and phosphorylation as well as its enrichment at the ADAM12 promoter. Knock-down of STAT5B attenuated ADAM12-S expression during syncytialization. Epidermal growth factor (EGF) was capable of inducing ADAM12-S expression via stimulation of STAT5B expression and phosphorylation during syncytialization. Mouse studies revealed that administration of an EZH2 inhibitor significantly increased ADAM12-S levels in maternal blood and fetoplacental weights along with decreased H3K27me3 abundance and increased ADAM12-S expression in the placenta. CONCLUSIONS: Lifting EZH2-mediated H3K27me3 increases ADAM12-S expression during syncytialization with the participation of EGF-activated STAT5B, which may lead to elevation of ADAM12-S level in maternal blood resulting in increased IGF bioavailability for the stimulation of fetoplacental growth in pregnancy. Our studies suggest that the role of EZH2-mediated H3K27me3 may switch from cell lineage specification at the early blastocyst stage to regulation of fetoplacental growth in later gestation.


Asunto(s)
Proteína ADAM12 , Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Placenta , Proteína ADAM12/biosíntesis , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Desarrollo Fetal , Histonas/metabolismo , Ratones , Placenta/metabolismo , Placentación , Embarazo , Transducción de Señal
20.
Sci Rep ; 12(1): 6634, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459884

RESUMEN

Disintegrin and metalloproteinase 12 (ADAM12) is thought to trigger the occurrence and development of numerous tumours, including colorectal, breast, and pancreatic cancers. On the basis of The Cancer Genome Atlas (TCGA) datasets, in this study, the relationship between ADAM12 gene expression and hepatocellular carcinoma (HCC), the prognostic value of this relationship, and the potential mechanisms influencing HCC development were evaluated. The results showed that the ADAM12 gene was significantly and highly expressed in liver cancer tissue. The high expression of the ADAM12 gene in liver cancer tissue significantly and positively correlated with T stage, pathological stage, and residual tumour. Kaplan-Meier and Cox regression analyses revealed that ADAM12 gene expression is an independent risk factor influencing the prognosis of patients with liver cancer. Pathway analyses of ADAM12 in HCC revealed ADAM12-correlated signalling pathways, and the expression level of ADAM12 was associated with immune cell infiltration. In vitro experiments demonstrated that the expression level of ADAM12 in Huh-7 and Hep3B cells was significantly higher than that in other HCC cells. ShRNA transfection experiments confirmed that the expression levels of TGF-ß and Notch pathway-related proteins were significantly decreased. An EdU cell proliferation assay showed that a low level of ADAM12 gene expression significantly inhibited the proliferative activity of HCC cells. Cell cycle experiments showed that low ADAM12 expression blocked the G1/S phase transition. Overall, this research revealed that high ADAM12 gene expression implies a poor prognosis for patients with primary liver cancer. In addition, it is a potential indicator for the diagnosis of liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína ADAM12/genética , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...