Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 35(8): 2821-2847, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37144857

RESUMEN

The MADS domain transcription factor AGAMOUS (AG) regulates floral meristem termination by preventing maintenance of the histone modification lysine 27 of histone H3 (H3K27me3) along the KNUCKLES (KNU) coding sequence. At 2 d after AG binding, cell division has diluted the repressive mark H3K27me3, allowing activation of KNU transcription prior to floral meristem termination. However, how many other downstream genes are temporally regulated by this intrinsic epigenetic timer and what their functions are remain unknown. Here, we identify direct AG targets regulated through cell cycle-coupled H3K27me3 dilution in Arabidopsis thaliana. Expression of the targets KNU, AT HOOK MOTIF NUCLEAR LOCALIZED PROTEIN18 (AHL18), and PLATZ10 occurred later in plants with longer H3K27me3-marked regions. We established a mathematical model to predict timing of gene expression and manipulated temporal gene expression using the H3K27me3-marked del region from the KNU coding sequence. Increasing the number of del copies delayed and reduced KNU expression in a polycomb repressive complex 2- and cell cycle-dependent manner. Furthermore, AHL18 was specifically expressed in stamens and caused developmental defects when misexpressed. Finally, AHL18 bound to genes important for stamen growth. Our results suggest that AG controls the timing of expression of various target genes via cell cycle-coupled dilution of H3K27me3 for proper floral meristem termination and stamen development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema , Histonas/genética , Histonas/metabolismo , Flores/fisiología , Arabidopsis/metabolismo , División Celular , Regulación de la Expresión Génica de las Plantas/genética , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo
2.
Curr Opin Plant Biol ; 61: 102009, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33640614

RESUMEN

Tissue-specific transcription factors allow cells to specify new fates by exerting control over gene regulatory networks and the epigenetic landscape of a cell. However, our knowledge of the molecular mechanisms underlying cell fate decisions is limited. In Arabidopsis, the MADS-box transcription factor AGAMOUS (AG) plays a central role in regulating reproductive organ identity and meristem determinacy during flower development. During the vegetative phase, AG transcription is repressed by Polycomb complexes and intronic noncoding RNA. Once AG is transcribed in a spatiotemporally regulated manner during the reproductive phase, AG functions with chromatin regulators to change the chromatin structure at key target gene loci. The concerted actions of AG and the transcription factors functioning downstream of AG recruit general transcription machinery for proper cell fate decision. In this review, we describe progress in AG research that has provided important insights into the regulatory and epigenetic mechanisms underlying cell fate determination in plants.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Homeodominio , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigénesis Genética/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Meristema/metabolismo
3.
Nucleic Acids Res ; 48(17): 9637-9648, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32890394

RESUMEN

The MADS transcription factors (TF), SEPALLATA3 (SEP3) and AGAMOUS (AG) are required for floral organ identity and floral meristem determinacy. While dimerization is obligatory for DNA binding, SEP3 and SEP3-AG also form tetrameric complexes. How homo and hetero-dimerization and tetramerization of MADS TFs affect genome-wide DNA-binding and gene regulation is not known. Using sequential DNA affinity purification sequencing (seq-DAP-seq), we determined genome-wide binding of SEP3 homomeric and SEP3-AG heteromeric complexes, including SEP3Δtet-AG, a complex with a SEP3 splice variant, SEP3Δtet, which is largely dimeric and SEP3-AG tetramer. SEP3 and SEP3-AG share numerous bound regions, however each complex bound unique sites, demonstrating that protein identity plays a role in DNA-binding. SEP3-AG and SEP3Δtet-AG share a similar genome-wide binding pattern; however the tetrameric form could access new sites and demonstrated a global increase in DNA-binding affinity. Tetramerization exhibited significant cooperative binding with preferential distances between two sites, allowing efficient binding to regions that are poorly recognized by dimeric SEP3Δtet-AG. By intersecting seq-DAP-seq with ChIP-seq and expression data, we identified unique target genes bound either in SEP3-AG seq-DAP-seq or in SEP3/AG ChIP-seq. Seq-DAP-seq is a versatile genome-wide technique and complements in vivo methods to identify putative direct regulatory targets.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodominio/metabolismo , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión , Proteínas Portadoras/genética , ADN de Plantas/genética , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Homeodominio/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Factores de Transcripción/genética
4.
Proc Natl Acad Sci U S A ; 117(11): 6231-6236, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32132210

RESUMEN

Double fertilization is a key innovation for the evolutionary success of angiosperms by which the two fertilized female gametes, the egg cell and central cell, generate the embryo and endosperm, respectively. The female gametophyte (embryo sac) enclosed in the sporophyte is derived from a one-celled haploid cell lineage. It undergoes successive events of mitotic divisions, cellularization, and cell specification to give rise to the mature embryo sac, which contains the two female gametes accompanied by two types of accessory cells, namely synergids and antipodals. How the cell fate of the central cell is specified has long been equivocal and is further complicated by the structural diversity of female gametophyte across plant taxa. Here, MADS-box protein AGL80 was verified as a transcriptional repressor that directly suppresses the expression of accessory cell-specific genes to specify the central cell. Further genetic rescue and phylogenetic assay of the AGL80 orthologs revealed a possible conserved mechanism in the Brassicaceae family. Results from this study provide insight into the molecular determination of the second female gamete cell in Brassicaceae.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Óvulo Vegetal/genética , Transcripción Genética , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endospermo/metabolismo , Fertilización/genética , Mutación , Filogenia , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
5.
NPJ Syst Biol Appl ; 5: 28, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428455

RESUMEN

To study systems-level properties of the cell, it is necessary to go beyond individual regulators and target genes to study the regulatory network among transcription factors (TFs). However, it is difficult to directly dissect the TFs mediated genome-wide gene regulatory network (GRN) by experiment. Here, we proposed a hierarchical graphical model to estimate TF activity from mRNA expression by building TF complexes with protein cofactors and inferring TF's downstream regulatory network simultaneously. Then we applied our model on flower development and circadian rhythm processes in Arabidopsis thaliana. The computational results show that the sequence specific bHLH family TF HFR1 recruits the chromatin regulator HAC1 to flower development master regulator TF AG and further activates AG's expression by histone acetylation. Both independent data and experimental results supported this discovery. We also found a flower tissue specific H3K27ac ChIP-seq peak at AG gene body and a HFR1 motif in the center of this H3K27ac peak. Furthermore, we verified that HFR1 physically interacts with HAC1 by yeast two-hybrid experiment. This HFR1-HAC1-AG triplet relationship may imply that flower development and circadian rhythm are bridged by epigenetic regulation and enrich the classical ABC model in flower development. In addition, our TF activity network can serve as a general method to elucidate molecular mechanisms on other complex biological regulatory processes.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biología Computacional/métodos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arseniato Reductasas/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Epigénesis Genética/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes , Genoma , Proteínas Nucleares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Nat Commun ; 9(1): 5290, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538233

RESUMEN

In flowering plants, the switch from floral stem cell maintenance to gynoecium (female structure) formation is a critical developmental transition for reproductive success. In Arabidopsis thaliana, AGAMOUS (AG) terminates floral stem cell activities to trigger this transition. Although CRABS CLAW (CRC) is a direct target of AG, previous research has not identified any common targets. Here, we identify an auxin synthesis gene, YUCCA4 (YUC4) as a common direct target. Ectopic YUC4 expression partially rescues the indeterminate phenotype and cell wall defects that are caused by the crc mutation. The feed-forward YUC4 activation by AG and CRC directs a precise change in chromatin state for the shift from floral stem cell maintenance to gynoecium formation. We also showed that two auxin-related direct CRC targets, YUC4 and TORNADO2, cooperatively contribute to the termination of floral stem cell maintenance. This finding provides new insight into the CRC-mediated auxin homeostasis regulation for proper gynoecium formation.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Oxigenasas de Función Mixta/metabolismo , Factores de Transcripción/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cromatina/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/crecimiento & desarrollo , Oxigenasas de Función Mixta/genética , Factores de Transcripción/genética
8.
New Phytol ; 219(4): 1480-1491, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29862530

RESUMEN

Dispersed H3K27 trimethylation (H3K27me3) of the AGAMOUS (AG) genomic locus is mediated by CURLY LEAF (CLF), a component of the Polycomb Repressive Complex (PRC) 2. Previous reports have shown that the AG second intron, which confers AG tissue-specific expression, harbors sequences targeted by several positive and negative regulators. Using RACE reverse transcription polymerase chain reaction, we found that the AG intron 2 encodes several noncoding RNAs. RNAi experiment showed that incRNA4 is needed for CLF repressive activity. AG-incRNA4RNAi lines showed increased leaf AG mRNA levels associated with a decrease of H3K27me3 levels; these plants displayed AG overexpression phenotypes. Genetic and biochemical analyses demonstrated that the AG-incRNA4 can associate with CLF to repress AG expression in leaf tissues through H3K27me3-mediated repression and to autoregulate its own expression level. The mechanism of AG-incRNA4-mediated repression may be relevant to investigations on tissue-specific expression of Arabidopsis MADS-box genes.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Intrones/genética , Hojas de la Planta/genética , ARN no Traducido/genética , Transcripción Genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/metabolismo , Flores/genética , Glucuronidasa/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/genética , Especificidad de Órganos/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Plantones/genética
9.
Plant J ; 94(6): 1083-1097, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29660180

RESUMEN

WUSCHEL (WUS) is critical for plant meristem maintenance and determinacy in Arabidopsis, and the regulation of its spatiotemporal expression patterns is complex. We previously found that AGAMOUS (AG), a key MADS-domain transcription factor in floral organ identity and floral meristem determinacy, can directly suppress WUS expression through the recruitment of the Polycomb group (PcG) protein TERMINAL FLOWER 2 (TFL2, also known as LIKE HETEROCHROMATIN PROTEIN 1, LHP1) at the WUS locus; however, the mechanism by which WUS is repressed remains unclear. Here, using chromosome conformation capture (3C) and chromatin immunoprecipitation 3C, we found that two specific regions flanking the WUS gene body bound by AG and TFL2 form a chromatin loop that is directly promoted by AG during flower development in a manner independent of the physical distance and sequence content of the intervening region. Moreover, AG physically interacts with TFL2, and TFL2 binding to the chromatin loop is dependent on AG. Transgenic and CRISPR/Cas9-edited lines showed that the WUS chromatin loop represses gene expression by blocking the recruitment of RNA polymerase II at the locus. The findings uncover the WUS chromatin loop as another regulatory mechanism controlling WUS expression, and also shed light on the factors required for chromatin conformation change and their recruitment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Proteínas de Homeodominio/metabolismo , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Nucleic Acids Res ; 46(10): 4966-4977, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29562355

RESUMEN

The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein-protein interaction domains to the core DNA-binding domain, allowing the formation of heterotetrameric complexes. Tetramerization of plant MADS TFs is believed to play a central role in the evolution of higher plants by acting as one of the main determinants of flower formation and floral organ specification. The MADS TF, SEPALLATA3 (SEP3), functions as a central protein-protein interaction hub, driving tetramerization with other MADS TFs. Here, we use a SEP3 splice variant, SEP3Δtet, which has dramatically abrogated tetramerization capacity to decouple SEP3 tetramerization and DNA-binding activities. We unexpectedly demonstrate that SEP3 heterotetramer formation is required for correct termination of the floral meristem, but plays a lesser role in floral organogenesis. The heterotetramer formed by SEP3 and the MADS protein, AGAMOUS, is necessary to activate two target genes, KNUCKLES and CRABSCLAW, which are required for meristem determinacy. These studies reveal unique and highly specific roles of tetramerization in flower development and suggest tetramerization may be required to activate only a subset of target genes in closed chromatin regions.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Proteínas de Homeodominio/metabolismo , Meristema/fisiología , Factores de Transcripción/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Mutación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Multimerización de Proteína , Factores de Transcripción/genética
11.
Development ; 145(3)2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29361563

RESUMEN

As originally proposed by Goethe in 1790, floral organs are derived from leaf-like structures. The conversion of leaves into different types of floral organ is mediated by floral homeotic proteins, which, as described by the ABCE model of flower development, act in a combinatorial manner. However, how these transcription factors bring about this transformation process is not well understood. We have previously shown that floral homeotic proteins are involved in suppressing the formation of branched trichomes, a hallmark of leaf development, on reproductive floral organs of Arabidopsis Here, we present evidence that the activities of the C function gene AGAMOUS (AG) and the related SHATTERPROOF1/2 genes are superimposed onto the regulatory network that controls the distribution of trichome formation in an age-dependent manner. We show that AG regulates cytokinin responses and genetically interacts with the organ polarity gene KANADI1 to suppress trichome initiation on gynoecia. Thus, our results show that parts of the genetic program for leaf development remain active during flower formation but have been partially rewired through the activities of the floral homeotic proteins.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Citocininas/genética , Citocininas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Modelos Biológicos , Mutación , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tricomas/crecimiento & desarrollo , Tricomas/metabolismo
12.
Plant Cell Physiol ; 59(4): 756-764, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29186581

RESUMEN

Plants are known for their capacity to regenerate organs, such as shoot, root and floral organs. Recently, a number of studies contributed to understanding the mechanisms of shoot and root regeneration. However, the mechanisms underlying floral organ regeneration are largely unknown. In this study, we established a carpel regeneration system in which two types of carpels were induced by exogenous cytokinin. For type I, all the floral organs in the regenerated inflorescence were transformed into carpels. For type II, carpels were generated directly from callus. The transcript level of AGAMOUS (AG), the carpel identity gene, was up-regulated during carpel induction. The expression signals of AG were detected in the initiating carpel primordia and regenerating carpels, and co-localized with those of two Type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs), ARR1 and ARR10. Repression of either AG or type-B ARRs reduced carpel regeneration. Binding analyses showed that ARR1 and ARR10 directly bound to transcriptional regulatory regions of AG and positively regulated its expression. In addition, the expression of type-B ARRs overlapped with that of AG in the floral primordia in planta. Defects in type-B ARRs reduced the number of carpels. The results indicate that type-B ARRs control carpel regeneration through activating AG expression. Our results provide new information for understanding the mechanism of carpel formation.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Regeneración , Factores de Transcripción/metabolismo , Proteína AGAMOUS de Arabidopsis/metabolismo , Reprogramación Celular/efectos de los fármacos , Citocininas/farmacología , Flores/genética , Regeneración/efectos de los fármacos
13.
Ann Bot ; 114(7): 1497-505, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25288633

RESUMEN

BACKGROUND AND AIMS: The morphological variability of the flower in angiosperms, combined with its relatively simple structure, makes it an excellent model to study cell specification and the establishment of morphogenetic patterns. Flowers are the products of floral meristems, which are determinate structures that generate four different types of floral organs before terminating. The precise organization of the flower in whorls, each defined by the identity and number of organs it contains, is controlled by a multi-layered network involving numerous transcriptional regulators. In particular, the AGAMOUS (AG) MADS domain-containing transcription factor plays a major role in controlling floral determinacy in Arabidopsis thaliana in addition to specifying reproductive organ identity. This study aims to characterize the genetic interactions between the ULTRAPETALA1 (ULT1) and LEAFY (LFY) transcriptional regulators during flower morphogenesis, with a focus on AG regulation. METHODS: Genetic and molecular approaches were used to address the question of redundancy and reciprocal interdependency for the establishment of flower meristem initiation, identity and termination. In particular, the effects of loss of both ULT1 and LFY function were determined by analysing flower developmental phenotypes of double-mutant plants. The dependency of each factor on the other for activating developmental genes was also investigated in gain-of-function experiments. KEY RESULTS: The ULT1 and LFY pathways, while both activating AG expression in the centre of the flower meristem, functioned independently in floral meristem determinacy. Ectopic transcriptional activation by ULT1 of AG and AP3, another gene encoding a MADS domain-containing flower architect, did not depend on LFY function. Similarly, LFY did not require ULT1 function to ectopically determine floral fate. CONCLUSIONS: The results indicate that the ULT1 and LFY pathways act separately in regulating identity and determinacy at the floral meristem. In particular, they independently induce AG expression in the centre of the flower to terminate meristem activity. A model is proposed whereby these independent contributions bring about a switch at the AG locus from an inactive to an active transcriptional state at the correct time and place during flower development.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Alelos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Flores/fisiología , Genes Reporteros , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Modelos Biológicos , Mutación , Organogénesis de las Plantas , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Factores de Transcripción/metabolismo
14.
Plant Cell ; 26(7): 2803-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25070639

RESUMEN

It has been perplexing that DNA topoisomerases, enzymes that release DNA supercoils, play specific roles in development. In this study, using a floral stem cell model in Arabidopsis thaliana, we uncovered a role for TOPOISOMERASE1α (TOP1α) in Polycomb Group (PcG) protein-mediated histone 3 lysine 27 trimethylation (H3K27me3) at, and transcriptional repression of, the stem cell maintenance gene WUSCHEL (WUS). We demonstrated that H3K27me3 deposition at other PcG targets also requires TOP1α. Intriguingly, the repression of some, as well as the expression of many, PcG target genes requires TOP1α. The mechanism that unifies the opposing effects of TOP1α appears to lie in its role in decreasing nucleosome density, which probably allows the binding of factors that either recruit PcG, as we demonstrated for AGAMOUS at the WUS locus, or counteract PcG-mediated regulation. Although TOP1α reduces nucleosome density at all genes, the lack of a 5' nucleosome-free region is a feature that distinguishes PcG targets from nontargets and may condition the requirement for TOP1α for their expression. This study uncovers a connection between TOP1α and PcG, which explains the specific developmental functions of TOP1α.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ADN-Topoisomerasas de Tipo I/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Nucleosomas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Diferenciación Celular , ADN-Topoisomerasas de Tipo I/genética , Epigénesis Genética , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/enzimología , Meristema/genética , Meristema/crecimiento & desarrollo , Mutación , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Proteínas del Grupo Polycomb/genética , Transcripción Genética
16.
Science ; 343(6170): 1248559, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24482483

RESUMEN

Plant floral stem cells divide a limited number of times before they stop and terminally differentiate, but the mechanisms that control this timing remain unclear. The precise temporal induction of the Arabidopsis zinc finger repressor KNUCKLES (KNU) is essential for the coordinated growth and differentiation of floral stem cells. We identify an epigenetic mechanism in which the floral homeotic protein AGAMOUS (AG) induces KNU at ~2 days of delay. AG binding sites colocalize with a Polycomb response element in the KNU upstream region. AG binding to the KNU promoter causes the eviction of the Polycomb group proteins from the locus, leading to cell division-dependent induction. These analyses demonstrate that floral stem cells measure developmental timing by a division-dependent epigenetic timer triggered by Polycomb eviction.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/metabolismo , División Celular/fisiología , Flores/crecimiento & desarrollo , Meristema/citología , Proteínas del Grupo Polycomb/metabolismo , Células Madre/citología , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Proteínas Portadoras/genética , División Celular/genética , Epigénesis Genética , Flores/citología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas del Grupo Polycomb/genética , Regiones Promotoras Genéticas , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo
17.
Development ; 141(4): 830-41, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24496620

RESUMEN

In plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At the core of the network that regulates this homeostasis in Arabidopsis are the WUSCHEL (WUS) transcription factor specifying stem cell fate and the CLAVATA (CLV) ligand-receptor system limiting WUS expression. In this study, we identified the ERECTA (ER) pathway as a second receptor kinase signaling pathway that regulates WUS expression, and therefore shoot apical and floral meristem size, independently of the CLV pathway. We demonstrate that reduction in class III HD-ZIP and ER function together leads to a significant increase in WUS expression, resulting in extremely enlarged shoot meristems and a switch from spiral to whorled vegetative phyllotaxy. We further show that strong upregulation of WUS in the inflorescence meristem leads to ectopic expression of the AGAMOUS homeotic gene to a level that switches cell fate from floral meristem founder cell to carpel founder cell, suggesting an indirect role for ER in regulating floral meristem identity. This work illustrates the delicate balance between stem cell specification and differentiation in the meristem and shows that a shift in this balance leads to abnormal phyllotaxy and to altered reproductive cell fate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Homeodominio/metabolismo , Meristema/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Proteína AGAMOUS de Arabidopsis/metabolismo , Biología Computacional , Cartilla de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Hibridación in Situ , Meristema/citología , Microscopía Electrónica de Rastreo , Mutagénesis , Brotes de la Planta/citología , Plantas Modificadas Genéticamente , Células Madre Pluripotentes/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética
18.
Plant Sci ; 215-216: 29-38, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24388512

RESUMEN

microRNA172 (miR172) regulates phase transition and floral patterning in Arabidopsis by repressing targets that encode the APETALA2 (AP2) and AP2-like transcription factors. The miR172-mediated repression of the AP2 gene restricts AGAMOUS (AG) expression. In addition, most miR172 targets, including AP2, redundantly act as floral repressors, and the overexpression of the target genes causes delayed flowering. However, how miR172 targets other than AP2 regulate both of the developmental processes remains unclear. Here, we demonstrate that miR172-mediated repression of the TARGET OF EAT 3 (TOE3) gene is critical for floral patterning in Arabidopsis. Transgenic plants that overexpress a miR172-resistant TOE3 gene (rTOE3-ox) exhibit indeterminate flowers with numerous stamens and carpelloid organs, which is consistent with previous observations in transgenic plants that overexpress a miR172-resistant AP2 gene. TOE3 binds to the second intron of the AG gene. Accordingly, AG expression is significantly reduced in rTOE3-ox plants. TOE3 also interacts with AP2 in the nucleus. Given the major role of AP2 in floral patterning, miR172 likely regulates TOE3 in floral patterning, at least in part via AP2. In addition, a miR156 target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 directly activates TOE3 expression, revealing a novel signaling interaction between miR156 and miR172 in floral patterning.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs , Factores de Transcripción/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Intrones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente , Proteínas , Transducción de Señal , Factores de Transcripción/metabolismo
19.
Plant Cell ; 25(7): 2482-503, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23821642

RESUMEN

The floral organ identity factor AGAMOUS (AG) is a key regulator of Arabidopsis thaliana flower development, where it is involved in the formation of the reproductive floral organs as well as in the control of meristem determinacy. To obtain insights into how AG specifies organ fate, we determined the genes and processes acting downstream of this C function regulator during early flower development and distinguished between direct and indirect effects. To this end, we combined genome-wide localization studies, gene perturbation experiments, and computational analyses. Our results demonstrate that AG controls flower development to a large extent by controlling the expression of other genes with regulatory functions, which are involved in mediating a plethora of different developmental processes. One aspect of this function is the suppression of the leaf development program in emerging floral primordia. Using trichome initiation as an example, we demonstrate that AG inhibits an important aspect of leaf development through the direct control of key regulatory genes. A comparison of the gene expression programs controlled by AG and the B function regulators APETALA3 and PISTILLATA, respectively, showed that while they control many developmental processes in conjunction, they also have marked antagonistic, as well as independent activities.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Flores/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma , Tricomas/genética , Tricomas/crecimiento & desarrollo , Tricomas/metabolismo
20.
PLoS Genet ; 9(1): e1003218, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349639

RESUMEN

Termination of the stem cells in the floral meristem (also known as floral determinacy) is critical for the reproductive success of plants, and the molecular activities regulating floral determinacy are precisely orchestrated during the course of floral development. In Arabidopsis thaliana, regulators of floral determinacy include several transcription factor genes, such as APETALA2 (AP2), AGAMOUS (AG), SUPERMAN (SUP), and CRABSCLAW (CRC), as well as a microRNA (miRNA), miR172, which targets AP2. How the transcription factor and miRNA genes are coordinately regulated to achieve floral determinacy is unknown. A mutation in POWERDRESS (PWR), a previously uncharacterized gene encoding a SANT-domain-containing protein, was isolated in this study as an enhancer of the weakly indeterminate ag-10 allele. PWR was found to promote the transcription of CRC, MIR172a, b, and c and/or enhance Pol II occupancy at their promoters, without affecting MIR172d or e. A mutation in mature miR172d was additionally found to enhance the determinacy defects of ag-10 in an AP2-dependent manner, providing direct evidence that miR172d is functional in repressing AP2 and thereby contributes to floral determinacy. Thus, while PWR promotes floral determinacy by enhancing the expression of three of the five MIR172 members as well as CRC, MIR172d, whose expression is PWR-independent, also functions in floral stem cell termination. Taken together, these findings demonstrate how transcriptional diversification and functional redundancy of a miRNA family along with PWR-mediated co-regulation of miRNA and transcription factor genes contribute to the robustness of the floral determinacy network.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , Flores , MicroARNs , Factores de Transcripción/genética , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA