Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
1.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38608703

RESUMEN

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Asunto(s)
Proteína BRCA2 , Neoplasias de la Mama , Glucólisis , Piruvaldehído , Animales , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Ratones , Humanos , Femenino , Piruvaldehído/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Haploinsuficiencia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Mutación , Daño del ADN , Reparación del ADN , Línea Celular Tumoral
2.
Cell ; 187(9): 2124-2126, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670069

RESUMEN

Many types of tumor cells alter metabolic pathways to meet their energy and biosynthetic demands for proliferation or stress adaptation. In this issue of Cell, Kong et al. find that the glycolytic metabolite methylglyoxal causes cancer-associated mutant single-base substitution features by inducing BRCA2 proteolysis, leading to functional haploinsufficiency of BRCA2.


Asunto(s)
Proteína BRCA2 , Glucólisis , Haploinsuficiencia , Humanos , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Piruvaldehído/metabolismo , Mutación
3.
Nat Commun ; 15(1): 2853, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565883

RESUMEN

Aberrant glycosylation is a crucial strategy employed by cancer cells to evade cellular immunity. However, it's unclear whether homologous recombination (HR) status-dependent glycosylation can be therapeutically explored. Here, we show that the inhibition of branched N-glycans sensitizes HR-proficient, but not HR-deficient, epithelial ovarian cancers (EOCs) to immune checkpoint blockade (ICB). In contrast to fucosylation whose inhibition sensitizes EOCs to anti-PD-L1 immunotherapy regardless of HR-status, we observe an enrichment of branched N-glycans on HR-proficient compared to HR-deficient EOCs. Mechanistically, BRCA1/2 transcriptionally promotes the expression of MGAT5, the enzyme responsible for catalyzing branched N-glycans. The branched N-glycans on HR-proficient tumors augment their resistance to anti-PD-L1 by enhancing its binding with PD-1 on CD8+ T cells. In orthotopic, syngeneic EOC models in female mice, inhibiting branched N-glycans using 2-Deoxy-D-glucose sensitizes HR-proficient, but not HR-deficient EOCs, to anti-PD-L1. These findings indicate branched N-glycans as promising therapeutic targets whose inhibition sensitizes HR-proficient EOCs to ICB by overcoming immune evasion.


Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Humanos , Femenino , Animales , Ratones , Proteína BRCA1/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T CD8-positivos/metabolismo , Glicosilación , Proteína BRCA2/metabolismo , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Antígeno B7-H1/metabolismo
4.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557488

RESUMEN

While breast cancer 2 (BRCA2) loss of heterozygosity (LOH) promotes cancer initiation, it can also induce death in nontransformed cells. In contrast, mismatch repair gene mutL homolog 1 (MLH1) is a tumor-suppressor gene that protects cells from cancer development through repairing mismatched base pairs during DNA mismatch repair (MMR). Sengodan et al., in this issue of the JCI, reveal an interplay between the 2 genes: MLH1 promoted the survival of BRCA2-deficient cells independently of its MMR function. MLH1 protected replication forks from degradation, while also resolving R-loops, thereby reducing genomic instability. Moreover, MLH1 expression was regulated directly by estrogen, shedding light into the hormone-responsive nature of many BRCA2 mutant breast cancers. These results provide important insight into the genetics that drive the initiation of BRCA2-mutated breast cancers.


Asunto(s)
Neoplasias de la Mama , Homólogo 1 de la Proteína MutL , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Inestabilidad Genómica , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo
5.
Free Radic Res ; 58(2): 130-143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38394084

RESUMEN

Pathogenic variants of BRCA1/2 constitute hereditary breast and ovarian cancer (HBOC) syndrome, and BRCA1/2 mutant is a risk for various cancers. Whereas the clinical guideline for HBOC patients has been organized for the therapy and prevention of cancer, there is no recommendation on the female reproductive discipline. Indeed, the role of BRCA1/2 pathogenic variants in ovarian reserve has not been established due to the deficiency of appropriate animal models. Here, we used a rat model of Brca2(p.T1942fs/+) mutant of Sprague-Dawley strain with CRISPR-Cas9 editing to evaluate ovarian reserve in females. Fertility and ovarian follicles were evaluated and anti-Müllerian hormone (AMH) was measured at 8-32 weeks of age with a comparison between the wild-type and the mutant rats (MUT). MUT revealed a significantly smaller number of deliveries with fewer total pups. Furthermore, MUT showed a significant decrease in primordial follicles at 20 weeks and a low AMH level at 28 weeks. RNA-sequencing of the ovary at 10 weeks detected acceleration of the DNA damage repair pathway, which was accompanied by oxidative stress-induced DNA double-strand breaks, a decrease in PTEN, and an increase in mTOR in follicular granulosa cells. In conclusion, Brca2(p.T1942fs/+) dissipates primordial follicles via early activation of granulosa cells through oxidative stress, leading to earlier termination of fertility.


Asunto(s)
Reserva Ovárica , Humanos , Ratas , Femenino , Animales , Reserva Ovárica/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ratas Sprague-Dawley , Células de la Granulosa/metabolismo , Hormona Antimülleriana/genética , Hormona Antimülleriana/metabolismo , Estrés Oxidativo
6.
Mol Cell ; 84(3): 409-410, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307000

RESUMEN

In this issue of Molecular Cell, Lim et al.1 reveal new insights into the distinct roles of BRCA2 in coping with DNA breaks, highlighting homologous recombination as the pivotal function that affects tumorigenesis and therapy response.


Asunto(s)
Replicación del ADN , Recombinasa Rad51 , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Roturas del ADN , Reparación del ADN , Recombinación Homóloga/genética , Recombinasa Rad51/genética , Humanos , Animales , Ratones
7.
J Clin Invest ; 134(7)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271119

RESUMEN

Loss of BRCA2 (breast cancer 2) is lethal for normal cells. Yet it remains poorly understood how, in BRCA2 mutation carriers, cells undergoing loss of heterozygosity overcome the lethality and undergo tissue-specific neoplastic transformation. Here, we identified mismatch repair gene mutL homolog 1 (MLH1) as a genetic interactor of BRCA2 whose overexpression supports the viability of Brca2-null cells. Mechanistically, we showed that MLH1 interacts with Flap endonuclease 1 (FEN1) and competes to process the RNA flaps of Okazaki fragments. Together, they restrained the DNA2 nuclease activity on the reversed forks of lagging strands, leading to replication fork (RF) stability in BRCA2-deficient cells. In these cells, MLH1 also attenuated R-loops, allowing the progression of stable RFs, which suppressed genomic instability and supported cell viability. We demonstrated the significance of their genetic interaction by the lethality of Brca2-mutant mice and inhibition of Brca2-deficient tumor growth in mice by Mlh1 loss. Furthermore, we described estrogen as inducing MLH1 expression through estrogen receptor α (ERα), which might explain why the majority of BRCA2 mutation carriers develop ER-positive breast cancer. Taken together, our findings reveal a role of MLH1 in relieving replicative stress and show how it may contribute to the establishment of BRCA2-deficient breast tumors.


Asunto(s)
Proteína BRCA2 , Neoplasias Mamarias Animales , Animales , Ratones , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Reparación de la Incompatibilidad de ADN , Replicación del ADN
8.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266640

RESUMEN

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Asunto(s)
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga
9.
Eur J Med Chem ; 265: 116114, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38194775

RESUMEN

The BRCA2-RAD51 interaction remains an intriguing target for cancer drug discovery due to its vital role in DNA damage repair mechanisms, which cancer cells become particularly reliant on. Moreover, RAD51 has many synthetically lethal partners, including PARP1-2, which can be exploited to induce synthetic lethality in cancer. In this study, we established a 19F-NMR-fragment based approach to identify RAD51 binders, leading to two initial hits. A subsequent SAR program identified 46 as a low micromolar inhibitor of the BRCA2-RAD51 interaction. 46 was tested in different pancreatic cancer cell lines, to evaluate its ability to inhibit the homologous recombination DNA repair pathway, mediated by BRCA2-RAD51 and trigger synthetic lethality in combination with the PARP inhibitor talazoparib, through the induction of apoptosis. Moreover, we further analyzed the 46/talazoparib combination in 3D pancreatic cancer models. Overall, 46 showed its potential as a tool to evaluate the RAD51/PARP1-2 synthetic lethality mechanism, along with providing a prospect for further inhibitors development.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/química , Proteína BRCA2/antagonistas & inhibidores , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Reparación del ADN , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Mutaciones Letales Sintéticas
10.
Mol Cell ; 84(3): 447-462.e10, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244544

RESUMEN

Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , Recombinasa Rad51 , Animales , Humanos , Ratones , Proteína BRCA2/metabolismo , Reparación del ADN , Inestabilidad Genómica , Genómica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación
11.
J Pathol ; 262(2): 137-146, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37850614

RESUMEN

The identification of causal BRCA1/2 pathogenic variants (PVs) in epithelial ovarian carcinoma (EOC) aids the selection of patients for genetic counselling and treatment decision-making. Current recommendations therefore stress sequencing of all EOCs, regardless of histotype. Although it is recognised that BRCA1/2 PVs cluster in high-grade serous ovarian carcinomas (HGSOC), this view is largely unsubstantiated by detailed analysis. Here, we aimed to analyse the results of BRCA1/2 tumour sequencing in a centrally revised, consecutive, prospective series including all EOC histotypes. Sequencing of n = 946 EOCs revealed BRCA1/2 PVs in 125 samples (13%), only eight of which were found in non-HGSOC histotypes. Specifically, BRCA1/2 PVs were identified in high-grade endometrioid (3/20; 15%), low-grade endometrioid (1/40; 2.5%), low-grade serous (3/67; 4.5%), and clear cell (1/64; 1.6%) EOCs. No PVs were identified in any mucinous ovarian carcinomas tested. By re-evaluation and using loss of heterozygosity and homologous recombination deficiency analyses, we then assessed: (1) whether the eight 'anomalous' cases were potentially histologically misclassified and (2) whether the identified variants were likely causal in carcinogenesis. The first 'anomalous' non-HGSOC with a BRCA1/2 PV proved to be a misdiagnosed HGSOC. Next, germline BRCA2 variants, found in two p53-abnormal high-grade endometrioid tumours, showed substantial evidence supporting causality. One additional, likely causal variant, found in a p53-wildtype low-grade serous ovarian carcinoma, was of somatic origin. The remaining cases showed retention of the BRCA1/2 wildtype allele, suggestive of non-causal secondary passenger variants. We conclude that likely causal BRCA1/2 variants are present in high-grade endometrioid tumours but are absent from the other EOC histotypes tested. Although the findings require validation, these results seem to justify a transition from universal to histotype-directed sequencing. Furthermore, in-depth functional analysis of tumours harbouring BRCA1/2 variants combined with detailed revision of cancer histotypes can serve as a model in other BRCA1/2-related cancers. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Femenino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteína p53 Supresora de Tumor , Carcinoma Epitelial de Ovario/genética
12.
Sci Rep ; 13(1): 22659, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114660

RESUMEN

Olaparib is a PARP inhibitor (PARPi) approved for targeted treatment of ovarian cancer (OC). However, its efficacy is impeded by the inevitable occurrence of resistance. Here, we investigated whether the cytotoxic activity of olaparib could be synergistically enhanced in olaparib-resistant OC cells with BRCA2 reversion mutation by the addition of inhibitors of the ATR/CHK1 pathway. Moreover, we provide insights into alterations in the DNA damage response (DDR) pathway induced by combination treatments. Antitumor activity of olaparib alone or combined with an ATR inhibitor (ATRi, ceralasertib) or CHK1 inhibitor (CHK1i, MK-8776) was evaluated in OC cell lines sensitive (PEO1, PEO4) and resistant (PEO1-OR) to olaparib. Antibody microarrays were used to explore changes in expression of 27 DDR-related proteins. Olaparib in combination with ATR/CHK1 inhibitors synergistically induced a decrease in viability and clonogenic survival and an increase in apoptosis mediated by caspase-3/7 in all OC cells. Combination treatments induced cumulative alterations in expression of DDR-related proteins mediating distinct DNA repair pathways and cell cycle control. In the presence of ATRi and CHK1i, olaparib-induced upregulation of proteins determining cell fate after DNA damage (PARP1, CHK1, c-Abl, Ku70, Ku80, MDM2, and p21) was abrogated in PEO1-OR cells. Overall, the addition of ATRi or CHK1i to olaparib effectively overcomes resistance to PARPi exerting anti-proliferative effect in BRCA2MUT olaparib-resistant OC cells and alters expression of DDR-related proteins. These new molecular insights into cellular response to olaparib combined with ATR/CHK1 inhibitors might help improve targeted therapies for olaparib-resistant OC.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Antineoplásicos/farmacología , Daño del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
13.
Curr Genet ; 69(4-6): 301-308, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37934232

RESUMEN

BRCA2 is a tumor-suppressor gene that is normally expressed in the breast and ovarian tissue of mammals. The BRCA2 protein mediates the repair of double-strand breaks (DSBs) using homologous recombination, which is a conserved pathway in eukaryotes. Women who express missense mutations in the BRCA2 gene are predisposed to an elevated lifetime risk for both breast cancer and ovarian cancer. In the present study, the efficiency of human BRCA2 (hBRCA2) in DSB repair was investigated in the budding yeast Saccharomyces cerevisiae. While budding yeast does not possess a true BRCA2 homolog, they have a potential functional homolog known as Rad52, which is an essential repair protein involved in mediating homologous recombination using the same mechanism as BRCA2 in humans. Therefore, to examine the functional overlap between Rad52 in yeast and hBRCA2, we expressed the wild-type hBRCA2 gene in budding yeast with or without Rad52 and monitored ionizing radiation resistance and DSB repair efficiency. We found that the expression of hBRCA2 in rad52 mutants increases both radiation resistance and DSB repair frequency compared to cells not expressing BRCA2. Specifically, BRCA2 improved the protection against ionizing radiation by at least 1.93-fold and the repair frequency by 6.1-fold. In addition, our results show that homology length influences repair efficiency in rad52 mutant cells, which impacts BRCA2 mediated repair of DSBs. This study provides evidence that S. cerevisiae could be used to monitor BRCA2 function, which can help in understanding the genetic consequences of BRCA2 variants and how they may contribute to cancer progression.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Femenino , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Reparación del ADN/genética , Genes BRCA2 , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Prueba de Complementación Genética
14.
Biomed Pharmacother ; 169: 115877, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37951025

RESUMEN

DNA repair is a vital mechanism in cells that protects against DNA damage caused by internal and external factors. It involves a network of signaling pathways that monitor and transmit damage signals, activating various cellular activities to repair DNA damage and maintain genomic integrity. Dysfunctions in this repair pathway are strongly associated with the development and progression of cancer. However, they also present an opportunity for targeted therapy in breast cancer. Extensive research has focused on developing inhibitors that play a crucial role in the signaling pathway of DNA repair, particularly due to the remarkable success of PARP1 inhibitors (PARPis) in treating breast cancer patients with BRCA1/2 mutations. In this review, we summarize the current research progress and clinical implementation of BRCA and BRCAness in targeted treatments for the DNA repair pathway. Additionally, we present advancements in diverse inhibitors of DNA repair, both as individual and combined approaches, for treating breast cancer. We also discuss the clinical application of DNA repair-targeted therapy for breast cancer, including the rationale, indications, and summarized clinical data for patients with different breast cancer subtypes. We assess their influence on cancer progression, survival rates, and major adverse reactions. Last, we anticipate forthcoming advancements in targeted therapy for cancer treatment and emphasize prospective areas of development.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Reparación del ADN , Daño del ADN
15.
Nat Commun ; 14(1): 7430, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973845

RESUMEN

Poly (ADP-ribose) polymerase inhibitors (PARPi) are selectively active in ovarian cancer (OC) with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1/2 and other DNA repair pathway members. We sought molecular targeted therapy that induce HRD in HR-proficient cells to induce synthetic lethality with PARPi and extend the utility of PARPi. Here, we demonstrate that lysine-specific demethylase 1 (LSD1) is an important regulator for OC. Importantly, genetic depletion or pharmacological inhibition of LSD1 induces HRD and sensitizes HR-proficient OC cells to PARPi in vitro and in multiple in vivo models. Mechanistically, LSD1 inhibition directly impairs transcription of BRCA1/2 and RAD51, three genes essential for HR, dependently of its canonical demethylase function. Collectively, our work indicates combination with LSD1 inhibitor could greatly expand the utility of PARPi to patients with HR-proficient tumor, warranting assessment in human clinical trials.


Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Humanos , Femenino , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Regulación hacia Abajo , Reparación del ADN , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Recombinación Homóloga , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
16.
Nat Commun ; 14(1): 7834, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030626

RESUMEN

A synthetic lethal relationship exists between disruption of polymerase theta (Polθ), and loss of either 53BP1 or homologous recombination (HR) proteins, including BRCA1; however, the mechanistic basis of these observations are unclear. Here we reveal two distinct mechanisms of Polθ synthetic lethality, identifying dual influences of 1) whether Polθ is lost or inhibited, and 2) the underlying susceptible genotype. Firstly, we find that the sensitivity of BRCA1/2- and 53BP1-deficient cells to Polθ loss, and 53BP1-deficient cells to Polθ inhibition (ART558) requires RAD52, and appropriate reduction of RAD52 can ameliorate these phenotypes. We show that in the absence of Polθ, RAD52 accumulations suppress ssDNA gap-filling in G2/M and encourage MRE11 nuclease accumulation. In contrast, the survival of BRCA1-deficient cells treated with Polθ inhibitor are not restored by RAD52 suppression, and ssDNA gap-filling is prevented by the chemically inhibited polymerase itself. These data define an additional role for Polθ, reveal the mechanism underlying synthetic lethality between 53BP1, BRCA1/2 and Polθ loss, and indicate genotype-dependent Polθ inhibitor mechanisms.


Asunto(s)
Proteína BRCA1 , Mutaciones Letales Sintéticas , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Recombinación Homóloga , Reparación del ADN , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , ADN Polimerasa theta
17.
Cell Death Dis ; 14(11): 753, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980415

RESUMEN

Pathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.Arg3052Gln, which has conflicting interpretations of pathogenicity in the ClinVar variant database. Arginine at position 3052 in BRCA2 plays an important role in stabilizing its C-terminal DNA binding domain. We have generated a knock-in mouse model expressing this variant to examine its role on growth and survival in vivo. Homozygous as well as hemizygous mutant mice are viable, fertile and exhibit no overt phenotype. While we did not observe any hematopoietic defects in adults, we did observe a marked reduction in the in vitro proliferative ability of fetal liver cells that were also hypersensitive to PARP inhibitor, olaparib. In vitro studies performed on embryonic and adult fibroblasts derived from the mutant mice showed significant reduction in radiation induced RAD51 foci formation as well as increased genomic instability after mitomycin C treatment. We observed mis-localization of a fraction of R3052Q BRCA2 protein to the cytoplasm which may explain the observed in vitro phenotypes. Our findings suggest that BRCA2 R3052Q should be considered as a hypomorphic variant.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias Ováricas , Humanos , Femenino , Ratones , Animales , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Pruebas Genéticas , Neoplasias Ováricas/genética , Homocigoto , Neoplasias de la Mama/genética , Proteína BRCA1/genética , Predisposición Genética a la Enfermedad
18.
Cancer Treat Res ; 186: 125-142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37978134

RESUMEN

A subset of patients with pancreatic adenocarcinomas (PDAC) harbor mutations that are exploitable in the context of DNA-damage response and repair (DDR) inhibitory strategies. Between 8-18% of PDACs harbor specific mutations in the DDR pathway such as BRCA1/2 mutations, and a higher prevalence exists in high-risk populations (e.g., Ashkenazi Jews). Herein, we will review the current trials and data on the treatment of PDAC patients who harbor such mutations and who appear sensitive to platinum and/or poly ADP ribose polymerase inhibitor (PARPi) based therapies due to a concept known as synthetic lethality. Although this current best-in-class precision treatment shows clinical promise, the specter of resistance limits the extent of therapeutic responses. We therefore also evaluate promising pre-clinical and clinical approaches in the pipeline that may either work with existing therapies to break resistance or work separately with combination therapies against this subset of PDACs.


Asunto(s)
Neoplasias Pancreáticas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparación del ADN , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
19.
Nat Commun ; 14(1): 7003, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919288

RESUMEN

The BRCA2 tumour suppressor protein preserves genomic integrity via interactions with the DNA-strand exchange RAD51 protein in homology-directed repair. The RAD51-binding TR2 motif at the BRCA2 C-terminus is essential for protection and restart of stalled replication forks. Biochemical evidence shows that TR2 recognises filamentous RAD51, but existing models of TR2 binding to RAD51 lack a structural basis. Here we used cryo-electron microscopy and structure-guided mutagenesis to elucidate the mechanism of TR2 binding to nucleoprotein filaments of human RAD51. We find that TR2 binds across the protomer interface in the filament, acting as a brace for adjacent RAD51 molecules. TR2 targets an acidic-patch motif on human RAD51 that serves as a recruitment hub in fission yeast Rad51 for recombination mediators Rad52 and Rad55-Rad57. Our findings provide a structural rationale for RAD51 filament stabilisation by BRCA2 and reveal a common recruitment mechanism of recombination mediators to the RAD51 filament.


Asunto(s)
Proteínas de Unión al ADN , Nucleoproteínas , Humanos , Proteínas de Unión al ADN/metabolismo , Nucleoproteínas/metabolismo , Microscopía por Crioelectrón , Recombinasa Rad51/metabolismo , Proteína BRCA2/metabolismo , Reparación del ADN
20.
Stem Cell Res ; 72: 103219, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816281

RESUMEN

Germline pathogenic variants in the BRCA2 gene are strongly correlated with an elevated risk of developing breast cancer. Two specific BRCA2 variants, c.8167G>C (p.Asp2723His) and c.1583del (p.Asn528fs), have been identified from individuals with a family history of breast cancer. Here we generated two iPSC lines from breast cancer patients who are heterozygous carriers of these two variants. These iPSCs exhibit pluripotency and demonstrate the capability to differentiate into three germ layers. These iPSC lines represent a valuable resource for personalized pre-clinical research, offering new opportunities to explore the underlying mechanisms of breast cancer and develop targeted therapeutic approaches.


Asunto(s)
Neoplasias de la Mama , Células Madre Pluripotentes Inducidas , Humanos , Femenino , Neoplasias de la Mama/genética , Genes BRCA2 , Células Madre Pluripotentes Inducidas/metabolismo , Mutación de Línea Germinal , Mutación , Proteína BRCA2/genética , Proteína BRCA2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA