Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
J Neuroimmunol ; 385: 578234, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944208

RESUMEN

CD46 is a complementary regulatory protein ubiquitously expressed in human cells, controlling complement system activation. CD46 has further been identified to have several other functions including regulatory T cell induction and intestinal epithelial (IEC) barrier regulation. Activation of CD46 in the IEC can impact intestinal barrier permeability and immune system functioning. CD46 has only been identified in the spermatozoa and retina of mice. In other murine cells, the homologue CRRY is identified to function as the complementary regulator. Due to the identification of CRRY across other wild-type mouse cells and the development of mouse strains transgenic for human CD46, no recent research has been conducted to determine if CD46 is present in non-transgenic mouse strains. Therefore, the current study investigated if CD46 is expressed in the substantia nigra (SN) and caudate putamen (CP) of pubescent CD1 mice and examined the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatment on CD46 expression in the brain. As of 5 weeks of age, mice were administered mixed antimicrobial solution or water with oral gavage twice daily for 7 days. At 6 weeks of age, mice received an intraperitoneal injection of LPS or saline. Mice were euthanized 8 h post-injection and brain samples were collected. Our results indicate that pubescent CD-1 mice express CD46 in the SN and CP. However, LPS-treated mice displayed significantly less CD46 expression in the SN in comparison to saline-treated mice. Furthermore, males displayed more CD46 in the CP compared to females, regardless of LPS and antimicrobial treatments. Our data suggest CD46 is present in CD1 mice and that LPS and antimicrobial treatments impact CD46 protein expression in a sex-dependent manner. These results have important implications for the expression of CD46 in the mouse brain and the understanding of its role in immune system regulation.


Asunto(s)
Encéfalo , Proteína Cofactora de Membrana , Animales , Femenino , Humanos , Recién Nacido , Masculino , Ratones , Antiinfecciosos/farmacología , Encéfalo/metabolismo , Lipopolisacáridos/farmacología , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Glicoproteínas de Membrana , Ratones Endogámicos
2.
J Virol ; 97(11): e0091023, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37921471

RESUMEN

IMPORTANCE: The main limitation of oncolytic vectors is neutralization by blood components, which prevents intratumoral administration to patients. Enadenotucirev, a chimeric HAdV-11p/HAdV-3 adenovirus identified by bio-selection, is a low seroprevalence vector active against a broad range of human carcinoma cell lines. At this stage, there's still some uncertainty about tropism and primary receptor utilization by HAdV-11. However, this information is very important, as it has a direct influence on the effectiveness of HAdV-11-based vectors. The aim of this work is to determine which of the two receptors, DSG2 and CD46, is involved in the attachment of the virus to the host, and what role they play in the early stages of infection.


Asunto(s)
Adenovirus Humanos , Desmogleína 2 , Proteína Cofactora de Membrana , Receptores Virales , Humanos , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Línea Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo
3.
J Gen Virol ; 104(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37668349

RESUMEN

Human cytomegalovirus (HCMV) primary infections are typically asymptomatic in healthy individuals yet can cause increased morbidity and mortality in organ transplant recipients, AIDS patients, neonates, and the elderly. The successful, widespread dissemination of this virus among the population can be attributed in part to its wide cellular tropism and ability to establish life-long latency. HCMV infection is a multi-step process that requires numerous cellular and viral factors. The viral envelope consists of envelope protein complexes that interact with cellular factors; such interactions dictate virus recognition and attachment to different cell types, followed by fusion either at the cell membrane or within an endocytic vesicle. Several HCMV entry factors, including neuropilin-2 (Nrp2), THBD, CD147, OR14I1, and CD46, are characterized as participating in HCMV pentamer-specific entry of non-fibroblast cells such as epithelial, trophoblast, and endothelial cells, respectively. This study focuses on characterizing the structural elements of CD46 that impact HCMV infection. Infectivity studies of wild-type and CD46 knockout epithelial cells demonstrated that levels of CD46 expressed on the cell surface were directly related to HCMV infectivity. Overexpression of CD46 isomers BC1, BC2, and C2 enhanced infection. Further, CD46 knockout epithelial cells expressing CD46 deletion and chimeric molecules identified that the intact ectodomain was critical for rescue of HCMV infection in CD46 knockout cells. Collectively, these data support a model that the extracellular domain of CD46 participates in HCMV infection due to its surface expression.


Asunto(s)
Infecciones por Citomegalovirus , Células Endoteliales , Proteína Cofactora de Membrana , Humanos , Membrana Celular , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Células Epiteliales , Proteína Cofactora de Membrana/genética
4.
J Clin Immunol ; 43(8): 1840-1856, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37477760

RESUMEN

Mutations in CD46 predispose to atypical hemolytic uremic syndrome (aHUS) with low penetrance. Factors driving immune-dysregulatory disease in individual mutation carriers have remained ill-understood. In addition to its role as a negative regulator of the complement system, CD46 modifies T cell-intrinsic metabolic adaptation and cytokine production. Comparative immunologic analysis of diseased vs. healthy CD46 mutation carriers has not been performed in detail yet. In this study, we comprehensively analyzed clinical, molecular, immune-phenotypic, cytokine secretion, immune-metabolic, and genetic profiles in healthy vs. diseased individuals carrying a rare, heterozygous CD46 mutation identified within a large single family. Five out of six studied individuals carried a CD46 gene splice-site mutation causing an in-frame deletion of 21 base pairs. One child suffered from aHUS and his paternal uncle manifested with adult-onset systemic lupus erythematosus (SLE). Three mutation carriers had no clinical evidence of CD46-related disease to date. CD4+ T cell-intrinsic CD46 expression was uniformly 50%-reduced but was comparable in diseased vs. healthy mutation carriers. Reconstitution experiments defined the 21-base pair-deleted CD46 variant as intracellularly-but not surface-expressed and haploinsufficient. Both healthy and diseased mutation carriers displayed reduced CD46-dependent T cell mitochondrial adaptation. Diseased mutation carriers had lower peripheral regulatory T cell (Treg) frequencies and carried potentially epistatic, private rare variants in other inborn errors of immunity (IEI)-associated proinflammatory genes, not found in healthy mutation carriers. In conclusion, low Treg and rare non-CD46 immune-gene variants may contribute to clinically manifest CD46 haploinsufficiency-associated immune-dysregulation.


Asunto(s)
Familia , Haploinsuficiencia , Adulto , Niño , Humanos , Estado de Salud , Heterocigoto , Citocinas , Proteína Cofactora de Membrana/genética
5.
Int Immunopharmacol ; 114: 109450, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36446233

RESUMEN

CD46, CD55 and CD59 are membrane-bound complement regulatory proteins (mCRPs) and highly expressed in many tumor tissues. Our analysis by RNA sequencing and qRT-PCR revealed that the expression of mCRPs was significantly elevated in cancer tissues of 15 patients with colon cancer. To further investigate the role of mCRPs in the development of colon cancer, we suppressed the expression of mCRPs by CD46-shRNA, CD55-shRNA and CD59-shRNA in colon cancer cell lines, SW620 and HT-29 cells. The results indicated that CD46-shRNA, CD55-shRNA and CD59-shRNA effectively reduced the expression of mCRPs, accompanied with the increased LDH release and the percentage of Annexin V + 7-AAD- early phase of apoptotic cells. The similar cytotoxic effects were also observed in the cells treated with CD46 neutralizing antibody (aCD46), associated with the increased C5b-9 deposition, cleaved caspase-3 and Bax expression in the treated cells. The cytotoxic effects by mCRPs knock-down were potentiated in the cells co-treated with doxorubicin (Dox). In addition, STAT3, STAT6, and p38 MAPK inhibitors, including C188-9, AS1517499 and SB203580 effectively reduced the expression of CD46 in the treated colon cells, associated with increased cell apoptosis and LDH release. Further study with mouse model revealed that mCRPs knockdown by mCRPs-shRNA significantly reduced colon cancer growth, associated with increased expression of Bax, cleaved caspase-3 and C5b-9 deposition, but reduced expression of Bcl-2, IL-6 and IL-1beta in tumor tissues of nude mice transplanted with SW620 cells. Thereby, mCRPs expression in human colon cancer cells were upregulated by STAT3/STAT6/p38 MAPK signaling and mCRPs knockdown reduced colon cancer growth in mice through inducing tumor cell apoptosis.


Asunto(s)
Neoplasias del Colon , Complejo de Ataque a Membrana del Sistema Complemento , Humanos , Animales , Ratones , Caspasa 3 , Ratones Desnudos , Proteína X Asociada a bcl-2 , Activación de Complemento , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Proteínas del Sistema Complemento/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Antígenos CD55/genética , Antígenos CD55/metabolismo , Factores Inmunológicos , ARN Interferente Pequeño/genética
6.
Clin Exp Immunol ; 211(1): 57-67, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36571232

RESUMEN

The overexpression of membrane-bound complement regulatory proteins (mCRPs) on tumour cells helps them survive complement attacks by suppressing antibody-mediated complement-dependent cytotoxicity (CDC). Consequently, mCRP overexpression limits monoclonal antibody drug immune efficacy. CD55, an mCRP, plays an important role in inhibiting antibody-mediated CDC. However, the mechanisms regulating CD55 expression in tumour cells remain unclear. Here, the aim was to explore CD55-targeting miRNAs. We previously constructed an in vitro model comprising cancer cell lines expressing α-gal and serum containing natural antibodies against α-gal and complement. This was used to simulate antibody-mediated CDC in colon cancer cells. We screened microRNAs that directly target CD55 using LoVo and Ls-174T colon cell lines, which express CD55 at low and high levels, respectively. miR-132-3p expression was dramatically lower in Ls-174T cells than in LoVo cells. miR-132-3p overexpression or inhibition transcriptionally regulated CD55 expression by specifically targeting its mRNA 3'-untranslated regions. Further, miR-132-3p modulation regulated colon cancer cell sensitivity to antibody-mediated CDC through C5a release and C5b-9 deposition. Moreover, miR-132-3p expression was significantly reduced, whereas CD55 expression was increased, in colon cancer tissues compared to levels in adjacent normal tissues. CD55 protein levels were negatively correlated with miR-132-3p expression in colon cancer tissues. Our results indicate that miR-132-3p regulates colon cancer cell sensitivity to antibody-mediated CDC by directly targeting CD55. In addition, incubating the LoVo human tumour cell line, stably transfected with the xenoantigen α-gal, with human serum containing natural antibodies comprises a stable and cheap in vitro model to explore the mechanisms underlying antibody-mediated CDC.


Asunto(s)
Neoplasias del Colon , MicroARNs , Humanos , Activación de Complemento , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Antígenos CD55/genética , Proteínas del Sistema Complemento , Neoplasias del Colon/genética , MicroARNs/genética , Línea Celular Tumoral
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(9): 1344-1350, 2022 Sep 20.
Artículo en Chino | MEDLINE | ID: mdl-36210707

RESUMEN

OBJECTIVE: To investigate the effect of silencing CD46 and desmoglein 2 (DSG2) in host A549 cells on the entry of human adenovirus type 3 (HAdV-3) and type 7 (HAdV-7) and host cell secretion of inflammatory cytokines. METHODS: RNA interference technique was use to silence the expression of CD46 or DSG2 in human epithelial alveolar A549 cells as the host cells of HAdV-3 or HAdV-7. The binding of the viruses with CD46 and DSG2 were observed with immunofluorescence staining at 0.5 and 1 h after viral infection. The viral load in the host cells was determined with qRT-PCR, and IL-8 secretion level was measured using ELISA. RESULTS: In infected A549 cells, immunofluorescent staining revealed colocalization of HAdV-3 and HAdV-37 with their receptors CD46 and DSG2 at 0.5 h and 2 h after infection, and the copy number of the viruses increased progressively after the infection in a time-dependent manner. In A549 cells with CD46 silencing, the virus titers were significantly lower at 2, 6, 12 and 24 h postinfection in comparison with the cells without gene silencing; the virus titers were also significantly decreased in the cells with DSG2 silencing. The secretion level of IL-8 increased significantly in A549 cells without siRNA transfection following infection with HAdV-3 and HAdV-7 (P < 0.0001), but decreased significantly in cells with CD46 and DSG2 silencing (P < 0.0001). CONCLUSION: HAdV-3 and HAdV-7 enter host cells by binding to their receptors CD46 and DSG2, and virus titer and cytokines release increase with infection time. Silencing CD46 and DSG2 can inhibit virus entry and cytokine IL-8 production in host cells.


Asunto(s)
Adenovirus Humanos , Células A549 , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , Humanos , Interleucina-8 , Proteína Cofactora de Membrana/genética , ARN Interferente Pequeño
8.
Nat Cancer ; 3(10): 1192-1210, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36271172

RESUMEN

The complement system is a critical immune component, yet its role in tumor immune evasion and CD8+ T cell activation is not clearly defined. Here, we demonstrate that epidermal growth factor receptor (EGFR)/Wnt signaling induces ß-catenin-mediated long noncoding RNA (lncRNA) LINC00973 expression to sponge CD55-targeting miR-216b and CD59-targeting miR-150. The consequently upregulated CD55/CD59 expression suppresses the complement system and cytokine secretion required for CD8+ T cell activation. CD55/CD59-neutralizing antibody treatment or mutation of the LINC00973 promoter activates the complement and CD8+ T cells, inhibiting tumor growth. Importantly, combined anti-CD55/CD59 and anti-programmed death 1 (anti-PD-1) antibody treatments elicit a synergistic tumor-inhibiting effect. In addition, CD55/CD59 levels are inversely correlated with infiltration of M1 macrophages and CD8+ T cells in human lung cancer specimens and predict patient outcome. These findings underscore the critical role of EGFR/Wnt/ß-catenin-upregulated CD55/CD59 expression in inhibiting the complement and CD8+ T cell activation for tumor immune evasion and immune checkpoint blockade resistance and identify a potential combination therapy to overcome these effects.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , beta Catenina , Linfocitos T CD8-positivos/metabolismo , Inhibidores de Puntos de Control Inmunológico , Proteína Cofactora de Membrana/genética , Antígenos CD55/genética , Proteínas del Sistema Complemento , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Anticuerpos Neutralizantes , Citocinas , Antígenos CD59/genética
9.
Eur J Immunol ; 52(10): 1610-1619, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987516

RESUMEN

Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy that may lead to organ failure. Dysregulation of the complement system can cause aHUS, and various disease-related variants in the complement regulatory protein CD46 are described. We here report a pediatric patient with aHUS carrying a hitherto unreported homozygous variant in CD46 (NM_172359.3:c.602C>T p.(Ser201Leu)). In our functional analyses, this variant caused complement dysregulation through three separate mechanisms. First, CD46 surface expression on the patient's blood cells was significantly reduced. Second, stably expressing CD46(Ser201Leu) cells bound markedly less to patterns of C3b than CD46 WT cells. Third, the patient predominantly expressed the rare isoforms of CD46 (C dominated) instead of the more common isoforms (BC dominated). Using BC1 and C1 expressing cell lines, we found that the C1 isoform bound markedly less C3b than the BC1 isoform. These results highlight the coexistence of multiple mechanisms that may act synergistically to disrupt CD46 function during aHUS development.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Síndrome Hemolítico Urémico Atípico/genética , Niño , Complemento C3b , Proteínas del Sistema Complemento , Humanos , Proteína Cofactora de Membrana/genética , Mutación , Isoformas de Proteínas/genética
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(3): 392-398, 2022 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-35426803

RESUMEN

OBJECTIVE: To investigate the effect CD36 deficiency on muscle insulin signaling in mice fed a normal-fat diet and explore the possible mechanism. METHODS: Wild-type (WT) mice and systemic CD36 knockout (CD36-/-) mice with normal feeding for 14 weeks (n=12) were subjected to insulin tolerance test (ITT) after intraperitoneal injection with insulin (1 U/kg). Real-time PCR was used to detect the mRNA expressions of insulin receptor (IR), insulin receptor substrate 1/2 (IRS1/2) and protein tyrosine phosphatase 1B (PTP1B), and Western blotting was performed to detect the protein expressions of AKT, IR, IRS1/2 and PTP1B in the muscle tissues of the mice. Tyrosine phosphorylation of IR and IRS1 and histone acetylation of PTP1B promoter in muscle tissues were detected using co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP), respectively. RESULTS: CD36-/- mice showed significantly lowered insulin sensitivity with obviously decreased area under the insulin tolerance curve in comparison with the WT mice (P < 0.05). CD36-/- mice also had significantly higher serum insulin concentration and HOMA-IR than WT mice (P < 0.05). Western blotting showed that the p-AKT/AKT ratio in the muscle tissues was significantly decreased in CD36-/- mice as compared with the WT mice (P < 0.01). No significant differences were found in mRNA and protein levels of IR, IRS1 and IRS2 in the muscle tissues between WT and CD36-/- mice (P>0.05). In the muscle tissue of CD36-/- mice, tyrosine phosphorylation levels of IR and IRS1 were significantly decreased (P < 0.05), and the mRNA and protein levels of PTP1B (P < 0.05) and histone acetylation level of PTP1B promoters (P < 0.01) were significantly increased as compared with those in the WT mice. Intraperitoneal injection of claramine, a PTP1B inhibitor, effectively improved the impairment of insulin sensitivity in CD36-/- mice. CONCLUSION: CD36 is essential for maintaining muscle insulin sensitivity under physiological conditions, and CD36 gene deletion in mice causes impaired insulin sensitivity by up-regulating muscle PTP1B expression, which results in detyrosine phosphorylation of IR and IRS1.


Asunto(s)
Eliminación de Gen , Resistencia a la Insulina , Proteína Cofactora de Membrana , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Animales , Histonas/genética , Insulina , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/genética , Proteína Cofactora de Membrana/genética , Ratones , Ratones Noqueados , Músculos/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Tirosina/genética , Regulación hacia Arriba
11.
J Virol ; 96(5): e0155721, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019717

RESUMEN

CD46 is a receptor for human herpesvirus 6A (HHV-6A) and is in some cells also important for infection with HHV-6B. CD46 has several isoforms of which the most commonly expressed can be distinguished by expression of a BC domain or a C domain in a serine-threonine-proline-rich (STP) extracellular region. Using a SupT1 CD46 CRISPR-Cas9 knockout model system reconstituted with specific CD46 isoforms, we demonstrated that HHV-6A infection was more efficient when BC isoforms were expressed as opposed to C isoforms, measured by higher levels of intracellular viral transcripts and recovery of more progeny virus. Although the B domain contains several O-glycosylations, mutations of Ser and Thr residues did not prevent infection with HHV-6A. The HHV-6A infection was blocked by inhibitors of clathrin-mediated endocytosis. In contrast, infection with HHV-6B was preferentially promoted by C isoforms mediating fusion-from-without, and this infection was less affected by inhibitors of clathrin-mediated endocytosis. Taken together, HHV-6A preferred BC isoforms, mediating endocytosis, whereas HHV-6B preferred C isoforms, mediating fusion-from-without. This demonstrates that the STP region of CD46 is important for regulating the mode of infection in SupT1 cells and suggests an epigenetic regulation of the host susceptibility to HHV-6A and HHV-6B infection. IMPORTANCE CD46 is the receptor used by human herpesvirus 6A (HHV-6A) during infection of T cells, but it is also involved in infection of certain T cells by HHV-6B. The gene for CD46 allows expression of several variants of CD46, known as isoforms, but whether the isoforms matter for infection of T cells is unknown. We used a genetic approach to delete CD46 from T cells and reconstituted them with separate isoforms to study them individually. We expressed the isoforms known as BC and C, which are distinguished by the potential inclusion of a B domain in the CD46 molecule. We demonstrate that HHV-6A prefers the BC isoform to infect T cells, and this occurs predominantly by clathrin-mediated endocytosis. In contrast, HHV-6B prefers the C isoform and infects predominantly by fusion-from-without. Thus, CD46 isoforms may affect susceptibility of T cells to infection with HHV-6A and HHV-6B.


Asunto(s)
Herpesvirus Humano 6 , Proteína Cofactora de Membrana , Linfocitos T , Internalización del Virus , Células Cultivadas , Clatrina/metabolismo , Epigénesis Genética , Eliminación de Gen , Herpesvirus Humano 6/fisiología , Humanos , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Linfocitos T/metabolismo , Linfocitos T/virología
12.
J Virol ; 96(3): e0082621, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34787457

RESUMEN

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.


Asunto(s)
Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/clasificación , Adenovirus Humanos/fisiología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Interacciones Huésped-Patógeno , Proteína Cofactora de Membrana/metabolismo , Adenovirus Humanos/ultraestructura , Animales , Biomarcadores , Recuento de Células Sanguíneas , Células CHO , Línea Celular , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/química , Cricetulus , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Proteína Cofactora de Membrana/química , Proteína Cofactora de Membrana/genética , Ratones Transgénicos , Modelos Biológicos , Modelos Moleculares , Mutagénesis , Unión Proteica , Conformación Proteica , Serogrupo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacología , Relación Estructura-Actividad
13.
Emerg Microbes Infect ; 11(1): 60-72, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34839792

RESUMEN

The genus Pestivirus within the family Flaviviridae comprises highly relevant animal pathogens such as bovine viral diarrhoea virus 1 and 2 (BVDV-1 and -2) classified into the two species Pestivirus A and Pestivirus B, respectively. First described in 2004, HoBi-like pestiviruses (HoBiPeV) represent emerging bovine pathogens that belong to a separate species (Pestivirus H), but share many similarities with BVDV-1 and -2. Additionally, two giraffe pestivirus (GPeV) strains both originating from Kenya represent another distinct species (Pestivirus G), whose members replicate very efficiently in bovine cells. In this study, we investigated the role of bovine complement regulatory protein 46 (CD46bov), the receptor of BVDV-1 and -2, in the entry of HoBiPeV and GPeV. For this purpose, bovine CD46-knockout and CD46-rescue cell lines were generated by CRISPR/Cas9 technology and subsequent trans-complementation, respectively. Our results provide strong evidence that the impact of CD46bov differs between viruses belonging to Pestivirus H and viruses representing Pestivirus G: CD46bov revealed to be a major cellular entry factor for HoBiPeV strain HaVi-20. In contrast, GPeV strain PG-2 presented as largely independent of CD46bov, suggesting a different entry mechanism involving other molecular determinants which remain to be identified. In addition, we demonstrated that, similar to BVDV-1 and -2, virus isolates of both Pestivirus H and Pestivirus G are able to adapt to cell culture conditions by using heparan sulfate to enter the host cell. In conclusion, our findings show that different bovine pestiviruses use diverse mechanisms of host cell entry.


Asunto(s)
Diarrea Mucosa Bovina Viral/metabolismo , Virus de la Diarrea Viral Bovina/fisiología , Proteína Cofactora de Membrana/metabolismo , Receptores Virales/metabolismo , Animales , Diarrea Mucosa Bovina Viral/genética , Diarrea Mucosa Bovina Viral/virología , Bovinos , Línea Celular , Virus de la Diarrea Viral Bovina/clasificación , Virus de la Diarrea Viral Bovina/genética , Proteína Cofactora de Membrana/genética , Receptores Virales/genética , Internalización del Virus
14.
Cells ; 10(11)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34831317

RESUMEN

CD46 is the main receptor for complement protein C3 and plays an important role in adaptive immune responses. CD46 genetic variants are associated with susceptibility to several infectious and autoimmune diseases. Additionally, CD46 function can be subverted by HIV-1 to evade attack by complement, a strategy shared by viruses of other families. We sought to determine the association between CD46 gene variants and HIV-1 acquired through intravenous drug use (IDU) and sexual routes (n = 823). Study subjects were of European ancestry and were HIV-1 infected (n = 438) or exposed but seronegative (n = 387). Genotyping of the rs2796265 SNP located in the CD46 gene region was done by allele-specific real-time PCR. A meta-analysis merging IDU and sexual cohorts indicates that the minor genotype (CC) was associated with increased resistance to HIV-1 infection OR = 0.2, 95% CI (0.07-0.61), p = 0.004. The HIV-1-protective genotype is correlated with reduced CD46 expression and alterations in the ratio of CD46 mRNA splicing isoforms.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Infecciones por VIH/genética , Proteína Cofactora de Membrana/genética , Femenino , Regulación de la Expresión Génica , Frecuencia de los Genes/genética , Seronegatividad para VIH/genética , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Abuso de Sustancias por Vía Intravenosa/genética
15.
Cells ; 10(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440921

RESUMEN

Transplantation of xenogenic porcine chondrocytes could represent a future strategy for the treatment of human articular cartilage defects. Major obstacles are humoral and cellular rejection processes triggered by xenogenic epitopes like α-1,3-Gal and Neu5Gc. Besides knockout (KO) of genes responsible for the biosynthesis of respective epitopes (GGTA1 and CMAH), transgenic expression of human complement inhibitors and anti-apoptotic as well as anti-inflammatory factors (CD46, CD55, CD59, TNFAIP3 and HMOX1) could synergistically prevent hyperacute xenograft rejection. Therefore, chondrocytes from different strains of single- or multi-genetically modified pigs were characterized concerning their protection from xenogeneic complement activation. Articular chondrocytes were isolated from the knee joints of WT, GalTKO, GalT/CMAH-KO, human CD59/CD55//CD46/TNFAIP3/HMOX1-transgenic (TG), GalTKO/TG and GalT/CMAHKO/TG pigs. The tissue-specific effectiveness of the genetic modifications was tested on gene, protein and epitope expression level or by functional assays. After exposure to 20% and 40% normal human serum (NHS), deposition of C3b/iC3b/C3c and formation of the terminal complement complex (TCC, C5b-9) was quantified by specific cell ELISAs, and generation of the anaphylatoxin C5a by ELISA. Chondrocyte lysis was analyzed by Trypan Blue Exclusion Assay. In all respective KO variants, the absence of α -1,3-Gal and Neu5Gc epitope was verified by FACS analysis. In chondrocytes derived from TG animals, expression of CD55 and CD59 could be confirmed on gene and protein level, TNFAIP3 on gene expression level as well as by functional assays and CD46 only on gene expression level whereas transgenic HMOX1 expression was not evident. Complement activation in the presence of NHS indicated mainly effective although incomplete protection against C3b/iC3b/C3c deposition, C5a-generation and C5b-9 formation being lowest in single GalTKO. Chondrocyte viability under exposure to NHS was significantly improved even by single GalTKO and completely preserved by all other variants including TG chondrocytes without KO of xenoepitopes.


Asunto(s)
Enfermedades Óseas/terapia , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Trasplante Heterólogo/métodos , Animales , Animales Modificados Genéticamente , Enfermedades Óseas/genética , Antígenos CD55/genética , Antígenos CD55/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Cartílago Articular/patología , Células Cultivadas , Condrocitos/citología , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Porcinos , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
17.
Biochim Biophys Acta Biomembr ; 1863(12): 183683, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34271005

RESUMEN

Mitochondrial ultrastructure is highly adaptable and undergoes dynamic changes upon physiological and energetic cues. MICOS (mitochondrial contact site and cristae organizing system), a large oligomeric protein complex, maintains mitochondrial ultrastructure as it is required for formation of crista junctions (CJs) and contact sites. MIC13 acts as a critical bridge between two MICOS subcomplexes. Deletion of MIC13 causes loss of CJs resulting in cristae accumulating as concentric rings and specific destabilization of the MIC10-subcomplex. Mutations in MIC13 are associated with infantile lethal mitochondrial hepato-encephalopathy, yet functional regions within MIC13 were not known. To identify and characterize such regions, we systemically generated 20 amino-acids deletion variants across the length of MIC13. While deletion of many of these regions of MIC13 is dispensable for its stability, the N-terminal region and a stretch between amino acid residues 84 and 103 are necessary for the stability and functionality of MIC13. We could further locate conserved motifs within these regions and found that a GxxxG motif in the N-terminal transmembrane segment and an internal WN motif are essential for stability of MIC13, formation of the MIC10-subcomplex, interaction with MIC10- and MIC60-subcomplexes and maintenance of cristae morphology. The GxxxG motif is required for membrane insertion of MIC13. Overall, we systematically found important conserved residues of MIC13 that are required to perform the bridging between the two MICOS subcomplexes. The study improves our understanding of the basic molecular function of MIC13 and has implications for its role in the pathogenesis of a severe mitochondrial disease.


Asunto(s)
Proteína Cofactora de Membrana/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Musculares/genética , Secuencias de Aminoácidos/genética , Aminoácidos/genética , Eliminación de Gen , Humanos , Mitocondrias/patología , Encefalomiopatías Mitocondriales/patología , Membranas Mitocondriales/metabolismo , Mutación/genética , Mapas de Interacción de Proteínas/genética
18.
Curr Opin Immunol ; 72: 126-134, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004375

RESUMEN

Membrane cofactor protein (MCP; CD46), a ubiquitously expressed complement regulatory protein, serves as a cofactor for serine protease factor I to cleave and inactivate C3b and C4b deposited on host cells. However, CD46 also plays roles in human reproduction, autophagy, modulating T cell activation and effector functions and is a member of the newly identified intracellular complement system (complosome). CD46 also is a receptor for 11 pathogens ('pathogen magnet'). While CD46 deficiencies contribute to inflammatory disorders, its overexpression in cancers and role as a receptor for some adenoviruses has led to its targeting by oncolytic agents and adenoviral-based therapeutic vectors, including coronavirus disease of 2019 (COVID-19) vaccines. This review focuses on recent advances in identifying disease-causing CD46 variants and its pathogen connections.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Proteína Cofactora de Membrana/metabolismo , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Animales , Autofagia , Activación de Complemento , Interacciones Huésped-Patógeno , Humanos , Activación de Linfocitos , Proteína Cofactora de Membrana/genética , Viroterapia Oncolítica , Polimorfismo Genético , Reproducción
19.
mBio ; 12(2)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758092

RESUMEN

Viruses, including members of the herpes-, entero-, and morbillivirus families, are the most common cause of infectious encephalitis in mammals worldwide. During most instances of acute viral encephalitis, neurons are typically the initial cell type that is infected. However, as replication and spread ensue, other parenchymal cells can become viral targets, especially in chronic infections. Consequently, to ascertain how neurotropic viruses trigger neuropathology, it is crucial to identify which central nervous system (CNS) cell populations are susceptible and permissive throughout the course of infection, and to define how viruses spread between distinct cell types. Using a measles virus (MV) transgenic mouse model that expresses human CD46 (hCD46), the MV vaccine strain receptor, under the control of a neuron-specific enolase promoter (NSE-hCD46+ mice), a novel mode of viral spread between neurons and astrocytes was identified. Although hCD46 is required for initial neuronal infection, it is dispensable for heterotypic spread to astrocytes, which instead depends on glutamate transporters and direct neuron-astrocyte contact. Moreover, in the presence of RNase A, astrocyte infection is reduced, suggesting that nonenveloped ribonucleoproteins (RNP) may cross the neuron-astrocyte synaptic cleft. The characterization of this novel mode of intercellular transport offers insights into the unique interaction of neurons and glia and may reveal therapeutic targets to mitigate the life-threatening consequences of measles encephalitis.IMPORTANCE Viruses are the most important cause of infectious encephalitis in mammals worldwide; several thousand people, primarily the very young and the elderly, are impacted annually, and few therapies are reliably successful once neuroinvasion has occurred. To understand how viruses contribute to neuropathology, and to develop tools to prevent or ameliorate such infections, it is crucial to define if and how viruses disseminate among the different cell populations within the highly complex central nervous system. This study defines a noncanonical mode of viral transmission between neurons and astrocytes within the brain.


Asunto(s)
Astrocitos/virología , Vacuna Antisarampión/análisis , Virus del Sarampión/fisiología , Neuronas/virología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Encefalitis Viral/virología , Femenino , Humanos , Masculino , Proteína Cofactora de Membrana/genética , Ratones , Ratones Transgénicos
20.
Mol Med Rep ; 23(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760196

RESUMEN

In antibody­mediated rejection (ABMR), the graft endothelium is at the forefront of the kidney transplant against the assault from the recipient's humoral immune system, and is a target of the latter. The present study investigated the effect of antibodies against human leukocyte antigen (HLA) class I (anti­HLAI) on the immunological properties of human glomerular endothelial cells. Additionally, the effect of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) inhibitor (everolimus), or the general control nonderepressible 2 kinase (GCN2K) activator (halofuginone) on anti­HLAI antibody­mediated alterations was assessed. Cell integrity was examined, an lactate dehydrogenase (LDH) release assay was performed and cleaved caspase­3 levels were determined. Furthermore, cell proliferation was analyzed by performing a bromodeoxyuridine assay and the cellular proteins involved in signal transduction or immune effector mechanisms were assessed via western blotting. IL­8, monocyte chemoattractive protein­1 (MCP­1), von Willebrand factor (vWF) and transforming growth factor­beta 1 (TGF­ß1) were assayed via ELISA. The results revealed that anti­HLAI triggered integrin signaling, activated mTOR and GCN2K, preserved cell integrity and promoted cell proliferation. Additionally, by increasing intercellular adhesion molecule 1 (ICAM­1), HLA­DR, IL­8 and MCP­1 levels, anti­HLAI enhanced the ability of immune cells to interact with endothelial cells thus facilitating graft rejection. Contrarily, by upregulating CD46 and CD59, anti­HLAI rendered the endothelium less vulnerable to complement­mediated injury. Finally, by enhancing vWF and TGF­ß1, anti­HLAI may render the endothelium prothrombotic and facilitate fibrosis and graft failure, respectively. According to our results, mTORC1 inhibition and GCN2K activation may prove useful pharmaceutical targets, as they prevent cell proliferation and downregulate ICAM­1, IL­8, MCP­1 and TGF­ß1. mTORC1 inhibition also decreases vWF.


Asunto(s)
Rechazo de Injerto/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasas TOR/genética , Anticuerpos Antiidiotipos/inmunología , Antígenos CD59/genética , Antígenos CD59/inmunología , Proliferación Celular/efectos de los fármacos , Células Endoteliales/inmunología , Everolimus/farmacología , Rechazo de Injerto/genética , Rechazo de Injerto/patología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunidad Humoral/genética , Inmunidad Humoral/inmunología , Trasplante de Riñón/efectos adversos , Diana Mecanicista del Complejo 1 de la Rapamicina/inmunología , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/inmunología , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/inmunología , Transducción de Señal , Serina-Treonina Quinasas TOR/inmunología , Factor de von Willebrand/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA