RESUMEN
In many gram-positive Actinobacteria, including Actinomyces oris and Corynebacterium matruchotii, the conserved thiol-disulfide oxidoreductase MdbA that catalyzes oxidative folding of exported proteins is essential for bacterial viability by an unidentified mechanism. Intriguingly, in Corynebacterium diphtheriae, the deletion of mdbA blocks cell growth only at 37 °C but not at 30 °C, suggesting the presence of alternative oxidoreductase enzyme(s). By isolating spontaneous thermotolerant revertants of the mdbA mutant at 37 °C, we obtained genetic suppressors, all mapped to a single T-to-G mutation within the promoter region of tsdA, causing its elevated expression. Strikingly, increased expression of tsdA-via suppressor mutations or a constitutive promoter-rescues the pilus assembly and toxin production defects of this mutant, hence compensating for the loss of mdbA. Structural, genetic, and biochemical analyses demonstrated TsdA is a membrane-tethered thiol-disulfide oxidoreductase with a conserved CxxC motif that can substitute for MdbA in mediating oxidative folding of pilin and toxin substrates. Together with our observation that tsdA expression is upregulated at nonpermissive temperature (40 °C) in wild-type cells, we posit that TsdA has evolved as a compensatory thiol-disulfide oxidoreductase that safeguards oxidative protein folding in C. diphtheriae against thermal stress.
Asunto(s)
Proteínas Bacterianas , Corynebacterium diphtheriae , Proteína Disulfuro Reductasa (Glutatión) , Pliegue de Proteína , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium diphtheriae/enzimología , Corynebacterium diphtheriae/genética , Estrés Oxidativo , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismoRESUMEN
BACKGROUND: Genome-wide association studies (GWASs) have identified hundreds of loci for body mass index (BMI), but functional variants in these loci are less known. The purpose of this study was to identify RNA modification-related SNPs (RNAm-SNPs) for BMI in GWAS loci. BMI-associated RNAm-SNPs were identified in a GWAS of approximately 700,000 individuals. Gene expression and circulating protein levels affected by the RNAm-SNPs were identified by QTL analyses. Mendelian randomization (MR) methods were applied to test whether the gene expression and protein levels were associated with BMI. RESULTS: A total of 78 RNAm-SNPs associated with BMI (P < 5.0 × 10-8) were identified, including 65 m6A-, 10 m1A-, 3 m7G- and 1 A-to-I-related SNPs. Two functional loss, high confidence level m6A-SNPs, rs6713978 (P = 6.4 × 10-60) and rs13410999 (P = 8.2 × 10-59), in the intron of ADCY3 were the top significant SNPs. These two RNAm-SNPs were associated with ADCY3 gene expression in adipose tissues, whole blood cells, the tibial nerve, the tibial artery and lymphocytes, and the expression levels in these tissues were associated with BMI. Proteins enriched in specific KEGG pathways, such as natural killer cell-mediated cytotoxicity, the Rap1 signaling pathway and the Ras signaling pathway, were affected by the RNAm-SNPs, and circulating levels of some of these proteins (ADH1B, DOCK9, MICB, PRDM1, STOM, TMPRSS11D and TXNDC12) were associated with BMI in MR analyses. CONCLUSIONS: Our study identified RNAm-SNPs in BMI-related genomic loci and suggested that RNA modification may affect BMI by affecting the expression levels of corresponding genes and proteins.
Asunto(s)
Estudio de Asociación del Genoma Completo , Proteína Disulfuro Reductasa (Glutatión) , Índice de Masa Corporal , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética , Proteína Disulfuro Reductasa (Glutatión)/genética , ARNRESUMEN
Lung cancer is one of the most lethal malignant tumors in the world. The high recurrence and mortality rate make it urgent for scientists and clinicians to find new targets for better treatment of lung cancer. Early studies indicated that estrogen receptor ß (ERß) might impact the progression of non-small-cell lung cancer (NSCLC). However, the detailed mechanisms, especially its linkage to the CXCR4-mediated cell invasion, remain unclear. Here we found that ERß could promote NSCLC cell invasion via increasing the circular RNA (circRNA), circ-TMX4, expression via directly binding to the 5' promoter region of its host gene TMX4. ERß-promoted circ-TMX4 could then sponge and inhibit the micro RNA (miRNA, miR), miR-622, expression, which can then result in increasing the CXCR4 messenger RNA translation via a reduced miRNA binding to its 3' untranslated region (3'UTR). The preclinical study using an in vivo mouse model with orthotopic xenografts of NSCLC cells confirmed the in vitro data, and the human NSCLC database analysis and tissue staining also confirmed the linkage of ERß/miR-622/CXCR4 signaling to the NSCLC progression. Together, our findings suggest that ERß can promote NSCLC cell invasion via altering the ERß/circ-TMX4/miR-622/CXCR4 signaling, and targeting this newly circ-TMX4/miR-622/CXCR4 signaling may help us find new treatment strategies to better suppress NSCLC progression.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptor beta de Estrógeno , Neoplasias Pulmonares , MicroARNs , Regiones no Traducidas 3' , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , MicroARNs/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , ARN Circular , Receptores CXCR4/genética , Receptores CXCR4/metabolismoRESUMEN
Among all psychiatric disorders, anorexia nervosa (AN) has the highest mortality rate. However, there is still no pharmacological therapy for AN. The human plasma proteome may be a great cornerstone for the development of new drugs against AN. Here we performed a Mendelian randomization (MR) analysis to identify causal risk proteins for AN. Exposure data were extracted from a large genome-wide association study (GWAS) of 2994 plasma proteins in 3301 subjects of European descent, while outcome data were obtained from another GWAS of AN (16,992 cases and 55,525 controls of European descent). MR analyses were performed using the inverse-variance weighted (IVW) method and other sensitivity analysis methods. Using single nucleotide polymorphisms as instruments, this study suggested that high TXNDC12 levels were associated with a higher risk of AN (IVW Odd's ratio [OR]: 1.12; 95% confidence interval [CI]: 1.08-1.16; P = 2.35 × 10-10), while another protein ADH1B showed the opposite effect (IVW OR: 0.89; 95% CI: 0.85-0.93; P = 2.99 × 10-7). The causal associations were robust in multivariable models, genome-wide significant models, and with additional MR methods. No pleiotropy was observed. Our findings suggest that TXNDC12 was associated with a high risk of AN, while AHD1B was associated with a low risk of AN. They might both have implications in AN by regulating the brain dopamine reward system. In combination with existing knowledge on AN, these proteins may be novel drug targets for AN treatment.
Asunto(s)
Anorexia Nerviosa/tratamiento farmacológico , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Preparaciones Farmacéuticas , Alcohol Deshidrogenasa/genética , Proteínas Sanguíneas , Humanos , Polimorfismo de Nucleótido Simple , Proteína Disulfuro Reductasa (Glutatión)/genética , ProteomaRESUMEN
Mechanisms of disulfide bond formation in the human pathogen Streptococcus pyogenes are currently unknown. To date, no disulfide bond-forming thiol-disulfide oxidoreductase (TDOR) has been described and at least one disulfide bonded protein is known in S. pyogenes. This protein is the superantigen SpeA, which contains 3 cysteine residues (Cys 87, Cys90, and Cys98) and has a disulfide bond formed between Cys87 and Cys98. In this study, candidate TDORs were identified from the genome sequence of S. pyogenes MGAS8232. Using mutational and biochemical approaches, one of the candidate proteins, SpyM18_2037 (named here SdbA), was shown to be the catalyst that introduces the disulfide bond in SpeA. SpeA in the culture supernatant remained reduced when sdbA was inactivated and restored to the oxidized state when a functional copy of sdbA was returned to the sdbA-knockout mutant. SdbA has a typical C46XXC49 active site motif commonly found in TDORs. Site-directed mutagenesis experiments showed that the cysteines in the CXXC motif were required for the disulfide bond in SpeA to form. Interactions between SdbA and SpeA were examined using cysteine variant proteins. The results showed that SdbAC49A formed a mixed disulfide with SpeAC87A, suggesting that the N-terminal Cys46 of SdbA and the C-terminal Cys98 of SpeA participated in the initial reaction. SpeA oxidized by SdbA displayed biological activities suggesting that SpeA was properly folded following oxidation by SdbA. In conclusion, formation of the disulfide bond in SpeA is catalyzed by SdbA and the findings represent the first report of disulfide bond formation in S. pyogenes. IMPORTANCE Here, we reported the first example of disulfide bond formation in Streptococcus pyogenes. The results showed that a thiol-disulfide oxidoreductase, named SdbA, is responsible for introducing the disulfide bond in the superantigen SpeA. The cysteine residues in the CXXC motif of SdbA are needed for catalyzing the disulfide bond in SpeA. The disulfide bond in SpeA and neighboring amino acids form a disulfide loop that is conserved among many superantigens, including those from Staphylococcus aureus. SpeA and staphylococcal enterotoxins lacking the disulfide bond are biologically inactive. Thus, the discovery of the enzyme that catalyzes the disulfide bond in SpeA is important for understanding the biochemistry of SpeA production and presents a target for mitigating the virulence of S. pyogenes.
Asunto(s)
Proteínas Bacterianas/metabolismo , Disulfuros/metabolismo , Exotoxinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Streptococcus pyogenes/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Disulfuros/química , Exotoxinas/genética , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Streptococcus pyogenes/química , Streptococcus pyogenes/genéticaRESUMEN
Redox (reduction-oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol-disulphide exchange reactions between PDI and hVKORC1.
Asunto(s)
Dominios Proteicos , Pliegue de Proteína , Tiorredoxinas/química , Vitamina K Epóxido Reductasas/química , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Homología de Secuencia de Aminoácido , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismoRESUMEN
Significance: Unique to the branched-chain aminotransferase (BCAT) proteins is their redox-active CXXC motif. Subjected to post-translational modification by reactive oxygen species and reactive nitrogen species, these proteins have the potential to adopt numerous cellular roles, which may be fundamental to their role in oncogenesis and neurodegenerative diseases. An understanding of the interplay of the redox regulation of BCAT with important cell signaling mechanisms will identify new targets for future therapeutics. Recent Advances: The BCAT proteins have been assigned novel thiol oxidoreductase activity that can accelerate the refolding of proteins, in particular when S-glutathionylated, supporting a chaperone role for BCAT in protein folding. Other metabolic proteins were also shown to have peroxide-mediated redox associations with BCAT, indicating that the cellular function of BCAT is more diverse. Critical Issues: While the role of branched-chain amino acid metabolism and its metabolites has dominated aspects of cancer research, less is known about the role of BCAT. The importance of the CXXC motif in regulating the BCAT activity under hypoxic conditions, a characteristic of tumors, has not been addressed. Understanding how these proteins operate under various cellular redox conditions will become important, in particular with respect to their moonlighting roles. Future Directions: Advances in the quantification of thiols, their measurement, and the manipulation of metabolons that rely on redox-based interactions should accelerate the investigation of the cellular role of moonlighting proteins such as BCAT. Given the importance of cross talk between signaling pathways, research should focus more on these "housekeeping" proteins paying attention to their wider application. Antioxid. Redox Signal. 34, 1048-1067.
Asunto(s)
Neoplasias/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Transaminasas/metabolismo , Secuencias de Aminoácidos/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/genética , Pliegue de Proteína , Procesamiento Proteico-Postraduccional/genética , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transaminasas/genética , Hipoxia Tumoral/genéticaRESUMEN
The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as 'druggable'. Many disease-related proteins that function solely through protein-protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium Burkholderia pseudomallei (BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in B. pseudomallei, and genetic deletion of dsbA significantly attenuates B. pseudomallei virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA. 1HN CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of KD ~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.
Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteína Disulfuro Reductasa (Glutatión)/química , Animales , Sitios de Unión , Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/patogenicidad , Dominio Catalítico , Ligandos , Ratones , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/genética , Relación Estructura-Actividad Cuantitativa , Proteínas Recombinantes , Bibliotecas de Moléculas Pequeñas/química , Solubilidad , Tiazoles/químicaRESUMEN
Posttranslational generation of disulfide bonds catalyzed by bacterial Dsb (disulfide bond) enzymes is essential for the oxidative folding of many proteins. Although we now have a good understanding of the Escherichia coli disulfide bond formation system, there are significant gaps in our knowledge concerning the Dsb systems of other bacteria, including Campylobacter jejuni, a food-borne, zoonotic pathogen. We attempted to gain a more complete understanding of the process by thorough analysis of C8J_1298 functioning in vitro and in vivo. C8J_1298 is a homodimeric thiol-oxidoreductase present in wild type (wt) cells, in both reduced and oxidized forms. The protein was previously described as a homolog of DsbC, and thus potentially should be active in rearrangement of disulfides. Indeed, biochemical studies with purified protein revealed that C8J_1298 shares many properties with EcDsbC. However, its activity in vivo is dependent on the genetic background, namely, the set of other Dsb proteins present in the periplasm that determine the redox conditions. In wt C. jejuni cells, C8J_1298 potentially works as a DsbG involved in the control of the cysteine sulfenylation level and protecting single cysteine residues from oxidation to sulfenic acid. A strain lacking only C8J_1298 is indistinguishable from the wild type strain by several assays recognized as the criteria to determine isomerization or oxidative Dsb pathways. Remarkably, in C. jejuni strain lacking DsbA1, the protein involved in generation of disulfides, C8J_1298 acts as an oxidase, similar to the homodimeric oxidoreductase of Helicobater pylori, HP0231. In E. coli, C8J_1298 acts as a bifunctional protein, also resembling HP0231. These findings are strongly supported by phylogenetic data. We also showed that CjDsbD (C8J_0565) is a C8J_1298 redox partner.
Asunto(s)
Campylobacter jejuni/enzimología , Disulfuros/metabolismo , Proteínas Periplasmáticas/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Secuencia de Aminoácidos , Campylobacter jejuni/genética , Escherichia coli/enzimología , Escherichia coli/genética , Helicobacter pylori/enzimología , Helicobacter pylori/genética , Oxidación-Reducción , Periplasma/enzimología , Proteínas Periplasmáticas/genética , Filogenia , Proteína Disulfuro Reductasa (Glutatión)/genéticaRESUMEN
Metastasis is one of the main contributors to the poor prognosis of hepatocellular carcinoma (HCC). However, the underlying mechanism of HCC metastasis remains largely unknown. Here, we showed that TXNDC12, a thioredoxin-like protein, was upregulated in highly metastatic HCC cell lines as well as in portal vein tumor thrombus and lung metastasis tissues of HCC patients. We found that the enforced expression of TXNDC12 promoted metastasis both in vitro and in vivo. Subsequent mechanistic investigations revealed that TXNDC12 promoted metastasis through upregulation of the ZEB1-mediated epithelial-mesenchymal transition (EMT) process. We subsequently showed that TXNDC12 overexpression stimulated the nuclear translocation and activation of ß-catenin, a positive transcriptional regulator of ZEB1. Accordingly, we found that TXNDC12 interacted with ß-catenin and that the thioredoxin-like domain of TXNDC12 was essential for the interaction between TXNDC12 and ß-catenin as well as for TXNDC12-mediated ß-catenin activation. Moreover, high levels of TXNDC12 in clinical HCC tissues correlated with elevated nuclear ß-catenin levels and predicted worse overall and disease-free survival. In summary, our study demonstrated that TXNDC12 could activate ß-catenin via protein-protein interaction and promote ZEB1-mediated EMT and HCC metastasis.
Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , beta Catenina/metabolismo , Animales , Cadherinas/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Cisteína/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación/genética , Metástasis de la Neoplasia , Unión Proteica , Proteína Disulfuro Reductasa (Glutatión)/genética , Análisis de Supervivencia , Regulación hacia Arriba/genéticaRESUMEN
In eukaryotes, cellular respiration is driven by mitochondrial cytochrome c oxidase (CcO), an enzyme complex that requires copper cofactors for its catalytic activity. Insertion of copper into its catalytically active subunits, including COX2, is a complex process that requires metallochaperones and redox proteins including SCO1, SCO2, and COA6, a recently discovered protein whose molecular function is unknown. To uncover the molecular mechanism by which COA6 and SCO proteins mediate copper delivery to COX2, we have solved the solution structure of COA6, which reveals a coiled-coil-helix-coiled-coil-helix domain typical of redox-active proteins found in the mitochondrial inter-membrane space. Accordingly, we demonstrate that COA6 can reduce the copper-coordinating disulfides of its client proteins, SCO1 and COX2, allowing for copper binding. Finally, our determination of the interaction surfaces and reduction potentials of COA6 and its client proteins provides a mechanism of how metallochaperone and disulfide reductase activities are coordinated to deliver copper to CcO.
Asunto(s)
Proteínas Portadoras/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteínas Portadoras/genética , Complejo IV de Transporte de Electrones/genética , Humanos , Espectroscopía de Resonancia Magnética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/metabolismo , Mutación/genética , Unión Proteica , Proteína Disulfuro Reductasa (Glutatión)/genéticaRESUMEN
The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbACd). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbACm) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro, we demonstrated that MdbACm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbACm in the C. diphtheriae ΔmdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbACm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in ActinobacteriaIMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide bond formation in vitro Furthermore, a new gene deletion method revealed that deletion of mdbA is lethal in C. matruchotii Remarkably, C. matruchotii MdbA can replace C. diphtheriae MdbA to maintain normal cell growth and morphology, toxin production, and pilus assembly. Overall, our studies support the hypothesis that C. matruchotii utilizes MdbA as a major oxidoreductase to catalyze oxidative protein folding.
Asunto(s)
Proteínas Bacterianas/química , Corynebacterium/enzimología , Corynebacterium/genética , Proteína Disulfuro Reductasa (Glutatión)/química , Proteínas Bacterianas/genética , Biopelículas , Catálisis , Corynebacterium diphtheriae/enzimología , Corynebacterium diphtheriae/genética , Disulfuros/química , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Eliminación de Gen , Genoma Bacteriano , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Proteína Disulfuro Reductasa (Glutatión)/genéticaRESUMEN
AIMS: Living cells employ thioredoxin and glutaredoxin disulfide oxido-reductases to protect thiol groups in intracellular proteins. FrnE protein of Deinococcus radiodurans (drFrnE) is a disulfide oxido-reductase that is induced in response to Cd2+ exposure and is involved in cadmium and radiation tolerance. The aim of this study is to probe structure, function, and cellular localization of FrnE class of proteins. RESULTS: Here, we show drFrnE as a novel cytoplasmic oxido-reductase that could be functional in eubacteria under conditions where thioredoxin/glutaredoxin systems are inhibited or absent. Crystal structure analysis of drFrnE reveals thioredoxin fold with an alpha helical insertion domain and a unique, flexible, and functionally important C-terminal tail. The C-tail harbors a novel 239-CX4C-244 motif that interacts with the active site 22-CXXC-25 motif. Crystal structures with different active site redox states, including mixed disulfide (Cys22-Cys244), are reported here. The biochemical data show that 239-CX4C-244 motif channels electrons to the active site cysteines. drFrnE is more stable in the oxidized form, compared with the reduced form, supporting its role as a disulfide reductase. Using bioinformatics analysis and fluorescence microscopy, we show cytoplasmic localization of drFrnE. We have found "true" orthologs of drFrnE in several eubacterial phyla and, interestingly, all these groups apparently lack a functional glutaredoxin system. Innovation and Conclusion: We show that drFrnE represents a new class of hitherto unknown intracellular oxido-reductases that are abundantly present in eubacteria. Unlike other well-known oxido-reductases, FrnE harbors an additional dithiol motif that acts as a conduit to channel electrons to the active site during catalytic turnover. Antioxid. Redox Signal. 28, 296-310.
Asunto(s)
Citoplasma/enzimología , Deinococcus/química , Proteína Disulfuro Reductasa (Glutatión)/química , Secuencias de Aminoácidos/genética , Dominio Catalítico , Cristalografía por Rayos X , Citoplasma/química , Deinococcus/enzimología , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMEN
In many Gram-negative bacteria, including Rhodobacter capsulatus, cytochrome c maturation (Ccm) is carried out by a membrane-integral machinery composed of nine proteins (CcmA to I). During this process, the periplasmic thiol-disulfide oxidoreductase DsbA is thought to catalyze the formation of a disulfide bond between the Cys residues at the apocytochrome c heme-binding site (CXXCH). Subsequently, a Ccm-specific thioreductive pathway involving CcmG and CcmH reduces this disulfide bond to allow covalent heme ligation. Currently, the sequence of thioredox reactions occurring between these components and apocytochrome c and the identity of their active Cys residues are unknown. In this work, we first investigated protein-protein interactions among the apocytochrome c, CcmG, and the heme-ligation components CcmF, CcmH, and CcmI. We found that they all interact with each other, forming a CcmFGHI-apocytochrome c complex. Using purified wild-type CcmG, CcmH, and apocytochrome c, as well as their respective Cys mutant variants, we determined the rates of thiol-disulfide exchange reactions between selected pairs of Cys residues from these proteins. We established that CcmG can efficiently reduce the disulfide bond of apocytochrome c and also resolve a mixed disulfide bond formed between apocytochrome c and CcmH. We further show that Cys-45 of CcmH and Cys-34 of apocytochrome c are most likely to form this mixed disulfide bond, which is consistent with the stereo-specificity of the heme-apocytochrome c ligation reaction. We conclude that CcmG confers efficiency, and CcmH ensures stereo-specificity during Ccm and present a comprehensive model for thioreduction reactions that lead to heme-apocytochrome c ligation.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Citocromos c/metabolismo , Modelos Biológicos , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Rhodobacter capsulatus/enzimología , Sustitución de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cisteína/química , Cisteína/metabolismo , Cistina/química , Cistina/metabolismo , Citocromos c/química , Hemo/metabolismo , Mutación , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , EstereoisomerismoRESUMEN
Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (Ero1s) supply oxidizing equivalent to the active centers of PDI. In this study, we expressed recombinant soybean Ero1 (GmERO1a) and found that GmERO1a oxidized multiple soybean ER oxidoreductases, in contrast to mammalian Ero1s having a high specificity for PDI. One of these ER oxidoreductases, GmPDIM, associated in vivo and in vitro with GmPDIL-2, was unable to be oxidized by GmERO1a. We therefore pursued the possible cooperative oxidative folding by GmPDIM, GmERO1a, and GmPDIL-2 in vitro and found that GmPDIL-2 synergistically accelerated oxidative refolding. In this process, GmERO1a preferentially oxidized the active center in the A': domain among the A: , A': , and B: domains of GmPDIM. A disulfide bond introduced into the active center of the A': domain of GmPDIM was shown to be transferred to the active center of the A: domain of GmPDIM and the A: domain of GmPDIM directly oxidized the active centers of both the A: or A': domain of GmPDIL-2. Therefore, we propose that the relay of an oxidizing equivalent from one ER oxidoreductase to another may play an essential role in cooperative oxidative folding by multiple ER oxidoreductases in plants.
Asunto(s)
Glycine max/enzimología , Oxidorreductasas/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Isomerasas/metabolismo , Catálisis , Disulfuros/metabolismo , Retículo Endoplásmico/enzimología , Oxidación-Reducción , Oxidorreductasas/genética , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Proteínas Recombinantes , Glycine max/genéticaRESUMEN
The Gram-positive pathogen Corynebacterium diphtheriae exports through the Sec apparatus many extracellular proteins that include the key virulence factors diphtheria toxin and the adhesive pili. How these proteins attain their native conformations after translocation as unfolded precursors remains elusive. The fact that the majority of these exported proteins contain multiple cysteine residues and that several membrane-bound oxidoreductases are encoded in the corynebacterial genome suggests the existence of an oxidative protein-folding pathway in this organism. Here we show that the shaft pilin SpaA harbors a disulfide bond in vivo and alanine substitution of these cysteines abrogates SpaA polymerization and leads to the secretion of degraded SpaA peptides. We then identified a thiol-disulfide oxidoreductase (MdbA), whose structure exhibits a conserved thioredoxin-like domain with a CPHC active site. Remarkably, deletion of mdbA results in a severe temperature-sensitive cell division phenotype. This mutant also fails to assemble pilus structures and is greatly defective in toxin production. Consistent with these defects, the ΔmdbA mutant is attenuated in a guinea pig model of diphtheritic toxemia. Given its diverse cellular functions in cell division, pilus assembly and toxin production, we propose that MdbA is a component of the general oxidative folding machine in C. diphtheriae.
Asunto(s)
Corynebacterium diphtheriae/enzimología , Corynebacterium diphtheriae/patogenicidad , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/aislamiento & purificación , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Corynebacterium diphtheriae/fisiología , Difteria/microbiología , Toxina Diftérica/biosíntesis , Toxina Diftérica/sangre , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Cobayas , Viabilidad Microbiana , Mutación , Fenotipo , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Pliegue de Proteína , Toxemia/microbiología , Virulencia/genéticaRESUMEN
Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria.
Asunto(s)
Actinomyces/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Vitamina K Epóxido Reductasas/metabolismo , Actinomyces/química , Actinomyces/citología , Actinomyces/genética , Actinomicosis/microbiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Cristalografía por Rayos X , Disulfuros/química , Disulfuros/metabolismo , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Eliminación de Gen , Humanos , Interacciones Microbianas , Modelos Moleculares , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Pliegue de Proteína , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genéticaRESUMEN
Surface display using spores of Bacillus subtilis is widely used to anchor antigens and enzymes of different sources. One open question is whether anchored proteins are able to form disulfide bonds. To answer this important question, we anchored the Escherichia coli alkaline phosphatase PhoA on the spore surface using two different surface proteins, CotB and CotZ. This enzyme needs two disulfide bonds to become active. Subsequently, we purified the spores and assayed for alkaline phosphatase activity. In both cases, we were able to recover enzymatic activity. Next, we asked whether formation of disulfide bonds occurs spontaneous or is catalyzed by thiol-disulfide oxidoreductases upon lysis of the cells. The experiment was repeated in a double-knockout mutant ΔbdbC and ΔbdbD. Since the disulfide bonds are also present on spores prepared from the double knockout, we conclude that oxidative environment after cell lysis is sufficient for disulfide formation of alkaline phosphatase.
Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Técnicas de Visualización de Superficie Celular , Disulfuros/metabolismo , Procesamiento Proteico-Postraduccional , Esporas Bacterianas/fisiología , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Bacillus subtilis/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esporas Bacterianas/metabolismoRESUMEN
Anti-cancer treatments usually elevate the content of unfolded or misfolded proteins in the endoplasmic reticulum (ER). Here we aimed to get insights into the relation between sensitivity of melanoma cell lines to the ER stress inducer thapsigargin (THG) and the genetic expression of protein disulfide isomerase family members (PDIs). The expression of PDIs was analysed by flow cytometry and real-time PCR. The results showed that SK-MEL-30, the less THG sensitive cell line, displays higher basal PDIs' expression levels and the sensitivity is increased by the PDIs inhibitor bacitracin. While SK-MEL-30 PDIs' expression is not THG dose-dependent, an increase in glucose related protein 78 (GRP78), PDIA5, PDIA6, and thioredoxin-related-transmembrane proteins' (TMX3 and TMX4) expression, in response to higher drug concentrations, was observed in MNT-1. The differences in PDIs' gene expression in MNT-1 suggest a different response to ER stress compared to the other cell lines and highlight the importance of understanding the diversity among cancer cells.
Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Proteína Disulfuro Isomerasas/genética , Tapsigargina/farmacología , Bacitracina/farmacología , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/genética , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Especificidad de Órganos , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/metabolismo , Transducción de SeñalRESUMEN
The paper reports the characterization of a protein disulfide oxidoreductase (PDO) from the thermophilic Gram negative bacterium Thermus thermophilus HB27, identified as TTC0486 by genome analysis and named TtPDO. PDO members are involved in the oxidative folding, redox balance and detoxification of peroxides in thermophilic prokaryotes. Ttpdo was cloned and expressed in E. coli and the recombinant purified protein was assayed for the dithiol-reductase activity using insulin as substrate and compared with other PDOs characterized so far. In the thermophilic archaeon Sulfolobus solfataricus PDOs work as thiol-reductases constituting a peculiar redox couple with Thioredoxin reductase (SsTr). To get insight into the role of TtPDO, a hybrid redox couple with SsTr, homologous to putative Trs of T. thermophilus, was assayed. The results showed that SsTr was able to reduce TtPDO in a concentration dependent manner with a calculated K M of 34.72 µM, suggesting the existence of a new redox system also in thermophilic bacteria. In addition, structural characterization of TtPDO by light scattering and circular dichroism revealed the monomeric structure and the high thermostability of the protein. The analysis of the genomic environment suggested a possible clustering of Ttpdo with TTC0487 and TTC0488 (tlpA). Accordingly, transcriptional analysis showed that Ttpdo is transcribed as polycistronic messenger. Primer extension analysis allowed the determination of its 5'end and the identification of the promoter region.