Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(3): 1321-1330, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38471126

RESUMEN

A groundbreaking demonstration of the utilization of the metal-organic framework MIL-101(Fe) as an exceptionally perceptive visual label in colorimetric lateral flow assays (LFA) is described. This pioneering approach enables the precise identification of transglutaminase 2 (TGM2), a recognized biomarker for chronic kidney disease (CKD), in urine specimens, which offers a remarkably sensitive naked-eye detection mechanism. The surface of MIL-101(Fe) was modified with oxalyl chloride, adipoyl chloride, and poly(acrylic) acid (PAA); these not only improved the labeling material stability in a complex matrix but also achieved a systematic control in the detection limit of the TGM2 concentration using our LFA platform. The advanced LFA with the MIL-101(Fe)-PAA label can detect TGM2 concentrations down to 0.012, 0.009, and 0.010 nM in Tris-HCl buffer, urine, and desalted urine, respectively, which are approximately 55-fold lower than those for a conventional AuNP-based LFAs. Aside from rapid TGM2 detection (i.e., within 20 min), the performance of the MIL-101(Fe)-PAA-based LFA on reproducibility [coefficients of variation (CV) < 2.9%] and recovery (95.9-103.2%) along with storage stability within 25 days of observation (CV < 6.0%) shows an acceptable parameter range for quantitative analysis. A sophisticated sensing method grounded in machine learning principles was also developed, specifically aimed at precisely deducing the TGM2 concentration by analyzing immunoreaction sites. More importantly, our developed LFA offers potential for clinical measurement of TGM2 concentration in normal human urine and CKD patients' samples.


Asunto(s)
Aprendizaje Automático , Estructuras Metalorgánicas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Insuficiencia Renal Crónica , Humanos , Colorimetría/métodos , Hierro , Proteína Glutamina Gamma Glutamiltransferasa 2/orina , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/orina , Reproducibilidad de los Resultados
2.
PLoS One ; 17(1): e0262104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35041708

RESUMEN

Renal clinical chemistry only detects kidney dysfunction after considerable damage has occurred and is imperfect in predicting long term outcomes. Consequently, more sensitive markers of early damage and better predictors of progression are being urgently sought, to better support clinical decisions and support shorter clinical trials. Transglutaminase 2 (TG2) is strongly implicated in the fibrotic remodeling that drives chronic kidney disease (CKD). We hypothesized that urinary TG2 and its ε-(γ-glutamyl)-lysine crosslink product could be useful biomarkers of kidney fibrosis and progression. Animal models: a rat 4-month 5/6th subtotal nephrectomy model of CKD and a rat 8-month streptozotocin model of diabetic kidney disease had 24-hour collection of urine, made using a metabolic cage, at regular periods throughout disease development. Patients: Urine samples from patients with CKD (n = 290) and healthy volunteers (n = 33) were collected prospectively, and progression tracked for 3 years. An estimated glomerular filtration rate (eGFR) loss of 2-5 mL/min/year was considered progressive, with rapid progression defined as > 5 mL/min/year. Assays: TG2 was measured in human and rat urine samples by enzyme-linked immunosorbent assay (ELISA) and ε-(γ-glutamyl)-lysine by exhaustive proteolytic digestion and amino acid analysis. Urinary TG2 and ε-(γ-glutamyl)-lysine increased with the development of fibrosis in both animal model systems. Urinary TG2 was 41-fold higher in patients with CKD than HVs, with levels elevated 17-fold by CKD stage 2. The urinary TG2:creatinine ratio (UTCR) was 9 ng/mmol in HV compared with 114 ng/mmol in non-progressive CKD, 1244 ng/mmol in progressive CKD and 1898 ng/mmol in rapidly progressive CKD. Both urinary TG2 and ε-(γ-glutamyl)-lysine were significantly associated with speed of progression in univariate logistic regression models. In a multivariate model adjusted for urinary TG2, ε-(γ-glutamyl)-lysine, age, sex, urinary albumin:creatinine ratio (UACR), urinary protein:creatinine ratio (UPCR), and CKD stage, only TG2 remained statistically significant. Receiver operating characteristic (ROC) curve analysis determined an 86.4% accuracy of prediction of progression for UTCR compared with 73.5% for UACR. Urinary TG2 and ε-(γ-glutamyl)-lysine are increased in CKD. In this pilot investigation, UTCR was a better predictor of progression in patients with CKD than UACR. Larger studies are now warranted to fully evaluate UTCR value in predicting patient outcomes.


Asunto(s)
Biomarcadores/orina , Nefropatías Diabéticas/metabolismo , Nefrectomía/efectos adversos , Proteína Glutamina Gamma Glutamiltransferasa 2/orina , Insuficiencia Renal Crónica/metabolismo , Estreptozocina/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/orina , Dipéptidos/orina , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Ratas , Análisis de Regresión , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...