Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 153: 105318, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33636386

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder characterized by accumulation of mutant huntingtin protein and significant loss of neurons in striatum and cortex. Along with motor difficulties, the HD patients also manifest anxiety and loss of cognition. Unfortunately, the clinically approved drugs only offer symptomatic relief and are not free from side effects. This study underlines the importance of glyceryl tribenzoate (GTB), an FDA-approved food flavoring ingredient, in alleviating HD pathology in transgenic N171-82Q mouse model. Oral administration of GTB significantly reduced mutant huntingtin level in striatum, motor cortex as well as hippocampus and increased the integrity of viable neurons. Furthermore, we found the presence of sodium benzoate (NaB), a FDA-approved drug for urea cycle disorders and glycine encephalopathy, in the brain of GTB-fed HD mice. Accordingly, NaB administration also markedly decreased huntingtin level in striatum and cortex. Glial activation is found to coincide with neuronal death in affected regions of HD brains. Interestingly, both GTB and NaB treatment suppressed activation of glial cells and inflammation in the brain. Finally, neuroprotective effect of GTB and NaB resulted in improved motor performance of HD mice. Collectively, these results suggest that GTB and NaB may be repurposed for HD.


Asunto(s)
Benzoatos/administración & dosificación , Aromatizantes/farmacología , Conservantes de Alimentos/farmacología , Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/metabolismo , Corteza Motora/efectos de los fármacos , Neostriado/efectos de los fármacos , Benzoato de Sodio/farmacología , Administración Oral , Animales , Benzoatos/farmacología , Ácido Benzoico/farmacología , Análisis de la Marcha , Fuerza de la Mano , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Ratones , Ratones Transgénicos , Corteza Motora/metabolismo , Neostriado/metabolismo , Prueba de Campo Abierto , Prueba de Desempeño de Rotación con Aceleración Constante , Benzoato de Sodio/metabolismo
2.
J Huntingtons Dis ; 10(1): 203-220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32925081

RESUMEN

DNA damage repair (DDR) mechanisms have been implicated in a number of neurodegenerative diseases (both genetically determined and sporadic). Consistent with this, recent genome-wide association studies in Huntington's disease (HD) and other trinucleotide repeat expansion diseases have highlighted genes involved in DDR mechanisms as modifiers for age of onset, rate of progression and somatic instability. At least some clinical genetic modifiers have been shown to have a role in modulating trinucleotide repeat expansion biology and could therefore provide new disease-modifying therapeutic targets. In this review, we focus on key considerations with respect to drug discovery and development using DDR mechanisms as a target for trinucleotide repeat expansion diseases. Six areas are covered with specific reference to DDR and HD: 1) Target identification and validation; 2) Candidate selection including therapeutic modality and delivery; 3) Target drug exposure with particular focus on blood-brain barrier penetration, engagement and expression of pharmacology; 4) Safety; 5) Preclinical models as predictors of therapeutic efficacy; 6) Clinical outcome measures including biomarkers.


Asunto(s)
Daño del ADN/genética , Reparación de la Incompatibilidad de ADN/genética , Desarrollo de Medicamentos , Descubrimiento de Drogas , Proteína Huntingtina/genética , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Daño del ADN/efectos de los fármacos , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Humanos , Proteína Huntingtina/efectos de los fármacos , Expansión de Repetición de Trinucleótido/efectos de los fármacos
3.
Food Funct ; 11(2): 1334-1348, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32043503

RESUMEN

Huntington's disease (HD) is a genetic neurodegenerative disorder caused by a highly polymorphic CAG trinucleotide repeat expansion encoding an extended polyglutamine (polyQ) tract at the N-terminus of huntingtin protein (HTT). The polyQ tract promotes the formation of toxic oligomers and aggregates of HTT, which leads to neuronal dysfunction and death. Therapies to lower mutant HTT (mHTT) and its aggregates appear to be the most promising strategies. Ellagic acid (EA) has been marketed as a dietary supplement with various claimed benefits and neuroprotective effects on several neurodegenerative disorders, while its effect on mHTT pathology is still unknown. Here we reported that EA significantly attenuated motor and cognitive deficits in R6/2 mice. Moreover, EA significantly lowered mHTT levels, reduced neuroinflammation, rescued synapse loss, and decreased oxidative stress in R6/2 mouse brains. These findings indicated that EA has promising therapeutic potential for HD treatment.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Ácido Elágico/farmacología , Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Animales , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos
4.
Brain ; 143(2): 407-429, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31738395

RESUMEN

Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.


Asunto(s)
Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Oligonucleótidos Antisentido/farmacología , Péptidos/genética , Animales , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedades Neurodegenerativas/genética , Expansión de Repetición de Trinucleótido/genética
5.
Brain ; 143(1): 266-288, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31848580

RESUMEN

Huntington's disease is associated with a reactive microglial response and consequent inflammation. To address the role of these cells in disease pathogenesis, we depleted microglia from R6/2 mice, a rapidly progressing model of Huntington's disease marked by behavioural impairment, mutant huntingtin (mHTT) accumulation, and early death, through colony-stimulating factor 1 receptor inhibition (CSF1Ri) with pexidartinib (PLX3397) for the duration of disease. Although we observed an interferon gene signature in addition to downregulated neuritogenic and synaptic gene pathways with disease, overt inflammation was not evident by microglial morphology or cytokine transcript levels in R6/2 mice. Nonetheless, CSF1Ri-induced microglial elimination reduced or prevented disease-related grip strength and object recognition deficits, mHTT accumulation, astrogliosis, and striatal volume loss, the latter of which was not associated with reductions in cell number but with the extracellular accumulation of chondroitin sulphate proteoglycans (CSPGs)-a primary component of glial scars. A concurrent loss of proteoglycan-containing perineuronal nets was also evident in R6/2 mice, and microglial elimination not only prevented this but also strikingly increased perineuronal nets in the brains of naïve littermates, suggesting a new role for microglia as homeostatic regulators of perineuronal net formation and integrity.


Asunto(s)
Aminopiridinas/farmacología , Matriz Extracelular/efectos de los fármacos , Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/metabolismo , Microglía/efectos de los fármacos , Neostriado/efectos de los fármacos , Pirroles/farmacología , Reconocimiento en Psicología/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Proteoglicanos Tipo Condroitín Sulfato/efectos de los fármacos , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Citocinas/efectos de los fármacos , Citocinas/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Fuerza de la Mano , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Inflamación , Ratones , Ratones Transgénicos , Neostriado/patología , Neuritas/efectos de los fármacos , ARN Mensajero/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Transcriptoma
6.
Neuropharmacology ; 162: 107812, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31622602

RESUMEN

One of the pathological hallmarks of Huntington disease (HD) is accumulation of the disease-causing mutant huntingtin (mHTT), which leads to the disruption of a variety of cellular functions, ultimately resulting in cell death. Induction of autophagy, for example by the inhibition of mechanistic target of rapamycin (mTOR) signaling, has been shown to reduce HTT levels and aggregates. While rapalogs like rapamycin allosterically inhibit the mTOR complex 1 (TORC1), ATP-competitive mTOR inhibitors suppress activities of TORC1 and TORC2 and have been shown to be more efficient in inducing autophagy and reducing protein levels and aggregates than rapalogs. The ability to cross the blood-brain barrier of first generation catalytic mTOR inhibitors has so far been limited, and therefore sufficient target coverage in the brain could not be reached. Two novel, brain penetrant compounds - the mTORC1/2 inhibitor PQR620, and the dual pan-phosphoinositide 3-kinase (PI3K) and mTORC1/2 kinase inhibitor PQR530 - were evaluated by assessing their potential to induce autophagy and reducing mHTT levels. For this purpose, expression levels of autophagic markers and well-defined mTOR targets were analyzed in STHdh cells and HEK293T cells and in mouse brains. Both compounds potently inhibited mTOR signaling in cell models as well as in mouse brain. As proof of principle, reduction of aggregates and levels of soluble mHTT were demonstrated upon treatment with both compounds. Originally developed for cancer treatment, these second generation mTORC1/2 and PI3K/mTOR inhibitors show brain penetrance and efficacy in cell models of HD, making them candidate molecules for further investigations in HD.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Inhibidores Enzimáticos/farmacología , Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/metabolismo , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Piridinas/farmacología , Triazinas/farmacología , Animales , Autofagia/efectos de los fármacos , Barrera Hematoencefálica , Línea Celular , Cuerpo Estriado/citología , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Ratones , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología
7.
Neurosci Bull ; 35(6): 1024-1034, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31432317

RESUMEN

Huntington's disease (HD) is a deadly neurodegenerative disease with abnormal expansion of CAG repeats in the huntingtin gene. Mutant Huntingtin protein (mHTT) forms abnormal aggregates and intranuclear inclusions in specific neurons, resulting in cell death. Here, we tested the ability of a natural heat-shock protein 90 inhibitor, Gedunin, to degrade transfected mHTT in Neuro-2a cells and endogenous mHTT aggregates and intranuclear inclusions in both fibroblasts from HD patients and neurons derived from induced pluripotent stem cells from patients. Our data showed that Gedunin treatment degraded transfected mHTT in Neuro-2a cells, endogenous mHTT aggregates and intranuclear inclusions in fibroblasts from HD patients, and in neurons derived from induced pluripotent stem cells from patients in a dose- and time-dependent manner, and its activity depended on the proteasomal pathway rather than the autophagy route. These findings also showed that although Gedunin degraded abnormal mHTT aggregates and intranuclear inclusions in cells from HD patient, it did not affect normal cells, thus providing a new perspective for using Gedunin to treat HD.


Asunto(s)
Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Cuerpos de Inclusión Intranucleares/efectos de los fármacos , Limoninas/farmacología , Proteínas Mutantes/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula , Fibroblastos/efectos de los fármacos , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína Huntingtina/genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Leupeptinas/farmacología , Ratones , Mutación , Neuronas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal , Transfección
8.
Metab Brain Dis ; 34(3): 715-720, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30850940

RESUMEN

Mutations in the HTT gene, consisting of expansion of CAG triplets, cause the Huntington's disease (HD), one of the major neurodegenerative disorders. Formation of aggregates of mutant huntingtin (mHTT, the product of the mutant HTT gene) leads to cellular dysfunctions, and subsequent neurodegeneration which manifest clinically as motor abnormalities and cognitive deficits. We recently used immortalized HEK-293 cells expressing the 1st exon of the mutant HTT gene as a cellular model of HD, and showed that the stimulation of autophagy by genistein corrected the mutant phenotype. However, effects of genistein on HD patient-derived cells remained unknown. In this report, we demonstrated that genistein also instigated degradation of mHTT in fibroblasts derived from HD patients. This was assessed as a significant decrease in the levels of HTT in HD fibroblasts measured by Western-blotting, and the disappearance of intracellular mHTT aggregates in cells observed by fluorescent microscopy. Fibroblasts derived from control persons were not affected by genistein treatment. These results indicate that genistein can improve HD phenotype in patient-derived cells, and substantiates the need for further studies of this isoflavone as a potential therapeutic agent.


Asunto(s)
Autofagia/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Genisteína/farmacología , Enfermedad de Huntington/inducido químicamente , Adulto , Animales , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Humanos , Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/metabolismo , Masculino , Persona de Mediana Edad , Mutación/efectos de los fármacos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente
9.
J Huntingtons Dis ; 8(1): 9-22, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30636742

RESUMEN

To date, no candidate intervention has demonstrated a disease-modifying effect in Huntington's disease, despite promising results in preclinical studies. In this commentary we discuss disease-modifying therapies that have been trialled in Huntington's disease and speculate that these failures may be attributed, in part, to the assumption that a single drug selectively targeting one aspect of disease pathology will be universally effective, regardless of disease stage or "subtype". We therefore propose an alternative approach for effective disease-modification that uses 1) a combination approach rather than monotherapy, and 2) targets the disease process early on - before it is clinically manifest. Finally, we will consider whether this change in approach that we propose will be relevant in the future given the recent shift to targeting more proximal disease processes-e.g., huntingtin gene expression; a timely question given Roche's recent decision to take on the clinical development of a promising new drug candidate in Huntington's disease, IONIS-HTTRx.


Asunto(s)
Expresión Génica , Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Resultado del Tratamiento
10.
Parkinsonism Relat Disord ; 59: 125-130, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30616867

RESUMEN

INTRODUCTION: Huntington disease (HD) is a rare genetic neurodegenerative condition. The availability of a genetic diagnosis makes HD an attractive model for the development of therapies that can delay or, at best, halt the progression of neurodegenerative conditions. Tetrabenazine and deutetrabenazine are the only treatment options with a formal indication (chorea) for this patient population. METHODS: Literature review on HD and clinical trials using the medical databases Pubmed, Web of Science, and clinical trial registries. Recent clinical trials conducted with the goal of disease-modification or new symptomatic treatment indications were included. Non-pharmacological interventions were excluded. RESULTS: Therapeutic approaches aiming at disease-modification include huntingtin-lowering strategies, the modulation of huntingtin homeostasis and neuroinflammation. Huntingtin-lowering strategies are of particular interest by targeting the mRNA of the huntingtin (HTT) gene at the core of HD biology. Antisense oligonucleotides (ASO) are the only huntingtin-lowering strategies in clinical development. The initial results suggest that the first non-allele specific ASO was safe and associated with a reduction in the levels of mutated huntingtin protein (mHTT). Other clinical trials for disease-modification in HD have generated negative results or are ongoing. Assays to measure CSF mHTT and brain nuclear imaging specific to HD can support the rational development of these therapies. Novel symptomatic treatment indications explored in clinical trials include motor disability, irritability and apathy. CONCLUSIONS: The years ahead are promising for novel and revolutionary therapies aimed at core disease mechanisms in HD. Clinical research platforms such as Enroll-HD are expected to potentiate the conduction of clinical trials in HD.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/uso terapéutico , Dopaminérgicos/uso terapéutico , Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/fisiopatología , Inmunoterapia , Oligonucleótidos Antisentido/uso terapéutico , Inhibidores de Fosfodiesterasa/uso terapéutico , Humanos
11.
J Biol Chem ; 294(6): 1915-1923, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30538129

RESUMEN

Huntington's disease (HD) is a neurodegenerative, age-onset disorder caused by a CAG DNA expansion in exon 1 of the HTT gene, resulting in a polyglutamine expansion in the huntingtin protein. Nuclear accumulation of mutant huntingtin is a hallmark of HD, resulting in elevated mutant huntingtin levels in cell nuclei. Huntingtin is normally retained at the endoplasmic reticulum via its N17 amphipathic α-helix domain but is released by oxidation of Met-8 during reactive oxygen species (ROS) stress. Huntingtin enters the nucleus via an importin ß1- and 2-dependent proline-tyrosine nuclear localization signal (PY-NLS), which has a unique intervening sequence in huntingtin. Here, we have identified the high-mobility group box 1 (HMGB1) protein as an interactor of the intervening sequence within the PY-NLS. Nuclear levels of HMGB1 positively correlated with varying levels of nuclear huntingtin in both HD and normal human fibroblasts. We also found that HMGB1 interacts with the huntingtin N17 region and that this interaction is enhanced by the presence of ROS and phosphorylation of critical serine residues in the N17 region. We conclude that HMGB1 is a huntingtin N17/PY-NLS ROS-dependent interactor, and this protein bridging is essential for relaying ROS sensing by huntingtin to its nuclear entry during ROS stress. ROS may therefore be a critical age-onset stress that triggers nuclear accumulation of mutant huntington in Huntington's disease.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteína HMGB1/fisiología , Proteína Huntingtina/metabolismo , Especies Reactivas de Oxígeno/farmacología , Sitios de Unión , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Proteína Huntingtina/efectos de los fármacos , Proteína Huntingtina/fisiología , Señales de Localización Nuclear , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica
12.
Curr Neurol Neurosci Rep ; 17(2): 18, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28265888

RESUMEN

Huntington disease (HD) is an autosomal dominant neurodegenerative condition caused by a CAG trinucleotide expansion in the huntingtin gene. At present, the HD field is experiencing exciting times with the assessment for the first time in human subjects of interventions aimed at core disease mechanisms. Out of a portfolio of interventions that claim a potential disease-modifying effect in HD, the target huntingtin has more robust validation. In this review, we discuss the spectrum of huntingtin-lowering therapies that are currently being considered. We provide a critical appraisal of the validation of huntingtin as a drug target, describing the advantages, challenges, and limitations of the proposed therapeutic interventions. The development of these new therapies relies strongly on the knowledge of HD pathogenesis and the ability to translate this knowledge into validated pharmacodynamic biomarkers. Altogether, the goal is to support a rational drug development that is ethical and cost-effective. Among the pharmacodynamic biomarkers under development, the quantification of mutant huntingtin in the cerebral spinal fluid and PET imaging targeting huntingtin or phosphodiesterase 10A deserve special attention. Huntingtin-lowering therapeutics are eagerly awaited as the first interventions that may be able to change the course of HD in a meaningful way.


Asunto(s)
Proteína Huntingtina/efectos de los fármacos , Enfermedad de Huntington/genética , Terapia Molecular Dirigida/métodos , Animales , Humanos , Proteína Huntingtina/líquido cefalorraquídeo , Enfermedad de Huntington/diagnóstico por imagen , Neuroimagen , Hidrolasas Diéster Fosfóricas/metabolismo , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...