Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 381(6664): 1331-1337, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37733873

RESUMEN

Polycomb repressive complex 2 (PRC2) silences genes through trimethylation of histone H3K27. PRC2 associates with numerous precursor messenger RNAs (pre-mRNAs) and long noncoding RNAs (lncRNAs) with a binding preference for G-quadruplex RNA. In this work, we present a 3.3-Å-resolution cryo-electron microscopy structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface composed of two copies of the catalytic subunit EZH2, thereby blocking nucleosome DNA interaction and histone H3 tail accessibility. Furthermore, an RNA-binding loop of EZH2 facilitates the handoff between RNA and DNA, another activity implicated in PRC2 regulation by RNA. We identified a gain-of-function mutation in this loop that activates PRC2 in zebrafish. Our results reveal mechanisms for RNA-mediated regulation of a chromatin-modifying enzyme.


Asunto(s)
G-Cuádruplex , Complejo Represivo Polycomb 2 , Precursores del ARN , ARN Largo no Codificante , Animales , Microscopía por Crioelectrón , Histonas/genética , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Mutación con Ganancia de Función , Regiones Promotoras Genéticas , Unión Proteica , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Cristalografía por Rayos X , Conformación Proteica , Multimerización de Proteína
2.
J Med Chem ; 64(23): 17146-17183, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34807608

RESUMEN

Aberrant activity of the histone methyltransferase polycomb repressive complex 2 (PRC2) has been linked to several cancers, with small-molecule inhibitors of the catalytic subunit of the PRC2 enhancer of zeste homologue 2 (EZH2) being recently approved for the treatment of epithelioid sarcoma (ES) and follicular lymphoma (FL). Compounds binding to the EED subunit of PRC2 have recently emerged as allosteric inhibitors of PRC2 methyltransferase activity. In contrast to orthosteric inhibitors that target EZH2, small molecules that bind to EED retain their efficacy in EZH2 inhibitor-resistant cell lines. In this paper we disclose the discovery of potent and orally bioavailable EED ligands with good solubilities. The solubility of the EED ligands was optimized through a variety of design tactics, with the resulting compounds exhibiting in vivo efficacy in EZH2-driven tumors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Regulación Alostérica , Animales , Dominio Catalítico , Línea Celular , Proliferación Celular/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Compuestos Heterocíclicos/química , Humanos , Ligandos , Complejo Represivo Polycomb 2/química , Ratas , Relación Estructura-Actividad
3.
Cell Death Dis ; 12(10): 878, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34564701

RESUMEN

The poor prognosis of pancreatic cancer is primarily due to the development of resistance to therapies, including gemcitabine. The long noncoding RNA PVT1 (lncRNA PVT1) has been shown to interact with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), promoting gemcitabine resistance in pancreatic cancer. In this study, we found histone acetyltransferase 1 (HAT1) enhanced the tolerance of pancreatic cancer cells to gemcitabine and HAT1-mediated resistance mechanisms were regulated by PVT1 and EZH2. Our results showed that the aberrant HAT1 expression promoted gemcitabine resistance, while silencing HAT1 restored gemcitabine sensitivity. Moreover, HAT1 depletion caused a notable increase of gemcitabine sensitivity in gemcitabine-resistant pancreatic cancer cell lines. Further research found that HAT1 increased PVT1 expression to induce gemcitabine resistance, which enhanced the binding of bromodomain containing 4 (BRD4) to the PVT1 promoter, thereby promoting PVT1 transcription. Besides, HAT1 prevented EZH2 degradation by interfering with ubiquitin protein ligase E3 component n-recognin 4 (UBR4) binding to the N-terminal domain of EZH2, thus maintaining EZH2 protein stability to elevate the level of EZH2 protein, which also promoted HAT1-mediated gemcitabine resistance. These results suggested that HAT1 induced gemcitabine resistance of pancreatic cancer cells through regulating PVT1/EZH2 complex. Given this, Chitosan (CS)-tripolyphosphate (TPP)-siHAT1 nanoparticles were developed to block HAT1 expression and improve the antitumor effect of gemcitabine. The results showed that CS-TPP-siHAT1 nanoparticles augmented the antitumor effects of gemcitabine in vitro and in vivo. In conclusion, HAT1-targeted therapy can improve observably gemcitabine sensitivity of pancreatic cancer cells. HAT1 is a promising therapeutic target for pancreatic cancer.


Asunto(s)
Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histona Acetiltransferasas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , ARN Largo no Codificante/metabolismo , Animales , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quitosano/análogos & derivados , Quitosano/química , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteína Potenciadora del Homólogo Zeste 2/química , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Desnudos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Estabilidad Proteica/efectos de los fármacos , ARN Largo no Codificante/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Gemcitabina
4.
J Med Chem ; 64(17): 12630-12650, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34455779

RESUMEN

PARP inhibitors have highly significant effects on BRCA mutant cells, allowing targeted therapy of triple-negative breast cancer (TNBC). However, some TBNC patients lack BRCA mutations. Recent studies have shown that EZH2 inhibitors can increase the sensitivity of wild-type BRCA cells to PARP inhibitors. We designed a series of dual PARP and EZH2 inhibitors, and the most promising compound, 5a, showed good inhibitory activity against PARP-1 and EZH2 and good inhibitory effects on MDA-MB-231 (IC50 = 2.63 µM) and MDA-MB-468 (IC50 = 0.41 µM) cells with wild-type BRCA. Compared with that of olaparib, the growth inhibitory activities against these two cell types increased by approximately 15- and 80-fold, respectively, which was even more effective than the combination of olaparib and tazemetostat/GSK126. 5a can induce autophagy death of tumor cells and cause less damage to normal cells. Therefore, 5a, as a first-in-class dual PARP and EZH2 inhibitor, is a potential anticancer drug candidate for the treatment of TNBC.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Genes BRCA1/fisiología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Dominio Catalítico , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Humanos , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Unión Proteica
5.
Chem Biol Interact ; 344: 109530, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34029540

RESUMEN

PURPOSE: Targeting enhancer of zeste homolog 2 (EZH2) can represent a hopeful strategy for oncotherapy. Also, the use of PLGA-based nanoparticles as a novel and rate-controlling carrier system was of our concern. METHODS: Benzimidazole derivatives were synthesized, and their structures were clarified. In vitro antitumor activity was evaluated. Then, a modeling study was performed to investigate the ability of the most active compounds to recognize EZH2 active sites. Compound 30 (Drug) was selected to conduct pre-formulation studies and then it was incorporated into polymeric PLGA nanoparticles (NPs). NPs were then fully characterized to select an optimized formula (NP4) that subjected to further evaluation regarding antitumor activity and protein expression levels of EZH2 and EpCAM. RESULTS: The results showed the antitumor activity of some synthesized derivatives. Docking outcomes demonstrated that Compound 30 was able to identify EZH2 active sites. NP4 exhibited promising findings and proved to keep the antitumor activity of Compound 30. HEPG-2 was the most sensitive for both Drug and NP4. Protein analysis indicated that Drug and NP4 had targeted EZH2 and the downstream signaling pathway leading to the decline of EpCAM expression. CONCLUSIONS: Targeting EZH2 by Compound 30 has potential use in the treatment of cancer especially hepatocellular carcinoma.


Asunto(s)
Antineoplásicos/farmacología , Bencimidazoles/farmacología , Portadores de Fármacos/química , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/farmacología , Nanopartículas/química , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Bencimidazoles/síntesis química , Bencimidazoles/metabolismo , Sitios de Unión , Línea Celular Tumoral , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Proteína Potenciadora del Homólogo Zeste 2/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Unión Proteica , Solubilidad , Relación Estructura-Actividad
6.
Life Sci ; 274: 119226, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33609540

RESUMEN

BACKGROUND: O-linked N-acetylglucosaminyltransferase (OGT) is involved in diabetes-related diseases including diabetic nephropathy (DN), and responsible for O-GlcNAcylation. Moreover, O-GlcNAcylation and OGT could be induced by high glucose. Thus, we sought to explore the molecular mechanism of OGT in DN. METHODS: Loss- and gain-functions were conducted to determine the roles of OGT, enhancer of zeste homolog 2 (EZH2), hairy and enhancer of split 1 (HES1) and phosphatase and tensin homolog (PTEN) in the viability, cell cycle and fibrosis of mesangial cells (MCs), followed by the assessment using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and Western blot assay (fibrosis-related proteins). The interaction between OGT and EZH2 and the effect on EZH2 glycosylation were verified by chromatin immunoprecipitation (ChIP) and glutathione S-transferase (GST) pull-down assays. EZH2 stability was checked by treatment with cycloheximide. RESULTS: Expression of OGT was repressed in the DN mice and high glucose-treated MCs. Elevated OGT suppressed viability of high glucose-treated MCs, blocked proliferation characterized by repressed cyclin D1, but enhanced p21 levels, and inhibited fibrosis evidenced by reduced levels of fibronectin (FN) and collagen-4 (col-4). OGT interacted with EZH2 and promoted its glycosylation thus stabilizing the EZH2. EZH2 overexpression enhanced the enrichment of EZH2 and histone H3 Lys27 trimethylation (H3K27me3) in the HES1 promoter. HES1 was upregulated and PTEN was downregulated in DN mice. Transduction of lentivirus vector containing overexpression (oe)-OGT alleviated renal injury in DN mice. CONCLUSIONS: Collectively, OGT stabilizes histone methyltransferases EZH2 to regulate HES1/PTEN thus inhibiting DN.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/prevención & control , Proteína Potenciadora del Homólogo Zeste 2/química , N-Acetilglucosaminiltransferasas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Factor de Transcripción HES-1/metabolismo , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Regulación hacia Abajo , Estabilidad de Enzimas , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/genética , Fosfohidrolasa PTEN/genética , Factor de Transcripción HES-1/genética
7.
J Hematol Oncol ; 13(1): 104, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32723346

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2) that can alter downstream target genes expression by trimethylation of Lys-27 in histone 3 (H3K27me3). EZH2 could also regulate gene expression in ways besides H3K27me3. Functions of EZH2 in cells proliferation, apoptosis, and senescence have been identified. Its important roles in the pathophysiology of cancer are now widely concerned. Therefore, targeting EZH2 for cancer therapy is a hot research topic now and different types of EZH2 inhibitors have been developed. In this review, we summarize the structure and action modes of EZH2, focusing on up-to-date findings regarding the role of EZH2 in cancer initiation, progression, metastasis, metabolism, drug resistance, and immunity regulation. Furtherly, we highlight the advance of targeting EZH2 therapies in experiments and clinical studies.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Represión Epigenética/fisiología , Código de Histonas/fisiología , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina/uso terapéutico , Antineoplásicos/farmacología , Benzamidas/farmacología , Benzamidas/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Ciclo Celular/fisiología , Transformación Celular Neoplásica , Ensayos Clínicos como Asunto , Terapia Combinada , Resistencia a Antineoplásicos/fisiología , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Histonas/metabolismo , Humanos , Metilación , Morfolinas/farmacología , Morfolinas/uso terapéutico , Estudios Multicéntricos como Asunto , Metástasis de la Neoplasia/fisiopatología , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiología , Neoplasias/metabolismo , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Piridonas/farmacología , Piridonas/uso terapéutico , Relación Estructura-Actividad , Activación Transcripcional/fisiología , Microambiente Tumoral/inmunología
8.
Proc Natl Acad Sci U S A ; 117(29): 16992-17002, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32631994

RESUMEN

Enhancer of Zeste Homolog 2 (EZH2) is the catalytic subunit of Polycomb Repressive Complex 2 (PRC2), which minimally requires two other subunits, EED and SUZ12, for enzymatic activity. EZH2 has been traditionally known to mediate histone H3K27 trimethylation, a hallmark of silent chromatin. Emerging evidence indicates that EZH2 also activates gene expression in cancer cells in a context distinct from canonical PRC2. The molecular mechanism underlying the functional conversion of EZH2 from a gene repressor to an activator is unclear. Here, we show that EZH2 harbors a hidden, partially disordered transactivation domain (TAD) capable of interacting with components of active transcription machinery, mimicking archetypal acidic activators. The EZH2 TAD comprises the SRM (Stimulation-Responsive Motif) and SANT1 (SWI3, ADA2, N-CoR, and TFIIIB 1) regions that are normally involved in H3K27 methylation. The crystal structure of an EZH2-EED binary complex indicates that the EZH2 TAD mediates protein oligomerization in a noncanonical PRC2 context and is entirely sequestered. The EZH2 TAD can be unlocked by cancer-specific EZH2 phosphorylation events to undergo structural transitions that may enable subsequent transcriptional coactivator binding. The EZH2 TAD directly interacts with the transcriptional coactivator and histone acetyltransferase p300 and activates gene expression in a p300-dependent manner in cells. The corresponding TAD may also account for the gene activation function of EZH1, the paralog of EZH2. Distinct kinase signaling pathways that are known to abnormally convert EZH2 into a gene activator in cancer cells can now be understood in a common structural context of the EZH2 TAD.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/química , Células HEK293 , Células HeLa , Humanos , Proteínas Intrínsecamente Desordenadas/química , Fosforilación , Unión Proteica , Dominios Proteicos
9.
Chem Biol Drug Des ; 96(4): 1024-1051, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32394628

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) along with embryonic ectoderm development (EED) and suppressor of zeste 12 (SUZ12), which implements transcriptional repression mainly by depositing trimethylation marks at lysine 27 of histone H3 (H3K27me3). Its catalytic activity is closely correlated with the stability of PRC2, and somatic activating mutation of EZH2 Y641F within the catalytic SET domain drives tumor aggressiveness, drug resistance, and poor prognosis. Here, we report two high-throughput screening (HTS) campaigns targeting EZH2 Y641F and EZH2-EED interaction, respectively. For the EZH2 Y641F mutant, the HTS campaign involved a library of 250,000 compounds using a homogenous time-resolved fluorescence (HTRF) assay and identified 162 hits, while 60,160 compounds were screened against EZH2-EED interaction with a fluorescence polarization (FP) assay resulting in 97 hits. Among the 162 EZH2 Y641F inhibitors, 38 also suppressed EZH2-EED interaction and 80 showed inhibitory effects on the wide-type (WT) EZH2. Meanwhile, 10 of the 97 EZH2-EED interaction inhibitors were active against WT EZH2. These hit compounds provide useful tools for the development of novel PRC2-EZH2 inhibitors targeting its catalytic and non-catalytic activities.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Catálisis , Relación Dosis-Respuesta a Droga , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Polarización de Fluorescencia , Complejo Represivo Polycomb 2/química , Bibliotecas de Moléculas Pequeñas/administración & dosificación
10.
Cell Cycle ; 19(7): 758-771, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32093567

RESUMEN

The inhibition of enhancer of zeste homolog 2 (EZH2) has been suggested to be synthetic lethal with polybromo-1 (PBRM1) deficiency, rendering EZH2 to be an attractive target for the treatment of PBRM1 frequently mutated cancers. In the current study, we combined computational and biochemical approaches to establish an efficient system for the screening and validation of synthetic lethal inhibitors from a large pool of chemical compounds. Five putative EZH2 inhibitors were identified through structure-based virtual screening from 47,737 chemical compounds and analyzed with molecular dynamics. The efficacy of these compounds against EZH2 was tested using PBRM1 deficient and wide-type cell lines. The compound L501-1669 selectively inhibited the proliferation of PBRM1-deficient cells and down-regulated the tri-methylation of histone H3 at Lysine 27 (H3K27me3). Importantly, we also observed an increase in apoptotic activities in L501-1669 treated PBRM1-deficient cells. Taken together, our results demonstrate that L501-1669 is a selective EZH2 inhibitor with promising application in the targeted therapy of PBRM1-deficient cancers.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al ADN/deficiencia , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Neoplasias/genética , Neoplasias/patología , Mutaciones Letales Sintéticas/genética , Factores de Transcripción/deficiencia , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/metabolismo , Humanos , Indoles/farmacología , Lisina/metabolismo , Metilación , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pronóstico , Piridonas/farmacología , Reproducibilidad de los Resultados , Mutaciones Letales Sintéticas/efectos de los fármacos , Factores de Transcripción/metabolismo
11.
J Clin Invest ; 130(5): 2712-2726, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32027624

RESUMEN

Whether mutations in cancer driver genes directly affect cancer immune phenotype and T cell immunity remains a standing question. ARID1A is a core member of the polymorphic BRG/BRM-associated factor chromatin remodeling complex. ARID1A mutations occur in human cancers and drive cancer development. Here, we studied the molecular, cellular, and clinical impact of ARID1A aberrations on cancer immunity. We demonstrated that ARID1A aberrations resulted in limited chromatin accessibility to IFN-responsive genes, impaired IFN gene expression, anemic T cell tumor infiltration, poor tumor immunity, and shortened host survival in many human cancer histologies and in murine cancer models. Impaired IFN signaling was associated with poor immunotherapy response. Mechanistically, ARID1A interacted with EZH2 via its carboxyl terminal and antagonized EZH2-mediated IFN responsiveness. Thus, the interaction between ARID1A and EZH2 defines cancer IFN responsiveness and immune evasion. Our work indicates that cancer epigenetic driver mutations can shape cancer immune phenotype and immunotherapy.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Mutación , Neoplasias/genética , Neoplasias/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Animales , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/inmunología , Proteínas de Unión al ADN/química , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/inmunología , Epigénesis Genética , Femenino , Humanos , Inmunofenotipificación , Inmunoterapia , Interferones/genética , Interferones/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Melanoma/genética , Melanoma/inmunología , Melanoma/patología , Ratones , Neoplasias/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Transducción de Señal/genética , Transducción de Señal/inmunología , Factores de Transcripción/química , Escape del Tumor/genética , Escape del Tumor/inmunología
12.
Clin Epigenetics ; 11(1): 173, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791385

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most lethal and aggressive malignant primary brain tumor in adults. After surgical resection of the tumor, the patient typically should be subjected to chemotherapy (temozolomide, TMZ) and concomitant radiotherapy. Since the TMZ treatment does not lead to complete remission and often develops resistance, the identification of efficacious therapeutics is strongly to pursue. Among the epigenetic players, the H3K27 methyltransferase (MT) EZH2 (enhancer of zeste homologue 2) has been found overexpressed or mutated in several human cancers including gliomas, and its overexpression is associated with poor outcome in GBM. Two EZH2 inhibitors (EZH2i), UNC1999 and GSK343, suppressed GBM growth in vitro and in vivo indicating that EZH2i can be potential drugs against GBM. RESULTS: Two new EZH2i, MC4040 and MC4041, were designed, prepared, and tested by us to determine their effects in primary GBM cell cultures. MC4040 and MC4041 displayed single-digit micromolar inhibition of EZH2, 10-fold less potency against EZH1, and no activity towards other MTs. In primary GBM cells as well as in U-87 GBM cells, the two compounds reduced H3K27me3 levels, and dose- and time-dependently impaired GBM cell viability without inducing apoptosis and arresting the cell cycle in the G0/G1 phase, with increased p21 and p27 levels. In combination with TMZ, MC4040 and MC4041 displayed stronger, but not additive, effects on cell viability. The potent clinical candidate as EZH2i tazemetostat, alone or in combination with TMZ, exhibited a similar potency of inhibition of GBM cell growth when compared to MC4040 and MC4041. At the molecular level, MC4040 and MC4041 reduced the VEGFR1/VEGF expression, reversed the epithelial-mesenchymal transition (EMT), and hampered cell migration and invasion attenuating the cancer malignant phenotype. Treatment of GBM cells with MC4040 and MC4041 also impaired the GBM pro-inflammatory phenotype, with a significant decrease of TGF-ß, TNF-α, and IL-6, joined to an increase of the anti-inflammatory cytokine IL-10. CONCLUSIONS: The two novel EZH2i MC4040 and MC4041 impaired primary GBM cell viability, showing even stronger effects in combination with TMZ. They also weakened the aggressive malignant phenotype by reducing angiogenesis, EMT, cell migration/invasion and inflammation, thus they may be considered potential candidates against GBM also for combination therapies.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Citocinas/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores Enzimáticos/farmacología , Glioblastoma/metabolismo , Cultivo Primario de Células/métodos , Temozolomida/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Epigénesis Genética/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Humanos , Factores de Tiempo , Células Tumorales Cultivadas
13.
RNA ; 25(8): 935-947, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31048495

RESUMEN

Some neurological disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), fragile X syndrome, Huntington's disease, myotonic dystrophy, and various ataxias, can be caused by expansions of short nucleic acid sequence repeats in specific genes. A possible disease mechanism involves the transcribed repeat RNA binding an RNA-binding protein (RBP), resulting in its sequestration and thus dysfunction. Polycomb repressive complex 2 (PRC2), the histone methyltransferase that deposits the H3K27me3 mark of epigenetically silenced chromatin, binds G-rich RNAs and has especially high affinity for G-quadruplex (G-Q) structures. Here, we find that PRC2 target genes are derepressed and the RNA binding subunit EZH2 largely insoluble in postmortem brain samples from ALS/FTD patients with C9ORF72 (C9) repeat expansions, leading to the hypothesis that the (G4C2)n repeat RNA might be sequestering PRC2. Contrary to this expectation, we found that C9 repeat RNAs (n = 6 or 10) bind weakly to purified PRC2, and studies with the G-Q specific BG4 antibody and circular dichroism studies both indicated that these C9 RNAs have little propensity to form G-Qs in vitro. Several GC-rich triplet-repeat expansion RNAs also have low affinity for PRC2 and do not appreciably form G-Qs in vitro. The results are consistent with these sequences forming hairpin structures that outcompete G-Q folding when the repeat length is sufficiently large. We suggest that binding of PRC2 to these GC-rich RNAs is fundamentally weak but may be modulated in vivo by protein factors that affect secondary structure, such as helicases and other RBPs.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/química , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Complejo Represivo Polycomb 2/metabolismo , Repeticiones de Trinucleótidos , Esclerosis Amiotrófica Lateral/metabolismo , Autopsia , Dicroismo Circular , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Demencia Frontotemporal/metabolismo , G-Cuádruplex , Humanos , Complejo Represivo Polycomb 2/química , Solubilidad
14.
Proc Natl Acad Sci U S A ; 116(17): 8295-8300, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30967505

RESUMEN

Enhancer of Zeste Homolog 2 (EZH2) is the catalytic subunit of Polycomb Repressor Complex 2 (PRC2), the enzyme that catalyzes monomethylation, dimethylation, and trimethylation of lysine 27 on histone H3 (H3K27). Trimethylation at H3K27 (H3K27me3) is associated with transcriptional silencing of developmentally important genes. Intriguingly, H3K27me3 is mutually exclusive with H3K36 trimethylation on the same histone tail. Disruptions in this cross-talk result in aberrant H3K27/H3K36 methylation patterns and altered transcriptional profiles that have been implicated in tumorigenesis and other disease states. Despite their importance, the molecular details of how PRC2 "senses" H3K36 methylation are unclear. We demonstrate that PRC2 is activated in cis by the unmodified side chain of H3K36, and that this activation results in a fivefold increase in the kcat of its enzymatic activity catalyzing H3K27 methylation compared with activity on a substrate methylated at H3K36. Using a photo-cross-linking MS strategy and histone methyltransferase activity assays on PRC2 mutants, we find that EZH2 contains a specific sensing pocket for the H3K36 methylation state that allows the complex to distinguish between modified and unmodified H3K36 residues, altering enzymatic activity accordingly to preferentially methylate the unmodified nucleosome substrate. We also present evidence that this process may be disrupted in some cases of Weaver syndrome.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Sitios de Unión/genética , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
J Hum Genet ; 64(6): 561-572, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30858506

RESUMEN

Variants have been identified in the embryonic ectoderm development (EED) gene in seven patients with syndromic overgrowth similar to that observed in Weaver syndrome. Here, we present three additional patients with missense variants in the EED gene. All the missense variants reported to date (including the three presented here) have localized to one of seven WD40 domains of the EED protein, which are necessary for interaction with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). In addition, among the seven patients reported in the literature and the three new patients presented here, all of the reported pathogenic variants except one occurred at one of four amino acid residues in the EED protein. The recurrence of pathogenic variation at these loci suggests that these residues are functionally important (mutation hotspots). In silico modeling and calculations of the free energy changes resulting from these variants suggested that they not only destabilize the EED protein structure but also adversely affect interactions between EED, EZH2, and/or H3K27me3. These cases help demonstrate the mechanism(s) by which apparently deleterious variants in the EED gene might cause overgrowth and lend further support that amino acid residues in the WD40 domain region may be mutation hotspots.


Asunto(s)
Anomalías Múltiples/genética , Hipotiroidismo Congénito/genética , Anomalías Craneofaciales/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Deformidades Congénitas de la Mano/genética , N-Metiltransferasa de Histona-Lisina/genética , Complejo Represivo Polycomb 2/genética , Anomalías Múltiples/etiología , Anomalías Múltiples/fisiopatología , Adolescente , Niño , Simulación por Computador , Hipotiroidismo Congénito/etiología , Hipotiroidismo Congénito/fisiopatología , Anomalías Craneofaciales/etiología , Anomalías Craneofaciales/fisiopatología , Proteína Potenciadora del Homólogo Zeste 2/química , Femenino , Deformidades Congénitas de la Mano/etiología , Deformidades Congénitas de la Mano/fisiopatología , N-Metiltransferasa de Histona-Lisina/química , Humanos , Masculino , Simulación de Dinámica Molecular , Tasa de Mutación , Mutación Missense/genética , Complejo Represivo Polycomb 2/química , Conformación Proteica , Repeticiones WD40/genética , Secuenciación del Exoma
16.
Sci Rep ; 9(1): 987, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700785

RESUMEN

SANT domains are found in a number of chromatin regulators. They contain approximately 50 amino acids and have high similarity to the DNA binding domain of Myb related proteins. Though some SANT domains associate with DNA others have been found to bind unmodified histone tails. There are two SANT domains in Enhancer of Zeste 2 (EZH2), the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2), of unknown function. Here we show that the first SANT domain (SANT1) of EZH2 is a histone binding domain with specificity for the histone H4 N-terminal tail. Using NMR spectroscopy, mutagenesis, and molecular modeling we structurally characterize the SANT1 domain and determine the molecular mechanism of binding to the H4 tail. Though not important for histone binding, we find that the adjacent stimulation response motif (SRM) stabilizes SANT1 and transiently samples its active form in solution. Acetylation of H4K16 (H4K16ac) or acetylation or methylation of H4K20 (H4K20ac and H4K20me3) are seen to abrogate binding of SANT1 to H4, which is consistent with these modifications being anti-correlated with H3K27me3 in-vivo. Our results provide significant insight into this important regulatory region of EZH2 and the first characterization of the molecular mechanism of SANT domain histone binding.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/química , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Humanos , Dominios Proteicos , Relación Estructura-Actividad
17.
Cancer Res ; 79(1): 72-85, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30425057

RESUMEN

Aberrant activation of ß-catenin signaling is a critical driver for tumorigenesis, but the mechanism underlying this activation is not completely understood. In this study, we demonstrate a critical role of ß-catenin signaling in stabilization of enhancer of zeste homolog 2 (EZH2) and control of EZH2-mediated gene repression in oncogenesis. ß-Catenin/TCF4 activated the transcription of the deubiquitinase USP1, which then interacted with and deubiquitinated EZH2 directly. USP1-mediated stabilization of EZH2 promoted its recruitment to the promoters of CDKN1B, RUNX3, and HOXA5, resulting in enhanced enrichment of histone H3K27me3 and repression of target gene expression. In human glioma specimens, expression levels of nuclear ß-catenin, USP1, and EZH2 correlated with one another. Depletion of ß-catenin/USP1/EZH2 repressed glioma cell proliferation in vitro and tumor formation in vivo. Our findings indicate that a ß-catenin-USP1-EZH2 axis orchestrates the interplay between dysregulated ß-catenin signaling and EZH2-mediated gene epigenetic silencing during glioma tumorigenesis. SIGNIFICANCE: These findings identify the ß-catenin-USP1-EZH2 signaling axis as a critical mechanism for glioma tumorigenesis that may serve as a new therapeutic target in glioblastoma.


Asunto(s)
Carcinogénesis/patología , Proteína Potenciadora del Homólogo Zeste 2/química , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Proteasas Ubiquitina-Específicas/metabolismo , beta Catenina/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Glioma/genética , Glioma/metabolismo , Humanos , Ratones , Ratones Desnudos , Pronóstico , Estabilidad Proteica , Tasa de Supervivencia , Células Tumorales Cultivadas , Proteasas Ubiquitina-Específicas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética
18.
Cell Mol Life Sci ; 75(22): 4163-4176, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30140960

RESUMEN

The recent impact of cancer immunotherapies has firmly established the ability and importance of the immune system to fight malignancies. However, the intimate interaction between the highly dynamic tumor and immune cells leads to a selection process driven by genetic and epigenetic processes. As the molecular pathways of cancer resistance mechanisms to immunotherapy become increasingly known, novel therapeutic targets are being tested in combination with immune-stimulating approaches. We here review recent insights into the molecular mechanisms of tumor resistance with particular emphasis on epigenetic processes and place these in the context of previous models.


Asunto(s)
Resistencia a Antineoplásicos/genética , Epigénesis Genética , Neoplasias/patología , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Inmunoterapia , Neoplasias/terapia , Linfocitos T/inmunología , Linfocitos T/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(28): 7302-7307, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941599

RESUMEN

Protein O-glycosylation by attachment of ß-N-acetylglucosamine (GlcNAc) to the Ser or Thr residue is a major posttranslational glycosylation event and is often associated with protein folding, stability, and activity. The methylation of histone H3 at Lys-27 catalyzed by the methyltransferase EZH2 was known to suppress gene expression and cancer development, and we previously reported that the O-GlcNAcylation of EZH2 at S76 stabilized EZH2 and facilitated the formation of H3K27me3 to inhibit tumor suppression. In this study, we employed a fluorescence-based method of sugar labeling combined with mass spectrometry to investigate EZH2 glycosylation and identified five O-GlcNAcylation sites. We also find that mutation of one or more of the O-GlcNAcylation sites S73A, S76A, S84A, and T313A in the N-terminal region decreases the stability of EZH2, but does not affect its association with the PRC2 components SUZ12 and EED. Mutation of the C-terminal O-GlcNAcylation site (S729A) in the catalytic domain of EZH2 abolishes the di- and trimethylation activities, but not the monomethylation of H3K27, nor the integrity of the PRC2/EZH2 core complex. Our results show the effect of individual O-GlcNAcylation sites on the function of EZH2 and suggest an alternative approach to tumor suppression through selective inhibition of EZH2 O-GlcNAcylation.


Asunto(s)
Acetilglucosamina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Mutación Missense , Acetilglucosamina/química , Acetilglucosamina/genética , Sustitución de Aminoácidos , Línea Celular , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Estabilidad de Enzimas , Glicosilación , Humanos , Dominios Proteicos
20.
Sci Rep ; 8(1): 9092, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29904056

RESUMEN

Polycomb repressive complex 2 (PRC2) mediates trimethylation of histone H3K27 (H3K27me3), an epigenetic hallmark for repressed chromatin. Overactive mutants of the histone lysine methyltransferase subunit of PRC2, Ezh2, are found in various types of cancers. Pyridone-containing inhibitors such as GSK126 compete with S-adenosylmethionine (SAM) for Ezh2 binding and effectively inhibit PRC2 activity. PRC2 from the thermophilic fungus Chaetomium thermophilum (ct) is functionally similar to the human version in several regards and has the added advantage of producing high-resolution crystal structures, although inhibitor-bound structures of human or human/chameleon PRC2 are also available at up to 2.6 Å resolution. We solved crystal structures of both human and ctPRC2 bound to GSK126 and the structurally similar inhibitor GSK343. While the two organisms feature a disparate degree of inhibitor potency, surprisingly, GSK126 binds in a similar manner in both structures. Structure-guided protein engineering of the drug binding pocket allowed us to introduce humanizing mutations into ctEzh2 to produce a ctPRC2 variant that is more susceptible to GSK126 inhibition. Additional analysis indicated that an evolutionarily conserved structural platform dictates a unique mode of GSK126 binding, suggesting a mechanism of drug selectivity. The existing drug scaffold may thus be used to probe the function and cellular regulation of PRC2 in a wide spectrum of organisms, ranging from fungi to humans.


Asunto(s)
Chaetomium/clasificación , Proteína Potenciadora del Homólogo Zeste 2 , Proteínas Fúngicas , Piridonas/química , Sitios de Unión , Cristalografía por Rayos X , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...