Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.707
Filtrar
1.
Cell Rep ; 43(5): 114230, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743566

RESUMEN

Satellite glial cells (SGCs) of dorsal root ganglia (DRGs) are activated in a variety of chronic pain conditions; however, their mediation roles in pain remain elusive. Here, we take advantage of proteolipid protein (PLP)/creERT-driven recombination in the periphery mainly occurring in SGCs of DRGs to assess the role of SGCs in the regulation of chronic mechanical hypersensitivity and pain-like responses in two organs, the distal colon and hindpaw, to test generality. We show that PLP/creERT-driven hM3Dq activation increases, and PLP/creERT-driven TrkB.T1 deletion attenuates, colon and hindpaw chronic mechanical hypersensitivity, positively associating with calcitonin gene-related peptide (CGRP) expression in DRGs and phospho-cAMP response element-binding protein (CREB) expression in the dorsal horn of the spinal cord. Activation of Plp1+ DRG cells also increases the number of small DRG neurons expressing Piezo2 and acquiring mechanosensitivity and leads to peripheral organ neurogenic inflammation. These findings unravel a role and mechanism of Plp1+ cells, mainly SGCs, in the facilitation of chronic mechanical pain and suggest therapeutic targets for pain mitigation.


Asunto(s)
Dolor Crónico , Ganglios Espinales , Canales Iónicos , Neuronas , Regulación hacia Arriba , Animales , Ganglios Espinales/metabolismo , Dolor Crónico/metabolismo , Dolor Crónico/patología , Dolor Crónico/genética , Neuronas/metabolismo , Ratones , Canales Iónicos/metabolismo , Canales Iónicos/genética , Colon/metabolismo , Colon/patología , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/patología , Proteína Proteolipídica de la Mielina/metabolismo , Proteína Proteolipídica de la Mielina/genética , Neuroglía/metabolismo
2.
Genes (Basel) ; 15(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38674338

RESUMEN

Microribonucleic acids (miRNAs) comprising miR-23a/b clusters, specifically miR-23a and miR-27a, are recognized for their divergent roles in myelination within the central nervous system. However, cluster-specific miRNA functions remain controversial as miRNAs within the same cluster have been suggested to function complementarily. This study aims to clarify the role of miR-23a/b clusters in myelination using mice with a miR-23a/b cluster deletion (KO mice), specifically in myelin expressing proteolipid protein (PLP). Inducible conditional KO mice were generated by crossing miR-23a/b clusterflox/flox mice with PlpCre-ERT2 mice; the offspring were injected with tamoxifen at 10 days or 10 weeks of age to induce a myelin-specific miR-23a/b cluster deletion. Evaluation was performed at 10 weeks or 12 months of age and compared with control mice that were not treated with tamoxifen. KO mice exhibit impaired motor function and hypoplastic myelin sheaths in the brain and spinal cord at 10 weeks and 12 months of age. Simultaneously, significant decreases in myelin basic protein (MBP) and PLP expression occur in KO mice. The percentages of oligodendrocyte precursors and mature oligodendrocytes are consistent between the KO and control mice. However, the proportion of oligodendrocytes expressing MBP is significantly lower in KO mice. Moreover, changes in protein expression occur in KO mice, with increased leucine zipper-like transcriptional regulator 1 expression, decreased R-RAS expression, and decreased phosphorylation of extracellular signal-regulated kinases. These findings highlight the significant influence of miR-23a/b clusters on myelination during postnatal growth and aging.


Asunto(s)
Envejecimiento , MicroARNs , Vaina de Mielina , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Vaina de Mielina/metabolismo , Vaina de Mielina/genética , Envejecimiento/genética , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Ratones Noqueados , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Médula Espinal/metabolismo , Médula Espinal/crecimiento & desarrollo , Proteína Básica de Mielina/metabolismo , Proteína Básica de Mielina/genética , Oligodendroglía/metabolismo , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo
3.
Trends Mol Med ; 30(5): 459-470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582621

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is caused by mutations in the proteolipid protein 1 (PLP1) gene encoding proteolipid protein (PLP). As a major component of myelin, mutated PLP causes progressive neurodegeneration and eventually death due to severe white matter deficits. Medical care has long been limited to symptomatic treatments, but first-in-class PMD therapies with novel mechanisms now stand poised to enter clinical trials. Here, we review PMD disease mechanisms and outline rationale for therapeutic interventions, including PLP1 suppression, cell transplantation, iron chelation, and intracellular stress modulation. We discuss available preclinical data and their implications on clinical development. With several novel treatments on the horizon, PMD is on the precipice of a new era in the diagnosis and treatment of patients suffering from this debilitating disease.


Asunto(s)
Proteína Proteolipídica de la Mielina , Vaina de Mielina , Enfermedad de Pelizaeus-Merzbacher , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/terapia , Enfermedad de Pelizaeus-Merzbacher/diagnóstico , Enfermedad de Pelizaeus-Merzbacher/patología , Humanos , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Animales , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Mutación
4.
Brain Res ; 1834: 148912, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575106

RESUMEN

Multiple system atrophy (MSA) is a rare, neurodegenerative disorder with rapid motor and non-motor symptom progression. MSA is characterized by protein aggregations of α-synuclein found in the cytoplasm of oligodendrocytes. Despite this pathological hallmark, there is still little known about the cause of this disease, resulting in poor treatment options and quality of life post-diagnosis. In this study, we investigated differentially expressed genes (DEGs) via RNA-sequencing of brain samples from a validated PLP-α-synuclein transgenic mouse model, identifying a total of 40 DEGs in the PLP group compared to wild-type (WT), with top detected genes being Gm15446, Mcm6, Aldh7a1 and Gm3435. We observed a significant enrichment of immune pathways and endothelial cell genes among the upregulated genes, whereas downregulated genes were significantly enriched for oligodendrocyte and neuronal genes. We then calculated possible overlap of these DEGs with previously profiled human MSA RNA, resulting in the identification of significant downregulation of the Tsr2 gene. Identifying key gene expression profiles specific to MSA patients is crucial to further understanding the cause, and possible prevention, of this rapidly progressive neurodegenerative disorder.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Transgénicos , Atrofia de Múltiples Sistemas , Transcriptoma , alfa-Sinucleína , Animales , Humanos , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Atrofia de Múltiples Sistemas/genética , Proteína Proteolipídica de la Mielina/genética , Oligodendroglía/metabolismo , Masculino , Femenino
5.
Stem Cell Res ; 75: 103295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219302

RESUMEN

Human brain organoids can serve as models to study myelination, a process orchestrated by oligodendrocytes. Real-time imaging provides new insights on the communication of oligodendrocytes with neurons as well as demyelination processes in patient derived organoids. PLP1, a prominent myelin protein within the central nervous system, is associated with demyelinating diseases, such as Pelizaeus-Merzbacher. In this study, we generated a stable PLP1-Citrine reporter line (fPLP1) in human induced pluripotent stem cells (iPSCs) by CRISPR/Cas9 editing. fPLP1 facilitates visualization of PLP1 expression in living brain organoids, allowing time-lapse imaging of pre-myelinating and myelinating oligodendrocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Pelizaeus-Merzbacher , Humanos , Proteína Proteolipídica de la Mielina , Células Madre Pluripotentes Inducidas/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
6.
Stem Cell Res ; 74: 103276, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104430

RESUMEN

Genetic alterations in the PLP1 gene, i.e. point mutations and duplications, are associated with demyelinating disease Pelizaeus-Merzbacher. Here, we describe the generation of a human iPSC line harboring a PLP1 variant in codon 33 which leads to an amino acid change from cysteine to tyrosine. The established PLP1C33Y iPSC line enables the study of PMD pathophysiology by investigating various cell types and -characteristics in our developed protocol for bioengineered neuronal organoids (BENOs)1.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Pelizaeus-Merzbacher , Humanos , Enfermedad de Pelizaeus-Merzbacher/genética , Proteína Proteolipídica de la Mielina/genética , Células Madre Pluripotentes Inducidas/metabolismo , Edición Génica , Sistemas CRISPR-Cas/genética , Mutación/genética
7.
Pediatr Neurol ; 151: 80-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134864

RESUMEN

BACKGROUND: Two preclinical studies using mouse models of Pelizeaus-Merzbacher disease (PMD) have revealed the potential therapeutic effects of curcumin. In this study, we examined the effects of curcumin in patients with PMD. METHODS: We conducted a study administering an open-label oral bioavailable form of curcumin in nine patients genetically confirmed to have PMD (five to 20 years; mean 11 years) for 12 months (low doses for two months followed by high doses for 10 months). We evaluated changes in clinical symptoms as the primary end point using two scales, Gross Motor Function Measure (GMFM) and the PMD Functional Disability Score (PMD-FDS). The level of myelination by brain magnetic resonance imaging (MRI) and the electrophysiological state by auditory brainstem response (ABR) were evaluated as secondary end points. The safety and tolerability of oral curcumin were also examined. RESULTS: Increase in GMFM and PMD-FDS were noted in five and three patients, respectively, but overall, no statistically significant improvement was demonstrated. We found no clear improvement in their brain MRI or ABR. No adverse events associated with oral administration of curcumin were observed. CONCLUSIONS: Although we failed to demonstrate any significant therapeutic effects of curcumin after 12 months, its tolerability and safety were confirmed. This study does not exclude the possibility of therapeutic effects of curcumin, and a trial of longer duration should be considered to compare the natural history of the disease with the effects of curcumin.


Asunto(s)
Curcumina , Enfermedad de Pelizaeus-Merzbacher , Animales , Ratones , Humanos , Enfermedad de Pelizaeus-Merzbacher/diagnóstico por imagen , Enfermedad de Pelizaeus-Merzbacher/tratamiento farmacológico , Enfermedad de Pelizaeus-Merzbacher/genética , Curcumina/farmacología , Curcumina/uso terapéutico , Encéfalo/patología , Imagen por Resonancia Magnética , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Proteína Proteolipídica de la Mielina
8.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 9-16, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37953590

RESUMEN

Soluble epoxide hydrolase (sEH) inhibition has currently emerged as a therapeutic target in the treatment of various neuroinflammatory neurodegenerative diseases, including multiple sclerosis. Previously, we reported that treatment of mice with a sEH-selective inhibitor, 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea; TPPU), ameliorated chronic experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein 35-55 peptide immunization followed by injection of pertussis toxin to mice via regulating pro-inflammatory and anti-inflammatory pathways in the central nervous system. This study tested the hypothesis that the pro-inflammatory G protein-coupled receptor (GPR) 75 and anti-apoptotic phospholipase C (PLC) signaling pathways also contribute to the ameliorating effect of TPPU on chronic EAE. Brains and spinal cords of phosphate-buffered saline-, dimethyl sulfoxide-, or TPPU (3 mg/kg)-treated mice were used for the measurement of sEH, GPR75, Gaq/11, activator protein (AP)-1, PLC ß4, phosphoinositide 3-kinase (PI3K) p85a, Akt1, mitogen-activated protein kinase kinase (MEK) 1/2, extracellular signal-regulated kinase (ERK) 1/2, cyclic adenosine monophosphate-response element-binding protein (CREB) 1, B-cell lymphoma (Bcl)-2, semaphorin (SEMA) 3A, and myelin proteolipid protein (PLP) expression and/or activity by using the immunoblotting method. Expression of sEH, GPR75, Gaq/11, c-jun, phosphorylated c-Jun, and SEMA3A was lower, while PLCß4, phosphorylated PI3K p85a, phosphorylated Akt1, phosphorylated MEK1/2, phosphorylated ERK1/2, phosphorylated CREB1, Bcl-2, and myelin PLP expression was higher in the tissues of TPPU (3 mg/kg)-treated mice as compared with the EAE and vehicle control groups. Inhibition of sEH by TPPU ameliorates chronic EAE through suppressing pro-inflammatory GPR75/Gaq/11/AP-1 pathway and reducing expression of the remyelination inhibitor, SEMA3A, as well as increasing anti-apoptotic PLC/PI3K/Akt1/MEK1/2/ERK1/2/CREB1/Bcl-2 pathway activity and myelin PLP expression.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Fosfolipasas , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Ratones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Ratones Endogámicos C57BL , Proteína Proteolipídica de la Mielina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Semaforina-3A , Receptores Acoplados a Proteínas G/metabolismo
9.
Sci Rep ; 13(1): 16513, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783693

RESUMEN

The impact of high-intensity interval training (HIIT) on the central nervous system (CNS) in autoimmune neuroinflammation is not known. The aim of this study was to determine the direct effects of HIIT on the CNS and development of experimental autoimmune encephalomyelitis (EAE). Healthy mice were subjected to HIIT by treadmill running and the proteolipid protein (PLP) transfer EAE model was utilized. To examine neuroprotection, PLP-reactive lymph-node cells (LNCs) were transferred to HIIT and sedentary (SED) mice. To examine immunomodulation, PLP-reactive LNCs from HIIT and SED donor mice were transferred to naïve recipients and analyzed in vitro. HIIT in recipient mice did not affect the development of EAE following exposure to PLP-reactive LNCs. HIIT mice exhibited enhanced migration of systemic autoimmune cells into the CNS and increased demyelination. In contrast, EAE severity in recipient mice injected with PLP-reactive LNCs from HIIT donor mice was significantly diminished. The latter positive effect was associated with decreased migration of autoimmune cells into the CNS and inhibition of very late antigen (VLA)-4 expression in LNCs. Thus, the beneficial effect of HIIT on EAE development is attributed solely to systemic immunomodulatory effects, likely because of systemic inhibition of autoreactive cell migration and reduced VLA-4 integrin expression.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Encefalomielitis , Entrenamiento de Intervalos de Alta Intensidad , Ratones , Animales , Sistema Nervioso Central/metabolismo , Inmunomodulación , Proteína Proteolipídica de la Mielina
10.
Sci Immunol ; 8(88): eadl0618, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37801515

RESUMEN

Curated expression of proteolipid protein 1 (PLP1) is essential for multiple sclerosis-derived autoantibody recognition.


Asunto(s)
Esclerosis Múltiple , Proteína Proteolipídica de la Mielina , Humanos , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo
11.
J Immunol ; 211(6): 944-953, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37548478

RESUMEN

The pathogenic role B cells play in multiple sclerosis is underscored by the success of B cell depletion therapies. Yet, it remains unclear how B cells contribute to disease, although it is increasingly accepted that mechanisms beyond Ab production are involved. Better understanding of pathogenic interactions between B cells and autoreactive CD4 T cells will be critical for novel therapeutics. To focus the investigation on B cell:CD4 T cell interactions in vivo and in vitro, we previously developed a B cell-dependent, Ab-independent experimental autoimmune encephalomyelitis (EAE) mouse model driven by a peptide encompassing the extracellular domains of myelin proteolipid protein (PLPECD). In this study, we demonstrate that B cell depletion significantly inhibited PLPECD-induced EAE disease, blunted PLPECD-elicited delayed-type hypersensitivity reactions in vivo, and reduced CD4 T cell activation, proliferation, and proinflammatory cytokine production. Further, PLPECD-reactive CD4 T cells sourced from B cell-depleted donor mice failed to transfer EAE to naive recipients. Importantly, we identified B cell-mediated Ag presentation as the critical mechanism explaining B cell dependence in PLPECD-induced EAE, where bone marrow chimeric mice harboring a B cell-restricted MHC class II deficiency failed to develop EAE. B cells were ultimately observed to restimulate significantly higher Ag-specific proliferation from PLP178-191-reactive CD4 T cells compared with dendritic cells when provided PLPECD peptide in head-to-head cultures. We therefore conclude that PLPECD-induced EAE features a required pathogenic B cell-mediated Ag presentation function, providing for investigable B cell:CD4 T cell interactions in the context of autoimmune demyelinating disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Presentación de Antígeno , Glicoproteína Mielina-Oligodendrócito , Linfocitos T CD4-Positivos , Proteína Proteolipídica de la Mielina , Anticuerpos/metabolismo
12.
Ann Clin Transl Neurol ; 10(9): 1590-1602, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37475517

RESUMEN

OBJECTIVES: Hereditary spastic paraplegia (HSP) is a genetically heterogeneous disease caused by over 70 genes, with a significant number of patients still genetically unsolved. In this study, we recruited a suspected HSP family characterized by spasticity, developmental delay, ataxia and hypomyelination, and intended to reveal its molecular etiology by whole exome sequencing (WES) and long-read sequencing (LRS) analyses. METHODS: WES was performed on 13 individuals of the family to identify the causative mutations, including analyses of SNVs (single-nucleotide variants) and CNVs (copy number variants). Accurate circular consensus (CCS) long-read sequencing (LRS) was used to verify the findings of CNV analysis from WES. RESULTS: SNVs analysis identified a missense variant c.195G>T (p.E65D) of MORF4L2 at Xq22.2 co-segregating in this family from WES data. Further CNVs analysis revealed a microdeletion, which was adjacent to the MORF4L2 gene, also co-segregating in this family. LRS verified this microdeletion and confirmed the deletion range (chrX: 103,690,507-103,715,018, hg38) with high resolution at nucleotide level accuracy. INTERPRETATIONS: In this study, we identified an Xq22.2 microdeletion (about 24.5 kb), which contains distal enhancers of the PLP1 gene, as a likely cause of SPG2 in this family. The lack of distal enhancers may result in transcriptional repression of PLP1 in oligodendrocytes, potentially affecting its role in the maintenance of myelin, and causing SPG2 phenotype. This study has highlighted the importance of noncoding genomic alterations in the genetic etiology of SPG2.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Proteína Proteolipídica de la Mielina/genética , Mutación , Mutación Missense , Fenotipo , Factores de Transcripción/genética
13.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175866

RESUMEN

Multiple sclerosis (MS) is the chronic inflammatory demyelinating disease of the CNS. Relapsing-remitting MS (RRMS) is the most common type of MS. However, the mechanisms of relapse and remission in MS have not been fully understood. While SJL mice immunized with proteolipid protein (PLP) develop relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), we have recently observed that some of these mice were resistant to the active induction of relapsing EAE after initial clinical and histological symptoms of EAE with a severity similar to the relapsing EAE mice. To clarify the mechanism of relapsing, we examined myelin morphology during PLP139-151-induced RR-EAE in the SJL mice. While RR-EAE mice showed an increased EAE severity (relapse) with CNS inflammation, demyelination with abnormal myelin morphology in the spinal cord, the resistant mice exhibited a milder EAE phenotype with diminished relapse. Compared with the RR-EAE mice, the resistant mice showed less CNS inflammation, demyelination, and abnormalities of the myelin structure. In addition, scanning electron microscopic (SEM) analysis with the osmium-maceration method displayed ultrastructural abnormalities of the myelin structure in the white matter of the RR-EAE spinal cord, but not in that of the resistant mice. While the intensity of myelin staining was reduced in the relapsing EAE spinal cord, immunohistochemistry and immunoblot analysis revealed that the 21.5 kDa isoform of degenerating myelin basic protein (MBP) was specifically induced in the relapsing EAE spinal cord. Taken together, the neuroinflammation-induced degenerating 21 kDa isoform of MBP sheds light on the development of abnormal myelin on the relapse of MS pathogenesis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/patología , Proteína Básica de Mielina , Proteína Proteolipídica de la Mielina , Recurrencia Local de Neoplasia/patología , Médula Espinal/patología , Esclerosis Múltiple/patología , Ratones Endogámicos , Enfermedad Crónica , Inflamación/patología , Encéfalo/patología , Isoformas de Proteínas
14.
Prenat Diagn ; 43(3): 304-313, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797813

RESUMEN

OBJECTIVE: Xq chromosome duplication with complex rearrangements is generally acknowledged to be associated with neurodevelopmental disorders, such as Pelizaeus-Merzbacher disease (PMD) and MECP2 duplication syndrome. For couples who required a PGT-M (pre-implantation genetic testing for monogenic disease) for these disorders, junction-specific PCR is useful to directly detect pathogenic variants. Therefore, pre-clinical workup for PGT-M requires the identification of the junction of duplicated segments in PMD and MECP2 duplication syndrome, which is generally difficult. METHODS: In this report, we used nanopore long-read sequencing targeting the X chromosome using an adaptive sampling method to identify breakpoint junctions in disease-causing triplications. RESULTS: By long-read sequencing, we successfully identified breakpoint junctions in one PMD case with PLP1 triplication and in another MECP2 triplication case in a single sequencing run. Surprisingly, the duplicated region involving MECP2 was inserted 45 Mb proximal to the original position. This inserted region was confirmed by FISH analysis. With the help of precise mapping of the pathogenic variant, we successfully re-established STR haplotyping for PGT-M and avoided any potential misinterpretation of the pathogenic allele due to recombination. CONCLUSION: Long-read sequencing with adaptive sampling in a PGT-M pre-clinical workup is a beneficial method for identifying junctions of chromosomal complex structural rearrangements.


Asunto(s)
Secuenciación de Nanoporos , Enfermedad de Pelizaeus-Merzbacher , Diagnóstico Preimplantación , Femenino , Embarazo , Humanos , Proteína Proteolipídica de la Mielina/genética , Duplicación de Gen , Pruebas Genéticas/métodos , Enfermedad de Pelizaeus-Merzbacher/genética , Cromosomas , Diagnóstico Preimplantación/métodos
15.
Ann Clin Transl Neurol ; 10(3): 328-338, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36622199

RESUMEN

OBJECTIVE: Spastic paraplegia type 2 (SPG2) is an X-linked recessive (XLR) form of hereditary spastic paraplegia (HSP) caused by mutations in proteolipid protein 1 (PLP1) gene. We described the clinical and genetic features of three unrelated families with PLP1 mutations and reviewed PLP1-related cases worldwide to summarize the genotype-phenotype correlations. METHODS: The three probands were 23, 26, and 27 years old, respectively, with progressively aggravated walking difficulty as well as lower limb spasticity. Detailed physical examination showed elevated muscle tone, hyperreflexia, and Babinski signs in lower limbs. Brain MRI examinations were investigated for all cases. PLP1 mutations were identified by whole exome sequencing, followed by Sanger sequencing, family co-segregation, and phenotypic reevaluation. RESULTS: A total of eight patients with SPG2 were identified in these three families. The probands additionally had cognitive impairment, urinary or fecal incontinence, ataxia, and white matter lesions (WML) in periventricular regions, with or without kinetic tremor. Three hemizygous mutations in PLP1 were identified, including c.453+159G>A, c.834A>T (p.*278C), and c.434G>A (p.W145*), of which c.834A>T was first associated with HSP. INTERPRETATION: We identified three families with complicated SPG2 due to three PLP1 mutations. Our study supports the clinically inter-and intra-family heterogeneity of SPG2. The periventricular region WML and cognitive impairment are the most common characteristics. The kinetic tremor in upper limbs was observed in 2/3 families, suggesting the spectrum of PLP1-related disorders is still expanding.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Proteína Proteolipídica de la Mielina/genética , Temblor , Mutación
16.
Am J Physiol Gastrointest Liver Physiol ; 324(2): G115-G130, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511517

RESUMEN

Proteolipid protein 1 (Plp1) is highly expressed in enteric glia, labeling cells throughout the mucosa, muscularis, and the extrinsic innervation. Plp1 is a major constituent of myelin in the central and peripheral nervous systems, but the absence of myelin in the enteric nervous system (ENS) suggests another role for Plp1 in the gut. Although the functions of enteric glia are still being established, there is strong evidence that they regulate intestinal motility and permeability. To interrogate the role of Plp1 in enteric glia, we investigated gut motility, secretomotor function and permeability, and evaluated the ENS in mice lacking Plp1. We studied two time points: ∼3 mo (young) and >1 yr (old). Old Plp1 null mice exhibited increased fecal output, decreased fecal water content, faster whole gut transit times, reduced intestinal permeability, and faster colonic migrating motor complexes. Interestingly, in both young and old mice, the ENS exhibited normal glial and neuronal numbers as well as glial arborization density in the absence of Plp1. As Plp1-associated functions involve mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Mapk/Erk1/2) signaling and Mapk/Erk1/2 are reported to have a regulatory role in intestinal motility, we measured protein expression of Erk1/2 and its active form in the small intestine. Old Plp1 null mice had reduced levels of phosphorylated-Erk1/2. Although Plp1 is not required for the normal appearance of enteric glial cells, it has a regulatory role in intestinal motility and barrier function. Our results suggest that functional changes mediated by Plp1-expressing enteric glia may involve Erk1/2 activation.NEW & NOTEWORTHY Here, we describe that Plp1 regulates gut motility and barrier function. The functional effects of Plp1 eradication are only seen in old mice, not young. The effects of Plp1 appear to be mediated through the Erk1/2 pathway.


Asunto(s)
Motilidad Gastrointestinal , Mucosa Intestinal , Proteína Proteolipídica de la Mielina , Animales , Ratones , Sistema Nervioso Entérico/fisiología , Motilidad Gastrointestinal/fisiología , Ratones Noqueados , Neuroglía/metabolismo , Neuronas/metabolismo , Proteolípidos/metabolismo , Proteolípidos/farmacología , Proteína Proteolipídica de la Mielina/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiología
17.
Glia ; 71(3): 509-523, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36354016

RESUMEN

Healthy myelin sheaths consist of multiple compacted membrane layers closely encasing the underlying axon. The ultrastructure of CNS myelin requires specialized structural myelin proteins, including the transmembrane-tetraspan proteolipid protein (PLP) and the Ig-CAM myelin-associated glycoprotein (MAG). To better understand their functional relevance, we asked to what extent the axon/myelin-units display similar morphological changes if PLP or MAG are lacking. We thus used focused ion beam-scanning electron microscopy (FIB-SEM) to re-investigate axon/myelin-units side-by-side in Plp- and Mag-null mutant mice. By three-dimensional reconstruction and morphometric analyses, pathological myelin outfoldings extend up to 10 µm longitudinally along myelinated axons in both models. More than half of all assessed outfoldings emerge from internodal myelin. Unexpectedly, three-dimensional reconstructions demonstrated that both models displayed complex axonal pathology underneath the myelin outfoldings, including axonal sprouting. Axonal anastomosing was additionally observed in Plp-null mutant mice. Importantly, normal-appearing axon/myelin-units displayed significantly increased axonal diameters in both models according to quantitative assessment of electron micrographs. These results imply that healthy CNS myelin sheaths facilitate normal axonal diameters and shape, a function that is impaired when structural myelin proteins PLP or MAG are lacking.


Asunto(s)
Sistema Nervioso Central , Proteína Proteolipídica de la Mielina , Vaina de Mielina , Glicoproteína Asociada a Mielina , Animales , Ratones , Axones/metabolismo , Sistema Nervioso Central/metabolismo , Ratones Noqueados , Microscopía Electrónica de Rastreo , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Glicoproteína Asociada a Mielina/genética , Proteína Proteolipídica de la Mielina/genética
18.
Eur J Paediatr Neurol ; 41: 71-79, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36368233

RESUMEN

BACKGROUND: The clinical spectrum of Pelizaeus-Merzbacher disease (PMD), a common hypomyelinating leukodystrophy, ranges between severe neonatal onset and a relatively stable presentation with later onset and mainly lower limb spasticity. In view of emerging treatment options and in order to grade severity and progression, we developed a PMD myelination score. METHODS: Myelination was scored in 15 anatomic sites (items) on conventional T2-and T1w images in controls (n = 328) and 28 PMD patients (53 MRI; n = 5 connatal, n = 3 transitional, n = 10 classic, n = 3 intermediate, n = 2 PLP0, n = 3 SPG2, n = 2 female). Items included in the score were selected based on interrater variability, practicability of scoring and importance of scoring items for discrimination between patients and controls and between patient subgroups. Bicaudate ratio, maximal sagittal pons diameter, and visual assessment of midsagittal corpus callosum were separately recorded. RESULTS: The resulting myelination score consisting of 8 T2-and 5 T1-items differentiates patients and controls as well as patient subgroups at first MRI. There was very little myelin and early loss in severely affected connatal and transitional patients, more, though still severely deficient myelin in classic PMD, ongoing myelination during childhood in classic and intermediate PMD. Atrophy, present in 50% of patients, increased with age at imaging. CONCLUSIONS: The proposed myelination score allows stratification of PMD patients and standardized assessment of follow-up. Loss of myelin in severely affected and PLP0 patients and progressing myelination in classic and intermediate PMD must be considered when evaluating treatment efficacy.


Asunto(s)
Enfermedad de Pelizaeus-Merzbacher , Recién Nacido , Humanos , Femenino , Proteína Proteolipídica de la Mielina/genética , Mutación , Imagen por Resonancia Magnética , Cuerpo Calloso/diagnóstico por imagen
19.
Cell Mol Life Sci ; 79(8): 419, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35829923

RESUMEN

The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.


Asunto(s)
Membrana Dobles de Lípidos , Proteína Proteolipídica de la Mielina , Axones/metabolismo , Sistema Nervioso Central/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Isoformas de Proteínas/metabolismo
20.
Elife ; 112022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35543322

RESUMEN

Human myelin disorders are commonly studied in mouse models. Since both clades evolutionarily diverged approximately 85 million years ago, it is critical to know to what extent the myelin protein composition has remained similar. Here, we use quantitative proteomics to analyze myelin purified from human white matter and find that the relative abundance of the structural myelin proteins PLP, MBP, CNP, and SEPTIN8 correlates well with that in C57Bl/6N mice. Conversely, multiple other proteins were identified exclusively or predominantly in human or mouse myelin. This is exemplified by peripheral myelin protein 2 (PMP2), which was specific to human central nervous system myelin, while tetraspanin-2 (TSPAN2) and connexin-29 (CX29/GJC3) were confined to mouse myelin. Assessing published scRNA-seq-datasets, human and mouse oligodendrocytes display well-correlating transcriptome profiles but divergent expression of distinct genes, including Pmp2, Tspan2, and Gjc3. A searchable web interface is accessible via www.mpinat.mpg.de/myelin. Species-dependent diversity of oligodendroglial mRNA expression and myelin protein composition can be informative when translating from mouse models to humans.


Like the electrical wires in our homes, the processes of nerve cells ­ the axons, thin extensions that project from the cell bodies ­ need to be insulated to work effectively. This insulation takes the form of layers of a membrane called myelin, which is made of proteins and fats and produced by specialized cells called oligodendrocytes in the brain and the spinal cord. If this layer of insulation becomes damaged, the electrical impulses travelling along the nerves slow down, affecting the ability to walk, speak, see or think. This is the cause of several illnesses, including multiple sclerosis and a group of rare genetic diseases known as leukodystrophies. A lot of the research into myelin, oligodendrocytes and the diseases caused by myelin damage uses mice as an experimental model for humans. Using mice for this type of research is appropriate because of the ethical and technical limitations of experiments on humans. This approach can be highly effective because mice and humans share a large proportion of their genes. However, there are many obvious physical differences between the two species, making it important to determine whether the results of experiments performed in mice are applicable to humans. To do this, it is necessary to understand how myelin differs between these two species at the molecular level. Gargareta, Reuschenbach, Siems, Sun et al. approached this problem by studying the proteins found in myelin isolated from the brains of people who had passed away and donated their organs for scientific research. They used a technique called mass spectrometry, which identifies molecules based on their weight, to produce a list of proteins in human myelin that could then be compared to existing data from mouse myelin. This analysis showed that myelin is very similar in both species, but some proteins only appear in humans or in mice. Gargareta, Reuschenbach, Siems, Sun et al. then compared which genes are turned on in the oligodendrocytes making the myelin. The results of this comparison reflected most of the differences and similarities seen in the myelin proteins. Despite the similarities identified by Gargareta, Reuschenbach, Siems, Sun et al., it became evident that there are unexpected differences between the myelin of humans and mice that will need to be considered when applying results from mice research to humans. To enable this endeavor, Gargareta, Reuschenbach, Siems, Sun et al. have created a searchable web interface of the proteins in myelin and the genes expressed in oligodendrocytes in the two species.


Asunto(s)
Vaina de Mielina , Proteoma , Animales , Conexinas/metabolismo , Humanos , Ratones , Ratones Endogámicos , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Proteína Proteolipídica de la Mielina , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Proteoma/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA