Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Brain ; 147(5): 1871-1886, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128553

RESUMEN

Multiple sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressive stages of the disease and with ageing, as the environment becomes progressively more hostile. This may be attributable to inhibitory molecules in the multiple sclerosis environment including activation of the p38MAPK family of kinases. We explored oligodendrocyte precursor cell differentiation and myelin repair using animals with conditional ablation of p38MAPKγ from oligodendrocyte precursors. We found that p38γMAPK ablation accelerated oligodendrocyte precursor cell differentiation and myelination. This resulted in an increase in both the total number of oligodendrocytes and the migration of progenitors ex vivo and faster remyelination in the cuprizone model of demyelination/remyelination. Consistent with its role as an inhibitor of myelination, p38γMAPK was significantly downregulated as oligodendrocyte precursor cells matured into oligodendrocytes. Notably, p38γMAPK was enriched in multiple sclerosis lesions from patients. Oligodendrocyte progenitors expressed high levels of p38γMAPK in areas of failed remyelination but did not express detectable levels of p38γMAPK in areas where remyelination was apparent. Our data suggest that p38γ could be targeted to improve myelin repair in multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Vaina de Mielina , Oligodendroglía , Remielinización , Animales , Remielinización/fisiología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Ratones , Oligodendroglía/metabolismo , Oligodendroglía/patología , Humanos , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/genética , Diferenciación Celular/fisiología , Cuprizona/toxicidad , Ratones Endogámicos C57BL , Masculino , Femenino , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Ratones Transgénicos
2.
Elife ; 122023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458356

RESUMEN

Evidence implicating p38γ and p38δ (p38γ/p38δ) in inflammation are mainly based on experiments using Mapk12/Mapk13-deficient (p38γ/δKO) mice, which show low levels of TPL2, the kinase upstream of MKK1-ERK1/2 in myeloid cells. This could obscure p38γ/p38δ roles, since TPL2 is essential for regulating inflammation. Here, we generated a Mapk12D171A/D171A/Mapk13-/- (p38γ/δKIKO) mouse, expressing kinase-inactive p38γ and lacking p38δ. This mouse exhibited normal TPL2 levels, making it an excellent tool to elucidate specific p38γ/p38δ functions. p38γ/δKIKO mice showed a reduced inflammatory response and less susceptibility to lipopolysaccharide (LPS)-induced septic shock and Candida albicans infection than wild-type (WT) mice. Gene expression analyses in LPS-activated wild-type and p38γ/δKIKO macrophages revealed that p38γ/p38δ-regulated numerous genes implicated in innate immune response. Additionally, phospho-proteomic analyses and in vitro kinase assays showed that the transcription factor myocyte enhancer factor-2D (MEF2D) was phosphorylated at Ser444 via p38γ/p38δ. Mutation of MEF2D Ser444 to the non-phosphorylatable residue Ala increased its transcriptional activity and the expression of Nos2 and Il1b mRNA. These results suggest that p38γ/p38δ govern innate immune responses by regulating MEF2D phosphorylation and transcriptional activity.


Asunto(s)
Lipopolisacáridos , Proteína Quinasa 13 Activada por Mitógenos , Animales , Ratones , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , Proteómica , Inmunidad Innata , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Inflamación
3.
Cells ; 12(13)2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37443708

RESUMEN

p38γ MAPK (also called ERK6 or SAPK3) is a family member of stress-activated MAPKs and has common and specific roles as compared to other p38 proteins in signal transduction. Recent studies showed that, in addition to inflammation, p38γ metabolic signaling is involved in physiological exercise and in pathogenesis of cancer, diabetes, and Alzheimer's disease, indicating its potential as a therapeutic target. p38γphosphorylates at least 19 substrates through which p38γ activity is further modified to regulate life-important cellular processes such as proliferation, differentiation, cell death, and transformation, thereby impacting biological outcomes of p38γ-driven pathogenesis. P38γ signaling is characterized by its unique reciprocal regulation with its specific phosphatase PTPH1 and by its direct binding to promoter DNAs, leading to transcriptional activation of targets including cancer-like stem cell drivers. This paper will review recent findings about p38γ inflammation and metabolic signaling in physiology and diseases. Moreover, we will discuss the progress in the development of p38γ-specific pharmacological inhibitors for therapeutic intervention in disease prevention and treatment by targeting the p38γ signaling network.


Asunto(s)
Proteína Quinasa 12 Activada por Mitógenos , Transducción de Señal , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Fosforilación
4.
Cancer Gene Ther ; 30(9): 1181-1189, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37248432

RESUMEN

Gastrointestinal cancers are a leading cause of cancer morbidity and mortality worldwide with 4.2 million new cases and 3.2 million deaths estimated in 2020. Despite the advances in primary and adjuvant therapies, patients still develop distant metastases and require novel therapies. Mitogen­activated protein kinase (MAPK) cascades are crucial signaling pathways that regulate many cellular processes, including proliferation, differentiation, apoptosis, stress responses and cancer development. p38 Mitogen Activated Protein Kinases (p38 MAPKs) includes four isoforms: p38α (MAPK14), p38ß (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). p38 MAPK was first identified as a stress response protein kinase that phosphorylates different transcriptional factors. Dysregulation of p38 pathways, in particular p38γ, are associated with cancer development, metastasis, autophagy and tumor microenvironment. In this article, we provide an overview of p38 and p38γ with respect to gastrointestinal cancers. Furthermore, targeting p38γ is also discussed as a potential therapy for gastrointestinal cancers.


Asunto(s)
Neoplasias Gastrointestinales , Proteína Quinasa 11 Activada por Mitógenos , Humanos , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , Transducción de Señal , Neoplasias Gastrointestinales/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Microambiente Tumoral
5.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108523

RESUMEN

Protein kinase p38γ is an attractive target against cancer because it plays a pivotal role in cancer cell proliferation by phosphorylating the retinoblastoma tumour suppressor protein. Therefore, inhibition of p38γ with active small molecules represents an attractive alternative for developing anti-cancer drugs. In this work, we present a rigorous and systematic virtual screening framework to identify potential p38γ inhibitors against cancer. We combined the use of machine learning-based quantitative structure activity relationship modelling with conventional computer-aided drug discovery techniques, namely molecular docking and ligand-based methods, to identify potential p38γ inhibitors. The hit compounds were filtered using negative design techniques and then assessed for their binding stability with p38γ through molecular dynamics simulations. To this end, we identified a promising compound that inhibits p38γ activity at nanomolar concentrations and hepatocellular carcinoma cell growth in vitro in the low micromolar range. This hit compound could serve as a potential scaffold for further development of a potent p38γ inhibitor against cancer.


Asunto(s)
Antineoplásicos , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Bioensayo , Descubrimiento de Drogas , Ligandos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Proteína Quinasa 12 Activada por Mitógenos/metabolismo
6.
BMC Plant Biol ; 23(1): 53, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694135

RESUMEN

BACKGROUND: Many data suggest that the sucrose non-fermenting 1-related kinases 2 (SnRK2s) are very important to abiotic stress for plants. In rice, these kinases are known as osmotic stress/ABA-activated protein kinases (SAPKs). Osmotic stress/ABA-activated protein kinase 3 (OsSAPK3) is a member of SnRK2II in rice, but its function is still unclear. RESULTS: The expression of OsSAPK3 was up regulated by drought, NaCl, PEG and ABA. OsSAPK3 mutated seedings (sapk3-1 and sapk3-2) showed reduced hypersensitivity to exogenous ABA. In addition, under drought conditions, sapk3-1 and sapk3-2 showed more intolerance to drought, including decreased survival rate, increased water loss rate, increased stomatal conductance and significantly decreased expression levels of SLAC1 and SLAC7. Physiological and metabolic analyses showed that OsSAPK3 might play an important role in drought stress signaling pathway by affecting osmotic adjustment and osmolytes, ROS detoxification and expression of ABA dependent and independent dehydration-responsive genes. All gronomic traits analyses demonstrated that OsSAPK3 could improve rice yield by affecting the regulation of tiller numbers and grain size. CONCLUSION: OsSAPK3 plays an important role in both ABA-dependent and ABA-independent drought stress responses. More interestingly, OsSAPK3 could improve rice yield by indirectly regulating tiller number and grain size. These findings provide new insight for the development of drought-resistant rice.


Asunto(s)
Resistencia a la Sequía , Oryza , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Grano Comestible/genética , Sequías , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(35): e2204752119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994673

RESUMEN

p38γ and p38δ (p38γ/p38δ) regulate inflammation, in part by controlling tumor progression locus 2 (TPL2) expression in myeloid cells. Here, we demonstrate that TPL2 protein levels are dramatically reduced in p38γ/p38δ-deficient (p38γ/δ-/-) cells and tissues without affecting TPL2 messenger ribonucleic acid (mRNA) expression. We show that p38γ/p38δ posttranscriptionally regulates the TPL2 amount at two different levels. p38γ/p38δ interacts with the TPL2/A20 Binding Inhibitor of NF-κB2 (ABIN2)/Nuclear Factor κB1p105 (NF-κB1p105) complex, increasing TPL2 protein stability. Additionally, p38γ/p38δ regulates TPL2 mRNA translation by modulating the repressor function of TPL2 3' Untranslated region (UTR) mediated by its association with aconitase-1 (ACO1). ACO1 overexpression in wild-type cells increases the translational repression induced by TPL2 3'UTR and severely decreases TPL2 protein levels. p38δ binds to ACO1, and p38δ expression in p38γ/δ-/- cells fully restores TPL2 protein to wild-type levels by reducing the translational repression of TPL2 mRNA. This study reveals a unique mechanism of posttranscriptional regulation of TPL2 expression, which given its central role in innate immune response, likely has great relevance in physiopathology.


Asunto(s)
Aconitato Hidratasa , Quinasas Quinasa Quinasa PAM , Proteína Quinasa 12 Activada por Mitógenos , Proteína Quinasa 13 Activada por Mitógenos , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 13 Activada por Mitógenos/genética , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , ARN Mensajero/genética
8.
PLoS Biol ; 19(11): e3001447, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758018

RESUMEN

During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.


Asunto(s)
Glucógeno Sintasa/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , Miocardio/enzimología , Animales , Animales Recién Nacidos , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Dieta Alta en Grasa , Activación Enzimática , Conducta Alimentaria , Femenino , Eliminación de Gen , Intolerancia a la Glucosa/enzimología , Glucógeno/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Miocitos Cardíacos/enzimología , Especificidad de Órganos , Fosforilación
9.
FEBS Lett ; 595(20): 2570-2592, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34455585

RESUMEN

We describe here for the first time a lipid-binding-domain (LBD) in p38γ mitogen-activated protein kinase (MAPK) involved in the response of T cells to a newly identified inhibitor, CSH71. We describe how CSH71, which binds to both the LBD and the ATP-binding pocket of p38γ, is selectively cytotoxic to CTCL Hut78 cells but spares normal healthy peripheral blood mononuclear (PBMC) cells, and propose possible molecular mechanisms for its action. p38γ is a key player in CTCL development, and we expect that the ability to regulate its expression by specifically targeting the lipid-binding domain will have important clinical relevance. Our findings characterize novel mechanisms of gene regulation in T lymphoma cells and validate the use of computational screening techniques to identify inhibitors for therapeutic development.


Asunto(s)
Adenosina Trifosfato/metabolismo , Linfoma Cutáneo de Células T/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Neoplasias Cutáneas/metabolismo , Antineoplásicos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/genética , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética
11.
Cell Metab ; 32(4): 643-653.e4, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32783890

RESUMEN

Metformin is the first-line therapy for type 2 diabetes, but there are large inter-individual variations in responses to this drug. Its mechanism of action is not fully understood, but activation of AMP-activated protein kinase (AMPK) and changes in the gut microbiota appear to be important. The inhibitory role of microbial metabolites on metformin action has not previously been investigated. Here, we show that concentrations of the microbial metabolite imidazole propionate are higher in subjects with type 2 diabetes taking metformin who have high blood glucose. We also show that metformin-induced glucose lowering is not observed in mice pretreated with imidazole propionate. Furthermore, we demonstrate that imidazole propionate inhibits AMPK activity by inducing inhibitory AMPK phosphorylation, which is dependent on imidazole propionate-induced basal Akt activation. Finally, we identify imidazole propionate-activated p38γ as a novel kinase for Akt and demonstrate that p38γ kinase activity mediates the inhibitory action of imidazole propionate on metformin.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Imidazoles/farmacología , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglucemiantes/farmacología , Imidazoles/administración & dosificación , Imidazoles/metabolismo , Inyecciones Intraperitoneales , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos
12.
Cancer Res ; 80(16): 3251-3264, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32580961

RESUMEN

KRAS is mutated in most pancreatic ductal adenocarcinomas (PDAC) and yet remains undruggable. Here, we report that p38γ MAPK, which promotes PDAC tumorigenesis by linking KRAS signaling and aerobic glycolysis (also called the Warburg effect), is a novel therapeutic target. p38γ interacted with a glycolytic activator PFKFB3 that was dependent on mutated KRAS. KRAS transformation and overexpression of p38γ increased expression of PFKFB3 and glucose transporter GLUT2, conversely, silencing mutant KRAS, and p38γ decreased PFKFB3 and GLUT2 expression. p38γ phosphorylated PFKFB3 at S467, stabilized PFKFB3, and promoted their interaction with GLUT2. Pancreatic knockout of p38γ decreased p-PFKFB3/PFKFB3/GLUT2 protein levels, reduced aerobic glycolysis, and inhibited PDAC tumorigenesis in KPC mice. PFKFB3 and GLUT2 depended on p38γ to stimulate glycolysis and PDAC growth and p38γ required PFKFB3/S467 to promote these activities. A p38γ inhibitor cooperated with a PFKFB3 inhibitor to blunt aerobic glycolysis and PDAC growth, which was dependent on p38γ. Moreover, overexpression of p38γ, p-PFKFB3, PFKFB3, and GLUT2 in PDAC predicted poor clinical prognosis. These results indicate that p38γ links KRAS oncogene signaling and aerobic glycolysis to promote pancreatic tumorigenesis through PFKFB3 and GLUT2, and that p38γ and PFKFB3 may be targeted for therapeutic intervention in PDAC. SIGNIFICANCE: These findings show that p38γ links KRAS oncogene signaling and the Warburg effect through PFKBF3 and Glut2 to promote pancreatic tumorigenesis, which can be disrupted via inhibition of p38γ and PFKFB3.


Asunto(s)
Carcinoma Ductal Pancreático/etiología , Transportador de Glucosa de Tipo 2/metabolismo , Glucólisis , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Neoplasias Pancreáticas/etiología , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Aerobiosis , Animales , Carcinoma Ductal Pancreático/prevención & control , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Colágeno , Combinación de Medicamentos , Femenino , Técnicas de Inactivación de Genes , Silenciador del Gen , Genes ras , Técnicas de Genotipaje , Humanos , Laminina , Masculino , Ratones , Proteína Quinasa 12 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/prevención & control , Fosforilación , Pronóstico , Proteoglicanos , Proteínas Proto-Oncogénicas p21(ras)/genética
13.
Biochemistry ; 58(51): 5160-5172, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31794659

RESUMEN

The inactive state of mitogen-activated protein kinases (MAPKs) adopts an open conformation while the active state exists in a compact form stabilized by phosphorylation. In the active state, eukaryotic kinases undergo breathing motions related to substrate binding and product release that have not previously been detected in the inactive state. However, docking interactions of partner proteins with inactive MAPK kinases exhibit allostery in binding of activating kinases. Interactions at a site distant from the activation loop are coupled to the configuration of the activation loop, suggesting that the inactive state may also undergo concerted dynamics. X-ray crystallographic studies of nonphosphorylated, inactive p38γ reveal differences in domain orientations and active site structure in the two molecules in the asymmetric unit. One molecule resembles an inactive kinase with an open active site. The second molecule has a rotation of the N-lobe that leads to partial compaction of the active site, resulting in a conformation that is intermediate between the inactive open state and the fully closed state of the activated kinase. Although the compact state of apo p38γ displays several of the features of the activated enzyme, it remains catalytically inert. In solution, the kinase fluctuates on a millisecond time scale between the open ground state and a weakly populated excited state that is similar in structure to the compact state observed in the crystal. The nuclear magnetic resonance and crystal structure data imply that interconversion between the open and compact states involves a molecular switch associated with the DFG loop.


Asunto(s)
Proteína Quinasa 12 Activada por Mitógenos/química , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia Conservada , Activación Enzimática , Humanos , Modelos Moleculares , Dominios Proteicos
14.
Cells ; 8(11)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683954

RESUMEN

Transient receptor potential canonical channel-6 (TRPC6) is one of the Ca2+-permeable non-selective cation channels. TRPC6 is mainly expressed in dentate granule cell (DGC), which is one of the most resistant neuronal populations to various harmful stresses. Although TRPC6 knockdown evokes the massive DGC degeneration induced by status epilepticus (a prolonged seizure activity, SE), the molecular mechanisms underlying the role of TRPC6 in DGC viability in response to SE are still unclear. In the present study, hyperforin (a TRPC6 activator) facilitated mitochondrial fission in DGC concomitant with increases in Lon protease-1 (LONP1, a mitochondrial protease) expression and extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation under physiological conditions, which were abrogated by U0126 (an ERK1/2 inhibitor) co-treatment. TRPC6 knockdown showed the opposite effects on LONP1 expression, ERK1/2 activity, and mitochondrial dynamics. In addition, TRPC6 siRNA and U0126 evoked the massive DGC degeneration accompanied by mitochondrial elongation following SE, independent of seizure severity. However, LONP1 siRNA exacerbated SE-induced DGC death without affecting mitochondrial length. These findings indicate that TRPC6-ERK1/2 activation may increase DGC invulnerability to SE by regulating LONP1 expression as well as mitochondrial dynamics. Therefore, TRPC6-ERK1/2-LONP1 signaling pathway will be an interesting and important therapeutic target for neuroprotection from various neurological diseases.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteasa La/metabolismo , Estado Epiléptico/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Butadienos/farmacología , Muerte Celular/efectos de los fármacos , Giro Dentado/metabolismo , Masculino , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/metabolismo , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/enzimología
15.
FASEB J ; 33(12): 13131-13144, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638431

RESUMEN

Despite the high and preferential expression of p38γ MAPK in the myocardium, little is known about its function in the heart. The aim of the current study was to elucidate the physiologic and biochemical roles of p38γ in the heart. Expression and subcellular localization of p38 isoforms was determined in mouse hearts. Comparisons of the cardiac function and structure of wild-type and p38γ knockout (KO) mice at baseline and after abdominal aortic banding demonstrated that KO mice developed less ventricular hypertrophy and that contractile function is better preserved. To identify potential substrates of p38γ, we generated an analog-sensitive mutant to affinity tag endogenous myocardial proteins. Among other proteins, this technique identified calpastatin as a direct p38γ substrate. Moreover, phosphorylation of calpastatin by p38γ impaired its ability to inhibit the protease, calpain. We have identified p38γ as an important determinant of the progression of pathologic cardiac hypertrophy after aortic banding in mice. In addition, we have identified calpastatin, among other substrates, as a novel direct target of p38γ that may contribute to the protection observed in p38γKO mice.-Loonat, A. A., Martin, E. D., Sarafraz-Shekary, N., Tilgner, K., Hertz, N. T., Levin, R., Shokat, K. M., Burlingame, A. L., Arabacilar, P., Uddin, S., Thomas, M., Marber, M. S., Clark, J. E. p38γ MAPK contributes to left ventricular remodeling after pathologic stress and disinhibits calpain through phosphorylation of calpastatin.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calpaína/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Remodelación Ventricular/fisiología , Animales , Calpaína/genética , Ecocardiografía , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Inmunohistoquímica , Masculino , Ratones , Proteína Quinasa 12 Activada por Mitógenos/genética , Fosforilación , Isoformas de Proteínas , Espectrometría de Masas en Tándem , Remodelación Ventricular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Biochem Biophys Res Commun ; 516(2): 466-473, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31229268

RESUMEN

Recent studies have proposed that p38gamma (p38γ) might be critically involved in tumorigenesis and cancer progression. Its expression and potential functions in human renal cell carcinoma (RCC) are studied here. We show that p38γ mRNA and protein levels are upregulated in human RCC tissues, as compared to its levels in the surrounding normal renal tissues. p38γ upregulation was also detected in established (786-O line) and primary human RCC cells. Functional studies in 786-O cells and primary human RCC cells demonstrated that p38γ silencing (by targeted shRNAs) or CRISPR/Cas9-mediated p38γ knockout (KO) potently inhibited cell growth, viability, proliferation and migration. Furthermore, p38γ shRNA or KO in RCC cells decreased retinoblastoma (Rb) phosphorylation and downregulated cyclin E1/A expression. Additionally, significant apoptosis activation was detected in p38γ-silenced and p38γ-KO RCC cells. Contrarily, ectopic overexpression of p38γ facilitated cell growth, viability, proliferation and migration in RCC cells. Taken together, we show that p38γ overexpression promotes RCC cell growth, proliferation and migration. p38γ could be a novel therapeutic target for human RCC.


Asunto(s)
Carcinoma de Células Renales/enzimología , Carcinoma de Células Renales/patología , Movimiento Celular , Neoplasias Renales/enzimología , Neoplasias Renales/patología , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Adulto , Anciano , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Persona de Mediana Edad , Regulación hacia Arriba/genética
17.
Cell Death Dis ; 10(6): 376, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31092814

RESUMEN

Apoptosis and senescence are two mutually exclusive cell fate programs that can be activated by stress. The factors that instruct cells to enter into senescence or apoptosis are not fully understood, but both programs can be regulated by the stress kinase p38α. Using an inducible system that specifically activates this pathway, we show that sustained p38α activation suffices to trigger massive autophagosome formation and to enhance the basal autophagic flux. This requires the concurrent effect of increased mitochondrial reactive oxygen species production and the phosphorylation of the ULK1 kinase on Ser-555 by p38α. Moreover, we demonstrate that macroautophagy induction by p38α signaling determines that cancer cells preferentially enter senescence instead of undergoing apoptosis. In agreement with these results, we present evidence that the induction of autophagy by p38α protects cancer cells from chemotherapy-induced apoptosis by promoting senescence. Our results identify a new mechanism of p38α-regulated basal autophagy that controls the fate of cancer cells in response to stress.


Asunto(s)
Autofagia , Senescencia Celular , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MAP Quinasa Quinasa 6/antagonistas & inhibidores , MAP Quinasa Quinasa 6/genética , MAP Quinasa Quinasa 6/metabolismo , Mitocondrias/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/deficiencia , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/deficiencia , Proteína Quinasa 14 Activada por Mitógenos/genética , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal
18.
Sci Rep ; 9(1): 7438, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31092861

RESUMEN

The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a PDZ (PSD-95/Dlg/ZO-1) domain-containing phosphatase with a tumor-suppressive or a tumor-promoting role in many cancers. Interestingly, the high-risk genital human papillomavirus (HPV) types 16 and 18 target the PDZ domain of PTPN3. The presence of a PDZ binding motif (PBM) on E6 confers interaction with a number of different cellular PDZ domain-containing proteins and is a marker of high oncogenic potential. Here, we report the molecular basis of interaction between the PDZ domain of PTPN3 and the PBM of the HPV E6 protein. We combined biophysical, NMR and X-ray experiments to investigate the structural and functional properties of the PDZ domain of PTPN3. We showed that the C-terminal sequences from viral proteins encompassing a PBM interact with PTPN3-PDZ with similar affinities to the endogenous PTPN3 ligand MAP kinase p38γ. PBM binding stabilizes the PDZ domain of PTPN3. We solved the X-ray structure of the PDZ domain of PTPN3 in complex with the PBM of the HPV E6 protein. The crystal structure and the NMR chemical shift mapping of the PTPN3-PDZ/peptide complex allowed us to pinpoint the main structural determinants of recognition of the C-terminal sequence of the E6 protein and the long-range perturbations induced upon PBM binding.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 3/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Ligandos , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Dominios PDZ , Infecciones por Papillomavirus/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Unión Proteica , Estabilidad Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 3/química , Proteína Tirosina Fosfatasa no Receptora Tipo 3/genética , Relación Estructura-Actividad
19.
Nature ; 568(7753): 557-560, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971822

RESUMEN

The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)-cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease.


Asunto(s)
Carcinogénesis/patología , Ciclo Celular , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Hígado/enzimología , Hígado/patología , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Anciano , Animales , Carcinogénesis/efectos de los fármacos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Hepatocitos/citología , Hepatocitos/patología , Humanos , Hígado/cirugía , Neoplasias Hepáticas/inducido químicamente , Masculino , Ratones , Persona de Mediana Edad , Proteína Quinasa 12 Activada por Mitógenos/antagonistas & inhibidores , Fosforilación , Piridonas/farmacología , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/metabolismo , Homología de Secuencia , Especificidad por Sustrato
20.
Int J Biochem Cell Biol ; 107: 6-13, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30447427

RESUMEN

BACKGROUND: The expression of p38 MAPK is high in breast cancer while its subunit p38γ had been rarely reported. We aimed to explain the effect of p38γ in breast cancer from the perspective of metabolomics. METHODS: In this study, we detected the expression of p38γ in 28 breast carcinoma and para-tumor samples. Following MDA-MB-231 cell transfection with p38γ siRNAs and pc-DNA-3.1, cell viability, apoptosis, metastasis were determined through CCK-8, the cytometry analysis, transwell assay and wound healing assay. Finally, gas chromatograph-mass spectrometer (GC-MS) was used for analysis the differential metabolites. RESULTS: The expression of p38γ was significantly up-regulated in breast cancer tissues. The transfection of si-p38γs could inhibit MDA-MB-231 cell propagation, metastasis, and induced cell apoptosis while overexpressed p38γ could promote the cell propagation, metastasis, and inhibit cell apoptosis. A total of 238 metabolites were identified and 72 of them differentially expressed in three groups (all P < 0.05, FDR < 0.05). Then the metabolites were enriched in the metabolism pathway, 85 pathways were included and 27 were significant (all P < 0.05, FDR < 0.05). CONCLUSIONS: p38γ was up-regulated in breast cancer, which exerts a great influence on the cell growth, cell mobility, invasiveness, and apoptosis of MDA-MB-231 cells and also affected the metabolism.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Metabolómica , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Apoptosis , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Proteína Quinasa 12 Activada por Mitógenos/genética , Invasividad Neoplásica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...