Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Genes (Basel) ; 12(7)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34356107

RESUMEN

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family, phosphorylates serine and threonine residues of substrate proteins in the presence of the Ku complex and double-stranded DNA. Although it has been established that DNA-PKcs is involved in non-homologous end-joining, a DNA double-strand break repair pathway, the mechanisms underlying DNA-PKcs activation are not fully understood. Nevertheless, the findings of numerous in vitro and in vivo studies have indicated that DNA-PKcs contains two autophosphorylation clusters, PQR and ABCDE, as well as several autophosphorylation sites and conformational changes associated with autophosphorylation of DNA-PKcs are important for self-activation. Consistent with these features, an analysis of transgenic mice has shown that the phenotypes of DNA-PKcs autophosphorylation mutations are significantly different from those of DNA-PKcs kinase-dead mutations, thereby indicating the importance of DNA-PKcs autophosphorylation in differentiation and development. Furthermore, there has been notable progress in the high-resolution analysis of the conformation of DNA-PKcs, which has enabled us to gain a visual insight into the steps leading to DNA-PKcs activation. This review summarizes the current progress in the activation of DNA-PKcs, focusing in particular on autophosphorylation of this kinase.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/fisiología , Fosforilación/genética , Animales , Diferenciación Celular/genética , ADN/metabolismo , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/fisiología , Reparación del ADN/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Ratones , Ratones Transgénicos , Fosforilación/fisiología
2.
Cell Tissue Res ; 380(3): 615-625, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31950264

RESUMEN

Mutations in Foxn1 and Prkdc genes lead to nude and severe combined immunodeficiency (scid) phenotypes, respectively. Besides being immunodeficient, previous reports have shown that nude mice have lower gonadotropins and testosterone levels, while scid mice present increased pachytene spermatocyte (PS) apoptosis. Therefore, these specific features make them important experimental models for understanding Foxn1 and Prkdc roles in reproduction. Hence, we conducted an investigation of the testicular function in nude and scid BALB/c adult male mice and significant differences were observed, especially in Leydig cell (LC) parameters. Although the differences were more pronounced in nude mice, both immunodeficient strains presented a larger number of LC, whereas its cellular volume was smaller in comparison to the wild type. Besides these alterations in LC, we also observed differences in androgen receptor and steroidogenic enzyme expression in nude and scid mice, suggesting the importance of Foxn1 and Prkdc genes in androgen synthesis. Specifically in scid mice, we found a smaller meiotic index, which represents the number of round spermatids per PS, indicating a greater cell loss during meiosis, as previously described in the literature. In addition and for the first time, Foxn1 was identified in the testis, being expressed in LC, whereas DNA-PKc (the protein produced by Prkdc) was observed in LC and Sertoli cells. Taken together, our results show that the changes in LC composition added to the higher expression of steroidogenesis-related genes in nude mice and imply that Foxn1 transcription factor may be associated to androgen production regulation, while Prkdc expression is also important for the meiotic process.


Asunto(s)
Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Factores de Transcripción Forkhead/fisiología , Células Intersticiales del Testículo/fisiología , Células de Sertoli/fisiología , Animales , Células Intersticiales del Testículo/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Receptores Androgénicos/metabolismo , Células de Sertoli/citología
3.
Sci Rep ; 9(1): 14597, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601897

RESUMEN

We previously reported that cells exposed to low doses of ionizing radiation (IR) in the G2-phase of the cell cycle activate a checkpoint that is epistatically regulated by ATM and ATR operating as an integrated module. In this module, ATR interphases exclusively with the cell cycle to implement the checkpoint, mainly using CHK1. The ATM/ATR module similarly regulates DNA end-resection at low IR-doses. Strikingly, at high IR-doses, the ATM/ATR coupling relaxes and each kinase exerts independent contributions to resection and the G2-checkpoint. DNA-PKcs links to the ATM/ATR module and defects cause hyper-resection and hyperactivation of G2-checkpoint at all doses examined. Surprisingly, our present report reveals that cells irradiated in S-phase utilize a different form of wiring between DNA-PKcs/ATM/ATR: The checkpoint activated in G2-phase is regulated exclusively by ATR/CHK1; similarly at high and low IR-doses. DNA end-resection supports ATR-activation, but inhibition of ATR leaves resection unchanged. DNA-PKcs and ATM link now epistatically to resection and their inhibition causes hyper-resection and ATR-dependent G2-checkpoint hyperactivation at all IR-doses. We propose that DNA-PKcs, ATM and ATR form a modular unit to regulate DSB processing with their crosstalk distinctly organized in S- and G2- phase, with strong dependence on DSB load only in G2-phase.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Reparación del ADN , Proteína Quinasa Activada por ADN/fisiología , Epistasis Genética , Células A549 , Daño del ADN , Técnica del Anticuerpo Fluorescente Indirecta , Fase G2 , Células HCT116 , Humanos , Fosforilación , Radiación Ionizante , Proteína de Replicación A/metabolismo , Fase S
5.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30842317

RESUMEN

The adenovirus (Ad) E4orf4 protein contributes to virus-induced inhibition of the DNA damage response (DDR) by reducing ATM and ATR signaling. Consequently, E4orf4 inhibits DNA repair and sensitizes transformed cells to killing by DNA-damaging drugs. Inhibition of ATM and ATR signaling contributes to the efficiency of virus replication and may provide one explanation for the cancer selectivity of cell death induced by the expression of E4orf4 alone. In this report, we investigate a direct interaction of E4orf4 with the DDR. We show that E4orf4 physically associates with the DNA-dependent protein kinase (DNA-PK), and we demonstrate a biphasic functional interaction between these proteins, wherein DNA-PK is required for ATM and ATR inhibition by E4orf4 earlier during infection but is inhibited by E4orf4 as infection progresses. This biphasic process is accompanied by initial augmentation and a later inhibition of DNA-PK autophosphorylation as well as by colocalization of DNA-PK with early Ad replication centers and distancing of DNA-PK from late replication centers. Moreover, inhibition of DNA-PK improves Ad replication more effectively when a DNA-PK inhibitor is added later rather than earlier during infection. When expressed alone, E4orf4 is recruited to DNA damage sites in a DNA-PK-dependent manner. DNA-PK inhibition reduces the ability of E4orf4 to induce cancer cell death, likely because E4orf4 is prevented from arriving at the damage sites and from inhibiting the DDR. Our results support an important role for the E4orf4-DNA-PK interaction in Ad replication and in facilitation of E4orf4-induced cancer-selective cell death.IMPORTANCE Several DNA viruses evolved mechanisms to inhibit the cellular DNA damage response (DDR), which acts as an antiviral defense system. We present a novel mechanism by which the adenovirus (Ad) E4orf4 protein inhibits the DDR. E4orf4 interacts with the DNA damage sensor DNA-PK in a biphasic manner. Early during infection, E4orf4 requires DNA-PK activity to inhibit various branches of the DDR, whereas it later inhibits DNA-PK itself. Furthermore, although both E4orf4 and DNA-PK are recruited to virus replication centers (RCs), DNA-PK is later distanced from late-phase RCs. Delayed DNA-PK inhibition greatly contributes to Ad replication efficiency. When E4orf4 is expressed alone, it is recruited to DNA damage sites. Inhibition of DNA-PK prevents both recruitment and the previously reported ability of E4orf4 to kill cancer cells. Our results support an important role for the E4orf4-DNA-PK interaction in Ad replication and in facilitation of E4orf4-induced cancer-selective cell death.


Asunto(s)
Daño del ADN/fisiología , Proteína Quinasa Activada por ADN/metabolismo , Proteínas Virales/metabolismo , Adenoviridae/genética , Infecciones por Adenoviridae/genética , Proteínas E4 de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/fisiología , Adenovirus Humanos/fisiología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Reparación del ADN/fisiología , ADN Viral/genética , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilación , Transducción de Señal , Proteínas Virales/fisiología , Replicación Viral/fisiología
6.
Nucleic Acids Res ; 46(16): 8326-8346, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30010942

RESUMEN

Chronic low levels of survival motor neuron (SMN) protein cause spinal muscular atrophy (SMA). SMN is ubiquitously expressed, but the mechanisms underlying predominant neuron degeneration in SMA are poorly understood. We report that chronic low levels of SMN cause Senataxin (SETX)-deficiency, which results in increased RNA-DNA hybrids (R-loops) and DNA double-strand breaks (DSBs), and deficiency of DNA-activated protein kinase-catalytic subunit (DNA-PKcs), which impairs DSB repair. Consequently, DNA damage accumulates in patient cells, SMA mice neurons and patient spinal cord tissues. In dividing cells, DSBs are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ) pathways, but neurons predominantly use NHEJ, which relies on DNA-PKcs activity. In SMA dividing cells, HR repairs DSBs and supports cellular proliferation. In SMA neurons, DNA-PKcs-deficiency causes defects in NHEJ-mediated repair leading to DNA damage accumulation and neurodegeneration. Restoration of SMN levels rescues SETX and DNA-PKcs deficiencies and DSB accumulation in SMA neurons and patient cells. Moreover, SETX overexpression in SMA neurons reduces R-loops and DNA damage, and rescues neurodegeneration. Our findings identify combined deficiency of SETX and DNA-PKcs stemming downstream of SMN as an underlying cause of DSBs accumulation, genomic instability and neurodegeneration in SMA and suggest SETX as a potential therapeutic target for SMA.


Asunto(s)
Daño del ADN , ADN Helicasas/deficiencia , Proteína Quinasa Activada por ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Degeneración Nerviosa , Proteínas Nucleares/deficiencia , ARN Helicasas/deficiencia , Atrofias Musculares Espinales de la Infancia/genética , Anciano , Animales , División Celular , Células Cultivadas , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/fisiología , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Modelos Animales de Enfermedad , Fibroblastos , Humanos , Masculino , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Enzimas Multifuncionales , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Conformación de Ácido Nucleico , ARN Helicasas/genética , ARN Helicasas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Atrofias Musculares Espinales de la Infancia/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/fisiología , Proteína 2 para la Supervivencia de la Neurona Motora/deficiencia , Proteína 2 para la Supervivencia de la Neurona Motora/genética
7.
Oncol Rep ; 39(3): 912-920, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29344644

RESUMEN

The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in non-homologous end-joining (NHEJ) repair. We investigated the mechanism of NU7441, a highly selective DNA-PK inhibitor, in NHEJ-competent mouse embryonic fibroblast (MEF) cells and NHEJ-deficient cells and explored the feasibility of its application in radiosensitizing nasopharyngeal carcinoma (NPC) cells. We generated wild-type and DNA-PKcs-/- MEF cells. Clonogenic survival assays, flow cytometry, and immunoblotting were performed to study the effect of NU7441 on survival, cell cycle, and DNA repair. NU7441 profoundly radiosensitized wild-type MEF cells and SUNE-1 cells, but not DNA-PKcs-/- MEF cells. NU7441 significantly suppressed radiation-induced DSB repair post-irradiation through unrepaired and lethal DNA damage, the cell cycle arrest. The effect was associated with the activation of cell cycle checkpoints. The present study revealed a mechanism by which inhibition of DNA-PK sensitizes cells to irradiation suggesting that radiotherapy in combination with DNA-PK inhibitor is a promising paradigm for the management of NPC which merits further investigation.


Asunto(s)
Carcinoma/patología , Cromonas/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Rayos gamma/efectos adversos , Morfolinas/farmacología , Neoplasias Nasofaríngeas/patología , Proteínas Nucleares/fisiología , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Carcinoma/genética , Carcinoma/terapia , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Células Cultivadas , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibroblastos/efectos de la radiación , Humanos , Ratones , Ratones Noqueados , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia
8.
Bull Cancer ; 104(11): 981-987, 2017 Nov.
Artículo en Francés | MEDLINE | ID: mdl-29132682

RESUMEN

The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers.


Asunto(s)
Biomarcadores/análisis , Reparación del ADN , ADN/efectos de la radiación , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Roturas del ADN de Doble Cadena , Daño del ADN , Enzimas Reparadoras del ADN/efectos adversos , Enzimas Reparadoras del ADN/fisiología , Proteína Quinasa Activada por ADN/fisiología , Relación Dosis-Respuesta en la Radiación , Histonas/fisiología , Humanos , Proteínas Nucleares/fisiología , Tolerancia a Radiación , Radioterapia , Reparación del ADN por Recombinación , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/fisiología
9.
Nucleic Acids Res ; 45(18): 10614-10633, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28977657

RESUMEN

Phosphorylated histone H2AX, termed 'γH2AX', mediates the chromatin response to DNA double strand breaks (DSBs) in mammalian cells. H2AX deficiency increases the numbers of unrepaired DSBs and translocations, which are partly associated with defects in non-homologous end joining (NHEJ) and contributing to genomic instability in cancer. However, the role of γH2AX in NHEJ of general DSBs has yet to be clearly defined. Here, we showed that despite little effect on overall NHEJ efficiency, H2AX deficiency causes a surprising bias towards accurate NHEJ and shorter deletions in NHEJ products. By analyzing CRISPR/Cas9-induced NHEJ and by using a new reporter for mutagenic NHEJ, we found that γH2AX, along with its interacting protein MDC1, is required for efficient classical NHEJ (C-NHEJ) but with short deletions and insertions. Epistasis analysis revealed that ataxia telangiectasia mutated (ATM) and the chromatin remodeling complex Tip60/TRRAP/P400 are essential for this H2AX function. Taken together, these data suggest that a subset of DSBs may require γH2AX-mediated short-range nucleosome repositioning around the breaks to facilitate C-NHEJ with loss of a few extra nucleotides at NHEJ junctions. This may prevent outcomes such as non-repair and translocations, which are generally more destabilizing to genomes than short deletions and insertions from local NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Histonas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Secuencia de Bases , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Línea Celular , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Nucleótidos/análisis , Eliminación de Secuencia
10.
Philos Trans R Soc Lond B Biol Sci ; 372(1732)2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28893936

RESUMEN

Viruses regulate cellular processes to facilitate viral replication. Manipulation of nuclear proteins and pathways by nuclear replicating viruses often causes cellular genome instability that contributes to transformation. The cellular DNA damage response (DDR) safeguards the host to maintain genome integrity, but DNA tumour viruses can manipulate the DDR to promote viral propagation. In this review, we describe the interactions of DNA tumour viruses with the phosphatidylinositol 3-kinase-like protein kinase (PIKK) pathways, which are central regulatory arms of the DDR. We review how signalling through the ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3 related (ATR), and DNA-dependent protein kinases (DNA-PK) influences viral life cycles, and how their manipulation by viral proteins may contribute to tumour formation.This article is part of the themed issue 'Human oncogenic viruses'.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Carcinogénesis/genética , Virus ADN Tumorales/fisiología , Proteína Quinasa Activada por ADN/fisiología , Transducción de Señal , Proteínas Virales/metabolismo , Daño del ADN , Reparación del ADN , Humanos , Proteínas Quinasas
11.
Radiat Res ; 188(6): 597-604, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28952912

RESUMEN

Uncontrolled generation of DNA double-strand breaks (DSBs) in cells is regarded as a highly toxic event that threatens cell survival. Radiation-induced DNA DSBs are commonly measured by pulsed-field gel electrophoresis, microscopic evaluation of accumulating DNA damage response proteins (e.g., 53BP1 or γ-H2AX) or flow cytometric analysis of γ-H2AX. The advantage of flow cytometric analysis is that DSB formation and repair can be studied in relationship to cell cycle phase or expression of other proteins. However, γ-H2AX is not able to monitor repair kinetics within the first 60 min postirradiation, a period when most DSBs undergo repair. A key protein in non-homologous end joining repair is the catalytic subunit of DNA-dependent protein kinase. Among several phosphorylation sites of DNA-dependent protein kinase, the threonine at position 2609 (T2609), which is phosphorylated by ataxia telangiectasia mutated (ATM) or DNA-dependent protein kinase catalytic subunit itself, activates the end processing of DSB. Using flow cytometry, we show here that phosphorylation at T2609 is faster in response to DSBs than γ-H2AX. Furthermore, flow cytometric analysis of T2609 resulted in a better representation of fast repair kinetics than analysis of γ-H2AX. In cells with reduced ligase IV activity, and wild-type cells where DNA-dependent protein kinase activity was inhibited, the reduced DSB repair capacity was observed by T2609 evaluation using flow cytometry. In conclusion, flow cytometric evaluation of DNA-dependent protein kinase T2609 can be used as a marker for early DSB repair and gives a better representation of early repair events than analysis of γ-H2AX.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/fisiología , Citometría de Flujo , Proteínas Nucleares/fisiología , Procesamiento Proteico-Postraduccional , Línea Celular , Cromonas/farmacología , ADN/efectos de la radiación , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Relación Dosis-Respuesta en la Radiación , Electroforesis en Gel de Campo Pulsado , Rayos gamma , Histonas/fisiología , Humanos , Morfolinas/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Factores de Tiempo
12.
Oncotarget ; 8(14): 22662-22673, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28186989

RESUMEN

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a distinct factor in the non-homologous end-joining (NHEJ) pathway involved in DNA double-strand break (DSB) repair. We examined the crosstalk between key proteins in the DSB NHEJ repair pathway and cell cycle regulation and found that mouse embryonic fibroblast (MEF) cells deficient in DNA-PKcs or Ku70 were more vulnerable to ionizing radiation (IR) compared with wild-type cells and that DSB repair was delayed. γH2AX was associated with phospho-Ataxia-telangiectasia mutated kinase (Ser1987) and phospho-checkpoint effector kinase 1 (Ser345) foci for the arrest of cell cycle through the G2/M phase. Inhibition of DNA-PKcs prolonged IR-induced G2/M phase arrest because of sequential activation of cell cycle checkpoints. DSBs were introduced, and cell cycle checkpoints were recruited after exposure to IR in nasopharyngeal carcinoma SUNE-1 cells. NU7441 radiosensitized MEF cells and SUNE-1 cells by interfering with DSB repair. Together, these results reveal a mechanism in which coupling of DSB repair with the cell cycle radiosensitizes NHEJ repair-deficient cells, justifying further development of DNA-PK inhibitors in cancer therapy.


Asunto(s)
Carcinoma/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/genética , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Autoantígeno Ku/fisiología , Neoplasias Nasofaríngeas/genética , Proteínas Nucleares/antagonistas & inhibidores , Tolerancia a Radiación/genética , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Cromonas/farmacología , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/efectos de la radiación , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Ratones , Ratones Noqueados , Morfolinas/farmacología , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Proteínas Nucleares/fisiología , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/farmacología , Células Tumorales Cultivadas
13.
FEBS J ; 283(19): 3626-3636, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27513301

RESUMEN

Differentiation of myoblasts into myotubes is essential for skeletal muscle development and regeneration. Caspase-3 and caspase-9 are required for efficient myoblast differentiation. The caspase-activated endonuclease activity, CAD, and the DNA-damage repair protein XRCC1 have also been shown to be required to complete differentiation. DNA-damage associated with differentiation is accompanied by phosphorylation of Histone 2AX, an event normally catalysed by kinases ATR, ATM or DNA-PK. However, the kinase responsible for phosphorylation during differentiation is not known. Here we show that inhibition of DNA-PK, but not of ATR or ATM, blocked histone phosphorylation during differentiation. We also show that DNA-PK inhibition and siRNA-mediated DNA-PK knockdown blocked cell fusion. These data implicate a new role for DNA-PK in myogenic differentiation.


Asunto(s)
Caspasa 3/metabolismo , Proteína Quinasa Activada por ADN/fisiología , Desarrollo de Músculos , Animales , Inhibidores de Caspasas/farmacología , Fusión Celular , Línea Celular , Cromonas/farmacología , Daño del ADN , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Histonas/metabolismo , Ratones , Morfolinas/farmacología , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología
14.
Oncotarget ; 7(34): 54430-54444, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27303920

RESUMEN

Ionizing radiation (IR) induces highly cytotoxic double-strand breaks (DSBs) and also clustered oxidized bases in mammalian genomes. Base excision repair (BER) of bi-stranded oxidized bases could generate additional DSBs as repair intermediates in the vicinity of direct DSBs, leading to loss of DNA fragments. This could be avoided if DSB repair via DNA-PK-mediated nonhomologous end joining (NHEJ) precedes BER initiated by NEIL1 and other DNA glycosylases (DGs). Here we show that DNA-PK subunit Ku inhibits DGs via direct interaction. The scaffold attachment factor (SAF)-A, (also called hnRNP-U), phosphorylated at Ser59 by DNA-PK early after IR treatment, is linked to transient release of chromatin-bound NEIL1, thus preventing BER. SAF-A is subsequently dephosphorylated. Ku inhibition of DGs in vitro is relieved by unphosphorylated SAF-A, but not by the phosphomimetic Asp59 mutant. We thus propose that SAF-A, in concert with Ku, temporally regulates base damage repair in irradiated cell genome.


Asunto(s)
Reparación del ADN , Ribonucleoproteína Heterogénea-Nuclear Grupo U/fisiología , Autoantígeno Ku/fisiología , Traumatismos por Radiación/etiología , Roturas del ADN de Doble Cadena , ADN Glicosilasas/fisiología , Enzimas Reparadoras del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Células HEK293 , Humanos , Fosforilación , Tolerancia a Radiación
15.
Cancer Res ; 76(5): 1078-88, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26603896

RESUMEN

A series of critical pathways are responsible for the detection, signaling, and restart of replication forks that encounter blocks during S-phase progression. Small base lesions may obstruct replication fork progression and processing, but the link between repair of small lesions and replication forks is unclear. In this study, we investigated a hypothesized role for DNA-PK, an important enzyme in DNA repair, in cellular responses to DNA replication stress. The enzyme catalytic subunit DNA-PKcs was phosphorylated on S2056 at sites of stalled replication forks in response to short hydroxyurea treatment. Using DNA fiber experiments, we found that catalytically active DNA-PK was required for efficient replication restart of stalled forks. Furthermore, enzymatically active DNA-PK was also required for PARP-dependent recruitment of XRCC1 to stalled replication forks. This activity was enhanced by preventing Mre11-dependent DNA end resection, suggesting that XRCC1 must be recruited early to an unresected stalled fork. We also found that XRCC1 was required for effective restart of a subset of stalled replication forks. Overall, our work suggested that DNA-PK and PARP-dependent recruitment of XRCC1 is necessary to effectively protect, repair, and restart stalled replication forks, providing new insight into how genomic stability is preserved.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas Nucleares/fisiología , Poli(ADP-Ribosa) Polimerasas/fisiología , Quinasa de la Caseína II/fisiología , Línea Celular , Humanos , Proteína Homóloga de MRE11 , Poli(ADP-Ribosa) Polimerasa-1 , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
16.
Oncogene ; 35(30): 3909-18, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-26616856

RESUMEN

Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) at the Thr2609 cluster is essential for its complete function in DNA repair and tissue stem cell homeostasis. This phenomenon is demonstrated by congenital bone marrow failure occurring in DNA-PKcs(3A/3A) mutant mice, which require bone marrow transplantation (BMT) to prevent early mortality. Surprisingly, an increased incidence of spontaneous tumors, especially skin cancer, was observed in adult BMT-rescued DNA-PKcs(3A/3A) mice. Upon further investigation, we found that spontaneous γH2AX foci occurred in DNA-PKcs(3A/3A) skin biopsies and primary keratinocytes and that these foci overlapped with telomeres during mitosis, indicating impairment of telomere replication and maturation. Consistently, we observed significantly elevated frequencies of telomere fusion events in DNA-PKcs(3A/3A) cells as compared with wild-type and DNA-PKcs-knockout cells. In addition, a previously identified DNA-PKcs Thr2609Pro mutation, found in breast cancer, also induces a similar impairment of telomere leading-end maturation. Taken together, our current analyses indicate that the functional DNA-PKcs T2609 cluster is required to facilitate telomere leading strand maturation and prevention of genomic instability and cancer development.


Asunto(s)
Trasplante de Médula Ósea , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Neoplasias/etiología , Proteínas Nucleares/fisiología , Telómero/fisiología , Animales , Células Cultivadas , Daño del ADN , Inestabilidad Genómica , Histonas/análisis , Queratinocitos/metabolismo , Ratones
17.
Mol Cell ; 59(6): 1011-24, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26365377

RESUMEN

The ATR-Chk1 pathway is critical for DNA damage responses and cell-cycle progression. Chk1 inhibition is more deleterious to cycling cells than ATR inhibition, raising questions about ATR and Chk1 functions in the absence of extrinsic replication stress. Here we show that a key role of ATR in S phase is to coordinate RRM2 accumulation and origin firing. ATR inhibitor (ATRi) induces massive ssDNA accumulation and replication catastrophe in a fraction of early S-phase cells. In other S-phase cells, however, ATRi induces moderate ssDNA and triggers a DNA-PK and Chk1-mediated backup pathway to suppress origin firing. The backup pathway creates a threshold such that ATRi selectively kills cells under high replication stress, whereas Chk1 inhibitor induces cell death at a lower threshold. The levels of ATRi-induced ssDNA correlate with ATRi sensitivity in a panel of cell lines, suggesting that ATRi-induced ssDNA could be predictive of ATRi sensitivity in cancer cells.


Asunto(s)
Proteína Quinasa Activada por ADN/fisiología , Proteínas Nucleares/fisiología , Proteínas Quinasas/fisiología , Fase S , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Replicación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Origen de Réplica , Ribonucleósido Difosfato Reductasa/metabolismo , Estrés Fisiológico
18.
Nat Med ; 21(8): 906-13, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26107252

RESUMEN

The inflammasome activates caspase-1 and the release of interleukin-1ß (IL-1ß) and IL-18, and several inflammasomes protect against intestinal inflammation and colitis-associated colon cancer (CAC) in animal models. The absent in melanoma 2 (AIM2) inflammasome is activated by double-stranded DNA, and AIM2 expression is reduced in several types of cancer, but the mechanism by which AIM2 restricts tumor growth remains unclear. We found that Aim2-deficient mice had greater tumor load than Asc-deficient mice in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colorectal cancer. Tumor burden was also higher in Aim2(-/-)/Apc(Min/+) than in APC(Min/+) mice. The effects of AIM2 on CAC were independent of inflammasome activation and IL-1ß and were primarily mediated by a non-bone marrow source of AIM2. In resting cells, AIM2 physically interacted with and limited activation of DNA-dependent protein kinase (DNA-PK), a PI3K-related family member that promotes Akt phosphorylation, whereas loss of AIM2 promoted DNA-PK-mediated Akt activation. AIM2 reduced Akt activation and tumor burden in colorectal cancer models, while an Akt inhibitor reduced tumor load in Aim2(-/-) mice. These findings suggest that Akt inhibitors could be used to treat AIM2-deficient human cancers.


Asunto(s)
Neoplasias del Colon/prevención & control , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Inflamasomas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Colitis/complicaciones , Femenino , Células HCT116 , Humanos , Pólipos Intestinales/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación
19.
Cell Cycle ; 14(12): 1961-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26017556

RESUMEN

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a major role in DNA damage signaling and repair and is also frequently overexpressed in tumor metastasis. We used isogenic cell lines expressing different levels of DNA-PKcs to investigate the role of DNA-PKcs in metastatic development. We found that DNA-PKcs participates in melanoma primary tumor and metastasis development by stimulating angiogenesis, migration and invasion. Comparison of conditioned medium content from DNA-PKcs-proficient and deficient cells reveals that DNA-PKcs controls secretion of at least 103 proteins (including 44 metastasis-associated with FBLN1, SERPINA3, MMP-8, HSPG2 and the inhibitors of matrix metalloproteinases, such as α-2M and TIMP-2). High throughput analysis of secretomes, proteomes and transcriptomes, indicate that DNA-PKcs regulates the secretion of 85 proteins without affecting their gene expression. Our data demonstrate that DNA-PKcs has a pro-metastatic activity via the modification of the tumor microenvironment. This study shows for the first time a direct link between DNA damage repair and cancer metastasis and highlights the importance of DNA-PKcs as a potential target for anti-metastatic treatment.


Asunto(s)
Proteína Quinasa Activada por ADN/fisiología , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Proteínas Nucleares/fisiología , Animales , Células CHO , Movimiento Celular , Proliferación Celular , Cricetinae , Cricetulus , Medios de Cultivo Condicionados , Daño del ADN , Silenciador del Gen , Humanos , Ganglios Linfáticos/patología , Melanoma/patología , Ratones , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño/metabolismo , Espectrometría de Masas en Tándem
20.
Int J Radiat Oncol Biol Phys ; 90(1): 36-43, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25195988

RESUMEN

PURPOSE: Previously we showed that the relative biological efficiency for induced cell killing by the 76-MeV beam used at the Institut Curie Proton Therapy Center in Orsay increased with depth throughout the spread-out Bragg peak (SOBP). To investigate the repair pathways underlying this increase, we used an isogenic human cell model in which individual DNA repair proteins have been depleted, and techniques dedicated to precise measurements of radiation-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). METHODS AND MATERIALS: The 3-Gy surviving fractions of HeLa cells individually depleted of Ogg1, XRCC1, and PARP1 (the base excision repair/SSB repair pathway) or of ATM, DNA-PKcs, XRCC4, and Artemis (nonhomologous end-joining pathway) were determined at the 3 positions previously defined in the SOBP. Quantification of incident SSBs and DSBs by the alkaline elution technique and 3-dimensional (3D) immunofluorescence of γ-H2AX foci, respectively, was performed in SQ20 B cells. RESULTS: We showed that the amount of SSBs and DSBs depends directly on the particle fluence and that the increase in relative biological efficiency observed in the distal part of the SOBP is due to a subset of lesions generated under these conditions, leading to cell death via a pathway in which the Artemis protein plays a central role. CONCLUSIONS: Because therapies like proton or carbon beams are now being used to treat cancer, it is even more important to dissect the mechanisms implicated in the repair of the lesions generated by these particles. Additionally, alteration of the expression or activity of the Artemis protein could be a novel therapeutic tool before high linear energy transfer irradiation treatment.


Asunto(s)
Supervivencia Celular/efectos de la radiación , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN/fisiología , Proteínas Nucleares/fisiología , Protones , Efectividad Biológica Relativa , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Instituciones Oncológicas , Supervivencia Celular/fisiología , ADN Glicosilasas/fisiología , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Endonucleasas , Francia , Células HeLa , Histonas/análisis , Humanos , Método de Montecarlo , Proteínas Nucleares/deficiencia , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/fisiología , Terapia de Protones , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...