Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 202(5): 765-78, 2013 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-23999167

RESUMEN

The spindle checkpoint arrests cells in metaphase until all chromosomes are properly attached to the chromosome segregation machinery. Thereafter, the anaphase promoting complex (APC/C) is activated and chromosome segregation can take place. Cells remain arrested in mitosis for hours in response to checkpoint activation, but not indefinitely. Eventually, they adapt to the checkpoint and proceed along the cell cycle. In yeast, adaptation requires the phosphorylation of APC/C. Here, we show that the protein phosphatase PP2A(Cdc55) dephosphorylates APC/C, thereby counteracting the activity of the mitotic kinase Cdc28. We also observe that the key regulator of Cdc28, the mitotic cyclin Clb2, increases before cells adapt and is then abruptly degraded at adaptation. Adaptation is highly asynchronous and takes place over a range of several hours. Our data suggest the presence of a double negative loop between PP2A(Cdc55) and APC/C(Cdc20) (i.e., a positive feedback loop) that controls APC/C(Cdc20) activity. The circuit could guarantee sustained APC/C(Cdc20) activity after Clb2 starts to be degraded.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Adaptación Fisiológica , Anafase , Ciclosoma-Complejo Promotor de la Anafase , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Modelos Biológicos , Fosforilación , Proteolisis , Análisis de la Célula Individual , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
2.
Mol Cell Biol ; 30(12): 2996-3003, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20385771

RESUMEN

The induction of middle meiotic promoters is a key regulatory event in the life cycle of Saccharomyces cerevisiae that controls exit from prophase, meiosis, and spore formation. The Sum1 repressor and Ndt80 activator proteins control middle promoters by binding to overlapping DNA elements. NDT80 is controlled by a tightly regulated middle meiotic promoter through a positive autoregulatory loop and is repressed in vegetative cells by Sum1. It has previously been shown that the meiosis-specific kinase Ime2 promotes the removal of Sum1 from DNA. Here, we show that Sum1 is also regulated by the cyclin-dependent kinase, Cdk1. While sum1 phosphosite mutants that are insensitive to Cdk1 or Ime2 complete meiosis and form spores, a mutant that is insensitive to both Ime2 and Cdk1 (sum1-ci) blocks meiotic development in prophase with an ndt80Delta-like phenotype. Ectopic expression of NDT80 or mutation of a Sum1-binding element in the NDT80 promoter bypasses the sum1-ci block. Hst1 is a NAD(+)-dependent histone deacetylase that is linked to Sum1 by the Rfm1 tethering factor. Deletion of HST1 or RFM1 also bypasses the sum1-ci block. These results demonstrate that Sum1 functions as a key meiotic brake through the NDT80 promoter and that Cdk1 and Ime2 trigger exit from meiotic prophase by inhibiting the Sum1 transcriptional repression complex.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Profase Meiótica I , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Sitios de Unión , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Estradiol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos/genética , Profase Meiótica I/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , Fenotipo , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Transducción de Señal/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 106(1): 232-7, 2009 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19116279

RESUMEN

Orderly progression through meiosis requires strict regulation of DNA metabolic events, so that a single round of DNA replication is systematically followed by a recombination phase and 2 rounds of chromosome segregation. We report here the disruption of this sequence of events in Saccharomyces cerevisiae through meiosis-specific induction of the cyclin-dependent kinase (CDK) inhibitor Sic1 mutated at multiple phosphorylation sites. Accumulation of this stabilized version of Sic1 led to significant DNA rereplication in the absence of normal chromosome segregation. Deletion of DMC1 abolished DNA rereplication, but additional deletion of RAD17 restored the original phenotype. Therefore, activation of the meiotic recombination checkpoint, which arrests meiotic progression at pachytene, suppressed DNA rereplication resulting from Sic1 stabilization. In contrast to deletion of DMC1, deletion of NDT80, which encodes a transcription factor required for pachytene exit, did not inhibit DNA rereplication. Our results provide strong evidence that CDK activity is required to prevent inappropriate initiation of DNA synthesis before the meiotic divisions.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Replicación del ADN , Meiosis , Proteínas de Saccharomyces cerevisiae/fisiología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/fisiología , Segregación Cromosómica , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Proteínas de Unión al ADN/fisiología , Mutación , Fase Paquiteno , Fosforilación , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología
4.
Mol Genet Genomics ; 271(1): 72-81, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14648201

RESUMEN

It is generally thought that cell growth and metabolism regulate cell division and not vice versa. Here, we examined Saccharomyces cerevisiae cells growing under conditions of continuous culture in a chemostat. We found that loss of G1 cyclins, or inactivation of the cyclin-dependent kinase Cdc28p, reduced the activity of glutamate synthase (Glt1p), a key enzyme in nitrogen assimilation. We also present evidence indicating that the G1 cyclin-dependent control of Glt1p may involve Jem1p, a DnaJ-type chaperone. Our results suggest that completion of START may be linked to nitrogen metabolism.


Asunto(s)
Nitrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiología , Ciclinas/genética , Ciclinas/metabolismo , ADN de Hongos/genética , Fase G1/fisiología , Genes Fúngicos , Glutamato Sintasa/genética , Glutamato Sintasa/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Bioorg Med Chem Lett ; 12(22): 3283-6, 2002 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-12392733

RESUMEN

Based on our previous experiences with synthesis of purines, novel 2,6,9-trisubstituted purine derivatives were prepared and assayed for the ability to inhibit CDK1/cyclin B kinase. One of newly synthesized compounds designated as olomoucine II, 6-[(2-hydroxybenzyl)amino]-2-[[1-(hydroxymethyl)propyl]amino]-9-isopropylpurine, displays 10 times higher inhibitory activity than roscovitine, potent and specific CDK1 inhibitor. Olomoucine II in vitro cytotoxic activity exceeds purvalanol A, the most potent CDK inhibitor, as it kills the CEM cells with IC(50) value of 3.0 microM.


Asunto(s)
Antineoplásicos/síntesis química , Purinas/síntesis química , Purinas/farmacología , Antineoplásicos/farmacología , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Cinetina , Roscovitina , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
Trends Cell Biol ; 12(3): 104-7, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11859016

RESUMEN

Cellular changes in state can be dictated by complex all-or-nothing switches built from ultrasensitive protein kinase cascades, positive-feedback loops and other mechanisms. Recent work has established that phosphorylation-driven protein destruction through the SCF ubiquitin-ligase pathway can also occur in a switch-like manner. In this context, multiple phosphorylation events are used to set a threshold for substrate targeting, thereby providing a framework for understanding the inter-relationship between protein phosphorylation and ubiquitin-mediated proteolysis.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Retroalimentación Fisiológica , Proteínas de Saccharomyces cerevisiae , Ubiquitinas/fisiología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Inhibidores Enzimáticos/metabolismo , Proteínas Fúngicas/metabolismo , Fosforilación , Ubiquitinas/metabolismo , Levaduras
8.
J Cell Biol ; 154(2): 331-44, 2001 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-11470822

RESUMEN

Adenovirus early region 4 open reading frame 4 (E4orf4) protein has been reported to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed mammalian cells. In this report, we show that E4orf4 induces an irreversible growth arrest in Saccharomyces cerevisiae at the G2/M phase of the cell cycle. Growth inhibition requires the presence of yeast PP2A-Cdc55, and is accompanied by accumulation of reactive oxygen species. E4orf4 expression is synthetically lethal with mutants defective in mitosis, including Cdc28/Cdk1 and anaphase-promoting complex/cyclosome (APC/C) mutants. Although APC/C activity is inhibited in the presence of E4orf4, Cdc28/Cdk1 is activated and partially counteracts the E4orf4-induced cell cycle arrest. The E4orf4-PP2A complex physically interacts with the APC/C, suggesting that E4orf4 functions by directly targeting PP2A to the APC/C, thereby leading to its inactivation. Finally, we show that E4orf4 can induce G2/M arrest in mammalian cells before apoptosis, indicating that E4orf4-induced events in yeast and mammalian cells are highly conserved.


Asunto(s)
Ligasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa , Proteínas Virales/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Benomilo/farmacología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular , Activación Enzimática/efectos de los fármacos , Fase G2/efectos de los fármacos , Expresión Génica , Genes Letales , Humanos , Sustancias Macromoleculares , Mitosis/efectos de los fármacos , Proteína Fosfatasa 2 , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Transfección , Ubiquitina-Proteína Ligasas , Proteínas Virales/genética , Proteínas Virales/farmacología
9.
Immunol Cell Biol ; 79(3): 264-73, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11380680

RESUMEN

Inappropriate activation of p34cdc2 kinase has been shown to occur during apoptosis induced by cytotoxic T-cell derived perforin and fragmentin. We analysed the effect of two inhibitors of p34cdc2 kinase on alloreactive Tc-cell-mediated lysis and DNA fragmentation of P815 and L1210 target cells. Olomoucine, a specific inhibitor of cyclin dependent kinases, did not affect DNA fragmentation in the target cells. Lysis of olomoucine-treated target cells as assessed by 51Cr release over a typical 8-h period was also unaffected. We also examined the effects of thapsigargin on target cell death. This toxin causes increased intracellular calcium rises that then result in irreversible inhibition of cyclin dependent kinases, including p34cdc2 kinase. The same extent of specific cell lysis was induced by cytotoxic T cells from perforin(-/-), granzyme B(-/-), granzyme A(-/-), perforin(-/-) X granzymeB(-/-) X granzymeA(-/-) KO mice or normal mice in untreated target cells or target cells treated with either olomoucine or thapsigargin. Similarly DNA fragmentation measured by release of tritiated DNA was also unaffected. Thus inhibition of p34cdc2 kinase affects neither the Fas nor the perforin/granzyme pathways of alloreactive cytotoxic T-cell killing as measured by DNA fragmentation or chromium release. P815 cells treated with olomoucine were arrested in the cell cycle after 12-16 h exposure to the toxin. After cell cycle arrest, target cells now showed enhanced 51Cr release induced by effector cytotoxic T cells (CTL) derived from perforin(-/-) mice compared to untreated cells. This lysis was accompanied by an increase in cell surface Fas expression. Olomoucine induced cell cycle arrest and expression of Fas was reversible and when cells re-entered the cell cycle, surface expression of Fas was lost.


Asunto(s)
Apoptosis/fisiología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Purinas/farmacología , Linfocitos T Citotóxicos/fisiología , Tapsigargina/farmacología , Receptor fas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Separación Celular , Pruebas Inmunológicas de Citotoxicidad , Fragmentación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Exocitosis/fisiología , Citometría de Flujo , Células Asesinas Naturales/metabolismo , Cinetina , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células Tumorales Cultivadas
10.
J Antibiot (Tokyo) ; 54(1): 84-90, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11269718

RESUMEN

We identified borrrelidin, a member of macrolide antibiotic, as an inhibitor of a cyclin-dependent kinase of the budding yeast, Cdc28/Cln2. A 50% inhibition concentration (IC50) of borrelidin for Cdc28/Cln2 was 24 microM. In addition, borrelidin arrests both haploid and diploid cells in G1 phase at the point indistinguishable from that of alpha-mating pheromone, at concentrations not affecting the gross protein synthesis. Although the inhibition of CDK activity may not be a solo cause of the G1 arrest, our results indicate that borrelidin is a potential lead compound for developing novel CDK inhibitors of higher eukaryotes.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Alcoholes Grasos/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/efectos de los fármacos , Fase G1/efectos de los fármacos , Concentración 50 Inhibidora , Factor de Apareamiento , Péptidos/efectos de los fármacos , Péptidos/metabolismo , Saccharomyces cerevisiae/enzimología
11.
Nature ; 407(6802): 395-401, 2000 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-11014197

RESUMEN

Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases. From two inhibitor scaffolds, we have identified potent and selective inhibitors for sensitized kinases from five distinct subfamilies. Tyrosine and serine/threonine kinases are equally amenable to this approach. We have analysed a budding yeast strain carrying an inhibitor-sensitive form of the cyclin-dependent kinase Cdc28 (CDK1) in place of the wild-type protein. Specific inhibition of Cdc28 in vivo caused a pre-mitotic cell-cycle arrest that is distinct from the G1 arrest typically observed in temperature-sensitive cdc28 mutants. The mutation that confers inhibitor-sensitivity is easily identifiable from primary sequence alignments. Thus, this approach can be used to systematically generate conditional alleles of protein kinases, allowing for rapid functional characterization of members of this important gene family.


Asunto(s)
Alelos , Inhibidores Enzimáticos/farmacología , Inhibidores de Proteínas Quinasas , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Carbazoles/farmacología , Ciclo Celular , Proteínas Fúngicas/antagonistas & inhibidores , Expresión Génica , Humanos , Alcaloides Indólicos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Datos de Secuencia Molecular , Mutagénesis , Estructura Terciaria de Proteína , Proteínas/farmacología , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Transcripción Genética
12.
J Cell Biol ; 148(2): 259-70, 2000 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-10648559

RESUMEN

Nuclear RNA transcription is repressed when eukaryotic cells enter mitosis. Here, we found that the derepression of ribosomal gene (rDNA) transcription that normally takes place in telophase may be induced in prometaphase, metaphase, and anaphase mitotic HeLa cells, and therefore appears not to be dependent on completion of mitosis. We demonstrate for the first time that in vivo inhibition of the cdc2- cyclin B kinase activity is sufficient to give rise to okadaic acid-sensitive dephosphorylation of the mitotically phosphorylated forms of components of the rDNA transcription machinery, and consequently to restore rDNA transcription in mitotic cells. These results, showing that during mitosis the rDNA transcription machinery is maintained repressed by the cdc2-cyclin B kinase activity, provide an in vivo demonstration of the cell cycle-dependent regulation of rDNA transcription. Interestingly in mitotic cells, the newly synthesized 47S precursor ribosomal RNA (pre-rRNA) is not processed into the mature rRNAs, indicating that rDNA transcription and pre-rRNA processing may be uncoupled. Moreover this suggests that inhibition of the cdc2- cyclin B kinase is not sufficient to activate the 47S pre-rRNA processing machinery and/or to induce its relocalization at the level of newly synthesized 47S pre-rRNA. This in vivo approach provides new possibilities to investigate the correlation between pre-rRNA synthesis and pre-rRNA processing when the nucleolus reforms.


Asunto(s)
ADN Ribosómico , Silenciador del Gen , Mitosis/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico/biosíntesis , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Colchicina/farmacología , ARN Polimerasas Dirigidas por ADN/metabolismo , Dactinomicina/farmacología , Células HeLa , Humanos , Isoenzimas/metabolismo , Ácido Ocadaico/farmacología , Fosfoproteínas , Purinas/farmacología , Roscovitina , Transcripción Genética
13.
J Cell Sci ; 112 ( Pt 19): 3259-68, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10504331

RESUMEN

The transcription termination factor TTF-1 exerts two functions in ribosomal gene (rDNA) transcription: facilitating initiation and mediating termination of transcription. Using HeLa cells, we show that TTF-1 protein is colocalized with the active transcription machinery in the nucleolus and also with the inactive machinery present in certain mitotic nucleolar organizer regions (NORs) when rDNA transcription is repressed. We also show that TTF-1 is specifically phosphorylated during mitosis in a manner dependent on the cdc2-cyclin B kinase pathway and on an okadaic acid-sensitive phosphatase. Interestingly, the mitotically phosphorylated form of TTF-1 appearing at the G(2)/M transition phase was more easily solubilized than was the interphase form. This indicates that the chromatin-binding affinity of TTF-1 appears to be different in mitotic chromosomes compared to the interphase nucleolus. Correlated with this, the other DNA-binding factor, UBF, which interferes with chromatin conformation in the rDNA promoter, was more strongly bound to rDNA during mitosis than at interphase. The reorganization of the mitotic rDNA promoter might be induced by phosphorylation of certain components of the rDNA transcription machinery and participate in silencing of rDNA during mitosis.


Asunto(s)
ADN Ribosómico/metabolismo , Mitosis/fisiología , Proteínas Nucleares/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1 , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Especificidad de Anticuerpos , Autoanticuerpos/inmunología , Autoanticuerpos/farmacología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Cromosomas/genética , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/fisiología , Células HeLa , Humanos , Interfase/fisiología , Proteínas Nucleares/análisis , Proteínas Nucleares/inmunología , Región Organizadora del Nucléolo/química , Región Organizadora del Nucléolo/enzimología , Fosforilación , Purinas/farmacología , ARN Polimerasa I/análisis , Roscovitina , Factor Nuclear Tiroideo 1 , Factores de Transcripción/análisis , Factores de Transcripción/inmunología
14.
Mol Gen Genet ; 262(1): 55-64, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10503536

RESUMEN

By inhibiting the activity of Cdc28/Clb cyclin-dependent protein kinase (CDK) complexes, Sic1 prevents the premature initiation of S phase in the yeast Saccharomyces cerevisiae. By testing a series of Sic1 truncation mutants, we have mapped the minimal domain necessary for Cdc28/Clb inhibition in vivo to the C-terminal 70 amino acids of Sic1. Site-directed mutagenesis was used to show that a sequence that matches the zRxL motif found in mammalian CDK inhibitors is essential for Sicl function. This motif is not found in the Schizosaccharomyces CDK inhibitor p25rum1, which appears to be a structural and functional homolog of Sicl. Based on the mutational data and sequence comparisons, we argue that Sic1 and p25rum1 are structurally distinct from the known mammalian CDK inhibitors, but may bind CDK complexes in a manner more closely resembling CDK substrates like the retinoblastoma and E2F proteins.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Ciclo Celular/fisiología , Proteínas Fúngicas/farmacología , Fragmentos de Péptidos/farmacología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Proteínas de Schizosaccharomyces pombe , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Fragmentos de Péptidos/genética , Saccharomyces cerevisiae/citología , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido
15.
Mol Cell Biol ; 19(9): 5981-90, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10454545

RESUMEN

The morphogenesis checkpoint in budding yeast delays cell cycle progression in G(2) when the actin cytoskeleton is perturbed, providing time for cells to complete bud formation prior to mitosis. Checkpoint-induced G(2) arrest involves the inhibition of the master cell cycle regulatory cyclin-dependent kinase, Cdc28p, by the Wee1 family kinase Swe1p. Results of experiments using a nonphosphorylatable CDC28(Y19F) allele suggested that the checkpoint stimulated two inhibitory pathways, one that promoted phosphorylation at tyrosine 19 (Y19) and a poorly characterized second pathway that did not require Cdc28p Y19 phosphorylation. We present the results from a genetic screen for checkpoint-defective mutants that led to the repeated isolation of the dominant CDC28(E12K) allele that is resistant to Swe1p-mediated inhibition. Comparison of this allele with the nonphosphorylatable CDC28(Y19F) allele suggested that Swe1p is still able to inhibit CDC28(Y19F) in a phosphorylation-independent manner and that both the Y19 phosphorylation-dependent and -independent checkpoint pathways in fact reflect Swe1p inhibition of Cdc28p. Remarkably, we found that a Swe1p mutant lacking catalytic activity could significantly delay the cell cycle in vivo during a physiological checkpoint response, even when expressed at single copy. The finding that a Wee1 family kinase expressed at physiological levels can inhibit a nonphosphorylatable cyclin-dependent kinase has broad implications for many checkpoint studies using such mutants in other organisms.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Ciclo Celular , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Alelos , Secuencia de Bases , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular , Cartilla de ADN/genética , Fase G2 , Genes Fúngicos , Mutación , Fosforilación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
16.
Mol Cell ; 4(5): 805-14, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10619027

RESUMEN

Mutants defective in meiotic recombination and synaptonemal complex formation undergo checkpoint-mediated arrest in mid-meiotic prophase. In S. cerevisiae, this checkpoint requires Swe1, which phosphorylates and inactivates the cyclin-dependent kinase Cdc28. A swe1 deletion allows mutants that normally arrest in meiotic prophase to sporulate at wild-type levels, though sporulation is delayed. This delay is eliminated by overproducing Clb1, the major cyclin required for meiosis I. The Swe1 protein accumulates and is hyperphosphorylated in checkpoint-arrested cells. Our results suggest that meiotic arrest is mediated both by increasing Swe1 activity and limiting cyclin production, with Swe1 being the primary downstream target of checkpoint control. The requirement for Swe1 distinguishes the pachytene checkpoint from the DNA damage checkpoints operating in vegetative cells.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Meiosis , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular , Ciclinas/biosíntesis , Ciclinas/genética , Ciclinas/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Genes Fúngicos/genética , Genes Fúngicos/fisiología , Meiosis/genética , Modelos Biológicos , Mutación/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae , Esporas Fúngicas/enzimología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Supresión Genética/genética , Factores de Tiempo , Activación Transcripcional/genética
17.
Microbiol Mol Biol Rev ; 62(4): 1191-243, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9841670

RESUMEN

The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/enzimología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Ciclo Celular , Ciclinas/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Transcripción Genética
18.
Toxicol Appl Pharmacol ; 151(2): 283-93, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9707505

RESUMEN

After more than a year had elapsed since a single oral exposure to 2 and 4 microgram 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)/kg, there was an apparent dose-related increased incidence of significant endocervical squamous metaplasia in a group of cynomolgus macaques (Scott et al., 1998). In the present experiments we investigated the mechanisms by which chemicals like TCDD could induce epithelial cell transdifferentiation in the primate endocervix. One focus of investigation was epidermal growth factor receptor (EGFR) and the key cytosolic signaling kinases, c-Src and protein tyrosine kinase (PTK), whose responses to TCDD are well characterized. A second focus was the distal kinase Erk2 that transduces the cytosolic signal into a nuclear signal, and which in combination with nuclear casein kinase II (CKII), can lead to activation of p53. Finally, we studied three key target proteins of activated p53 (wafl/p21, Cdc2 p34, and Cdk4), whose modulation could produce cell cycle effects. The studies were carried out using primary cell cultures prepared from endocervical epithelium recovered at necropsy from TCDD-treated (2 and 4 microgram TCDD/kg) and untreated macaques. There was a significant decrease in EGFR binding activity in cells from TCDD-treated animals as compared to controls. A marked increase in the protein amount of H-Ras and a significant increase in the activity of c-Src kinase, PTK, and Erk2 were found in cells from TCDD-treated animals. A significant decrease in the activity of CKII and in the protein amount of p53, wafl/p21, and Cdc2 p34 was found. On the other hand, a substantial increase in the protein amount of Cdk4 and DNA binding activity of AP-1 was found in cells from TCDD-treated animals. In vitro experiments using primary cultures of endocervical cells from untreated macaques revealed that these cells have AhR, and that c-Src protein is functionally attached to the AhR and is specifically activated upon ligand binding as judged by the following criteria. (1) A structure-activity relationship study with TCDD and three dioxin congeners revealed a rank order for their potency in activation of AhR-associated c-Src kinase from cervical cells which was identical to that of previously determined toxicity indices. (2) TCDD-induced, AhR-associated c-Src kinase activity was abolished when an AhR immunoprecipitate from cervical cells was preincubated with alpha-naphthoflavone (AhR blocker) or geldanamycin (Src kinase inhibitor) prior to the addition of TCDD. (3) The analysis of the AhR complex showed three proteins of molecular weights of 100 (AhR), 90, and 60 kDa. (4) The same protein with molecular weight 60 kDa was found when the immunoprecipitate with anti AhR-antibody was analyzed by SDS-PAGE, then transferred into nitrocellulose membrane followed by immunobloting the membrane with anti c-Src-antibody. Our data suggest that TCDD induced pathology in endocervical cells through changes in growth factor receptor signaling, other cytosolic signaling proteins, tumor suppressor proteins, and cell cycle proteins.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Cuello del Útero/efectos de los fármacos , Cuello del Útero/patología , Receptores ErbB/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Proteínas Proto-Oncogénicas , Transducción de Señal/efectos de los fármacos , Animales , Benzoquinonas , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteína Tirosina Quinasa CSK , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Células Cultivadas , Cuello del Útero/metabolismo , Quinasa 4 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Dioxinas/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Sustancias de Crecimiento , Lactamas Macrocíclicas , Macaca , Metaplasia/inducido químicamente , Proteína Quinasa 1 Activada por Mitógenos , Proteínas Tirosina Quinasas/metabolismo , Quinonas/farmacología , Relación Estructura-Actividad , Factor de Transcripción AP-1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/metabolismo , Familia-src Quinasas
19.
Science ; 281(5376): 533-8, 1998 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-9677190

RESUMEN

Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening, potent inhibitors of the human CDK2-cyclin A kinase complex and of Saccharomyces cerevisiae Cdc28p were identified. The structural basis for the binding affinity and selectivity was determined by analysis of a three-dimensional crystal structure of a CDK2-inhibitor complex. The cellular effects of these compounds were characterized in mammalian cells and yeast. In the latter case the effects were characterized on a genome-wide scale by monitoring changes in messenger RNA levels in treated cells with high-density oligonucleotide probe arrays. Purine libraries could provide useful tools for analyzing a variety of signaling and regulatory pathways and may lead to the development of new therapeutics.


Asunto(s)
Adenina/análogos & derivados , Quinasas CDC2-CDC28 , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Purinas/farmacología , Adenina/química , Adenina/metabolismo , Adenina/farmacología , Sitios de Unión , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , División Celular/efectos de los fármacos , Cristalografía por Rayos X , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina , Evaluación Preclínica de Medicamentos , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Humanos , Enlace de Hidrógeno , Sondas de Oligonucleótidos , Fosfatos/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Purinas/síntesis química , Purinas/química , Purinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos , Células Tumorales Cultivadas
20.
Mol Cell Biol ; 18(7): 3681-91, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9632750

RESUMEN

In yeast, the pheromone alpha-factor acts as an antiproliferative factor that induces G1 arrest and cellular differentiation. Previous data have indicated that Far1, a factor dedicated to pheromone-induced cell cycle arrest, is under positive and negative posttranslational regulation. Phosphorylation by the pheromone-stimulated mitogen-activated protein (MAP) kinase Fus3 has been thought to enhance the binding of Far1 to G1-specific cyclin-dependent kinase (Cdk) complexes, thereby inhibiting their catalytic activity. Cdk-dependent phosphorylation events were invoked to account for the high instability of Far1 outside early G1 phase. To confirm any functional role of Far1 phosphorylation, we undertook a systematic mutational analysis of potential MAP kinase and Cdk recognition motifs. Two putative phosphorylation sites that strongly affect Far1 behavior were identified. A change of serine 87 to alanine prevents the cell cycle-dependent degradation of Far1, causing enhanced sensitivity to pheromone. In contrast, threonine 306 seems to be an important recipient of an activating modification, as substitutions at this position abolish the G1 arrest function of Far1. Only the phosphorylated wild-type Far1 protein, not the T306-to-A substitution product, can be found in stable association with the Cdc28-Cln2 complex. Surprisingly, Far1-associated Cdc28-Cln2 complexes are at best moderately inhibited in immunoprecipitation kinase assays, suggesting unconventional inhibitory mechanisms of Far1.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacología , Fase G1 , Inhibidores de Crecimiento/farmacología , Lipoproteínas/farmacología , Feromonas/farmacología , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Animales , Sitios de Unión , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , División Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Ciclinas/antagonistas & inhibidores , Ciclinas/genética , Inhibidores Enzimáticos/metabolismo , Proteínas Fúngicas/genética , Genes myc , Histidina , Ratones , Mutagénesis , Fosforilación , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , Tripeptidil Peptidasa 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...