Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genetics ; 204(2): 807-819, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27558135

RESUMEN

The CKS1B gene located on chromosome 1q21 is frequently amplified in breast, lung, and liver cancers. CKS1B codes for a conserved regulatory subunit of cyclin-CDK complexes that function at multiple stages of cell cycle progression. We used a high throughput screening protocol to mimic cancer-related overexpression in a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential only when CKS1 is overexpressed, a synthetic dosage lethal (SDL) interaction. Mutations in multiple genes affecting mitotic entry and mitotic exit are highly enriched in the set of SDL interactions. The interactions between Cks1 and the mitotic entry checkpoint genes require the inhibitory activity of Swe1 on the yeast cyclin-dependent kinase (CDK), Cdc28. In addition, the SDL interactions of overexpressed CKS1 with mutations in the mitotic exit network are suppressed by modulating expression of the CDK inhibitor Sic1. Mutation of the polo-like kinase Cdc5, which functions in both the mitotic entry and mitotic exit pathways, is lethal in combination with overexpressed CKS1 Therefore we investigated the effect of targeting the human Cdc5 ortholog, PLK1, in breast cancers with various expression levels of human CKS1B Growth inhibition by PLK1 knockdown correlates with increased CKS1B expression in published tumor cell data sets, and this correlation was confirmed using shRNAs against PLK1 in tumor cell lines. In addition, we overexpressed CKS1B in multiple cell lines and found increased sensitivity to PLK1 knockdown and PLK1 drug inhibition. Finally, combined inhibition of WEE1 and PLK1 results in less apoptosis than predicted based on an additive model of the individual inhibitors, showing an epistatic interaction and confirming a prediction of the yeast data. Thus, identification of a yeast SDL interaction uncovers conserved genetic interactions that can affect human cancer cell viability.


Asunto(s)
Quinasas CDC2-CDC28/genética , Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Quinasas CDC2-CDC28/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/biosíntesis , Línea Celular Tumoral , Secuencia Conservada/genética , Regulación Fúngica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Mitosis/genética , Neoplasias/metabolismo , Proteínas Nucleares/biosíntesis , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Mutaciones Letales Sintéticas/genética , Quinasa Tipo Polo 1
2.
Eukaryot Cell ; 2(1): 143-9, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12582131

RESUMEN

Nutrient-limited Saccharomyces cerevisiae cells rapidly resume proliferative growth when transferred into glucose medium. This is preceded by a rapid increase in CLN3, BCK2, and CDC28 mRNAs encoding cell cycle regulatory proteins that promote progress through Start. We have tested the ability of mutations in known glucose signaling pathways to block glucose induction of CLN3, BCK2, and CDC28. We find that loss of the Snf3 and Rgt2 glucose sensors does not block glucose induction, nor does deletion of HXK2, encoding the hexokinase isoenzyme involved in glucose repression signaling. Rapamycin blockade of the Tor nutrient sensing pathway does not block the glucose response. Addition of 2-deoxy glucose to the medium will not substitute for glucose. These results indicate that glucose metabolism generates the signal required for induction of CLN3, BCK2, and CDC28. In support of this conclusion, we find that addition of iodoacetate, an inhibitor of the glyceraldehyde-3-phosphate dehydrogenase step in yeast glycolysis, strongly downregulates the levels CLN3, BCK2, and CDC28 mRNAs. Furthermore, mutations in PFK1 and PFK2, which encode phosphofructokinase isoforms, inhibit glucose induction of CLN3, BCK2, and CDC28. These results indicate a link between the rate of glycolysis and the expression of genes that are critical for passage through G(1).


Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Ciclo Celular/genética , Metabolismo Energético/genética , Regulación Fúngica de la Expresión Génica/genética , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Ciclinas/biosíntesis , Ciclinas/genética , Inhibidores Enzimáticos/farmacología , Glucólisis/efectos de los fármacos , Glucólisis/genética , Péptidos y Proteínas de Señalización Intracelular , Mutación/genética , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-2/genética , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Regulación hacia Arriba/genética
3.
J Biol Chem ; 273(15): 8556-9, 1998 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-9535827

RESUMEN

The small G-protein Cdc42 functions in many eukaryotic signal transduction pathways. In the budding yeast Saccharomyces cerevisiae, cells with defective Cdc42 fail to induce mating-specific genes in response to mating factor and to adopt the proper morphology for conjugation. Here we show that the failure of mating factor-induced transcription is largely the indirect result of arrest at a specific cell cycle position and/or the accumulation of high levels of the Cln1/2-Cdc28 kinase, a known repressor of mating factor signal transduction. Cdc42-defective cells with restored transcriptional induction have a partially restored mating ability but are still defective in the morphological response to mating factor. These results show that Cdc42 is not required for transduction of the mating factor signal per se but that it is essential for proper mating factor-induced morphogenesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Saccharomyces cerevisiae/fisiología , Transducción de Señal , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/biosíntesis , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Cruzamientos Genéticos , Ciclinas/biosíntesis , Proteínas Fúngicas/biosíntesis , GTP Fosfohidrolasas/metabolismo , Genotipo , Factor de Apareamiento , Morfogénesis , Péptidos/farmacología , Feromonas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Transducción de Señal/efectos de los fármacos , Transcripción Genética , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae
4.
Mol Cell Biol ; 16(11): 6385-97, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8887667

RESUMEN

In eukaryotes, mitosis requires the activation of cdc2 kinase via association with cyclin B and dephosphorylation of the threonine 14 and tyrosine 15 residues. It is known that in the budding yeast Saccharomyces cerevisiae, a homologous kinase, Cdc28, mediates the progression through M phase, but it is not clear what specific mitotic function its activation by the dephosphorylation of an equivalent tyrosine (Tyr-19) serves. We report here that cells expressing cdc28-E19 (in which Tyr-19 is replaced by glutamic acid) perform Start-related functions, complete DNA synthesis, and exhibit high levels of Clb2-associated kinase activity but are unable to form bipolar spindles. The failure of these cells to form mitotic spindles is due to their inability to segregate duplicated spindle pole bodies (SPBs), a phenotype strikingly similar to that exhibited by a previously reported mutant defective in both kinesin-like motor proteins Cin8 and Kip1. We also find that the overexpression of SWE1, the budding-yeast homolog of wee1, also leads to a failure to segregate SPBs. These results imply that dephosphorylation of Tyr-19 is required for the segregation of SPBs. The requirement of Tyr-19 dephosphorylation for spindle assembly is also observed under conditions in which spindle formation is independent of mitosis, suggesting that the involvement of Cdc28/Clb kinase in SPB separation is direct. On the basis of these results, we propose that one of the roles of Tyr-19 dephosphorylation is to promote SPB separation.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclina B , Fosfotirosina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Huso Acromático/fisiología , Secuencia de Aminoácidos , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Microscopía Electrónica , Mutagénesis Sitio-Dirigida , Mutación Puntual , Reacción en Cadena de la Polimerasa , Protamina Quinasa/metabolismo , Proteínas Tirosina Quinasas/biosíntesis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Huso Acromático/ultraestructura , Transcripción Genética
5.
Mol Biol Cell ; 6(12): 1641-58, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8590795

RESUMEN

The Swi6 transcription factor, required for G1/S-specific gene expression in Saccharomyces cerevisiae, is highly phosphorylated in vivo. Within the limits of resolution of the peptide analysis, the synchrony, and the time intervals tested, serine 160 appears to be the only site of phosphorylation in Swi6 that varies during the cell cycle. Serine 160 resides within a Cdc28 consensus phosphorylation site and its phosphorylation occurs at about the time of maximal transcription of Swi6- and Cdc28-dependent genes containing SCB or MCB elements. However, phosphorylation at this site is not Cdc28-dependent, nor does it control G1/S-specific transcription. The role of the cell cycle-regulated phosphorylation is to control the subcellular localization of Swi6. Phosphorylation of serine 160 persists from late G1 until late M phase, and Swi6 is predominantly cytoplasmic during this time. Aspartate substitution for serine 160 inhibits nuclear localization throughout the cycle. Swi6 enters the nucleus late in M phase and throughout G1, when serine 160 is hypophosphorylated. Alanine substitution at position 160 allows nuclear entry of Swi6 throughout the cell cycle. GFP fusions with the N-terminal one-third of Swi6 display the same cell cycle-regulated localization as Swi6.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/biosíntesis , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/biosíntesis , Genes Fúngicos , Genotipo , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Fosforilación , Mutación Puntual , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/biosíntesis , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...