Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.347
Filtrar
1.
Sci Rep ; 14(1): 20043, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209992

RESUMEN

Within the brain, the connections between neurons are constantly changing in response to environmental stimuli. A prime environmental regulator of neuronal activity is diet, and previous work has highlighted changes in hypothalamic connections in response to diets high in dietary fat and elevated sucrose. We sought to determine if the change in hypothalamic neuronal connections was driven primarily by an elevation in dietary fat alone. Analysis was performed in both male and female animals. We measured Agouti-related peptide (AgRP) neuropeptide and Synaptophysin markers in the paraventricular nucleus of the hypothalamus (PVH) in response to an acute 48 h high fat diet challenge. Using two image analysis methods described in previous studies, an effect of a high fat diet on AgRP neuronal projections in the PVH of male or female mice was not identified. These results suggest that it may not be dietary fat alone that is responsible for the previously published alterations in hypothalamic connections. Future work should focus on deciphering the role of individual macronutrients on neuroanatomical and functional changes.


Asunto(s)
Proteína Relacionada con Agouti , Dieta Alta en Grasa , Núcleo Hipotalámico Paraventricular , Animales , Proteína Relacionada con Agouti/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Masculino , Femenino , Ratones , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/farmacología , Grasas de la Dieta/metabolismo , Neuronas/metabolismo , Ratones Endogámicos C57BL , Sinaptofisina/metabolismo
2.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38977301

RESUMEN

Overexpression of the agouti-signaling protein (asip1), an endogenous melanocortin antagonist, under the control of a constitutive promoter in zebrafish [Tg(Xla.Eef1a1:Cau.Asip1]iim4] (asip1-Tg) increases food intake by reducing sensitivity of the central satiety systems and abolish circadian activity rhythms. The phenotype also shows increased linear growth and body weight, yet no enhanced aggressiveness in dyadic fights is observed. In fact, asip1-Tg animals choose to flee to safer areas rather than face a potential threat, thus suggesting a potential anxiety-like behavior (ALB). Standard behavioral tests, i.e., the open field test (OFT), the novel object test (NOT), and the novel tank dive test (NTDT), were used to investigate thigmotaxis and ALB in male and female zebrafish. Results showed that the asip1-Tg strain exhibited severe ALB in every test, mainly characterized by pronounced freezing behavior and increased linear and angular swimming velocities. asip1-Tg animals exhibited low central serotonin (5-HT) and dopamine (DA) levels and high turnover rates, thus suggesting that central monoaminergic pathways might mediate melanocortin antagonist-induced ALB. Accordingly, the treatment of asip1-Tg animals with fluoxetine, a selective serotonin reuptake inhibitor (SSRI), reversed the ALB phenotype in NTDT as well as 5-HT turnover. Genomic and anatomical data further supported neuronal interaction between melanocortinergic and serotonergic systems. These results suggest that inhibition of the melanocortin system by ubiquitous overexpression of endogenous antagonist has an anxiogenic effect mediated by serotonergic transmission.


Asunto(s)
Ansiedad , Serotonina , Pez Cebra , Animales , Ansiedad/metabolismo , Ansiedad/psicología , Masculino , Femenino , Serotonina/metabolismo , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Dopamina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/genética
3.
J Agric Food Chem ; 72(28): 15765-15777, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38970495

RESUMEN

Konjac glucomannan (KGM), high-viscosity dietary fiber, is utilized in weight management. Previous investigations on the appetite-suppressing effects of KGM have centered on intestinal responses to nutrients and gastric emptying rates, with less focus on downstream hypothalamic neurons of satiety hormones. In our studies, the molecular mechanisms through which KGM and its degradation products influence energy homeostasis via the adipocyte-hypothalamic axis have been examined. It was found that high-viscosity KGM more effectively stimulates enteroendocrine cells to release glucagon-like peptide-1 (GLP-1) and reduces ghrelin production, thereby activating hypothalamic neurons and moderating short-term satiety. Conversely, low-viscosity DKGM has been shown to exhibit stronger anti-inflammatory properties in the hypothalamus, enhancing hormone sensitivity and lowering the satiety threshold. Notably, both KGM and DKGM significantly reduced leptin signaling and fatty acid signaling in adipose tissue and activated brown adipose tissue thermogenesis to suppress pro-opiomelanocortin (POMC) expression and activate agouti-related protein (AgRP) expression, thereby reducing food intake and increasing energy expenditure. Additionally, high-viscosity KGM has been found to activate the adipocyte-hypothalamus axis more effectively than DKGM, thereby promoting greater daily energy expenditure. These findings provide novel insights into the adipocyte-hypothalamic axis for KGM to suppress appetite and reduce weight.


Asunto(s)
Adipocitos , Regulación del Apetito , Dieta Alta en Grasa , Metabolismo Energético , Hipotálamo , Ratones Endogámicos C57BL , Animales , Ratones , Metabolismo Energético/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , Regulación del Apetito/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Humanos , Péptido 1 Similar al Glucagón/metabolismo , Ghrelina/metabolismo , Leptina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/genética , Termogénesis/efectos de los fármacos , Proopiomelanocortina/metabolismo , Proopiomelanocortina/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/dietoterapia , Mananos
4.
Neuropeptides ; 107: 102454, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38970907

RESUMEN

Neuropeptide Y (NPY) plays a crucial role in controlling energy homeostasis and feeding behaviour. The role of NPY neurons located in the arcuate nucleus of the hypothalamus (Arc) in responding to homeostatic signals has been the focus of much investigation, but most studies have used AgRP promoter-driven models, which do not fully encompass Arc NPY neurons. To directly investigate NPY-expressing versus AgRP-expressing Arc neurons function, we utilised chemogenetic techniques in NPY-Cre and AgRP-Cre animals to activate Arc NPY or AgRP neurons in the presence of food and food-related stimuli. Our findings suggest that chemogenetic activation of the broader population of Arc NPY neurons, including AgRP-positive and AgRP-negative NPY neurons, has equivalent effects on feeding behaviour as activation of Arc AgRP neurons. Our results demonstrate that these Arc NPY neurons respond specifically to caloric signals and do not respond to non-caloric signals, in line with what has been observed in AgRP neurons. Activating Arc NPY neurons significantly increases food consumption and influences macronutrient selection to prefer fat intake.


Asunto(s)
Proteína Relacionada con Agouti , Núcleo Arqueado del Hipotálamo , Conducta Alimentaria , Neuronas , Neuropéptido Y , Animales , Neuropéptido Y/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Proteína Relacionada con Agouti/metabolismo , Neuronas/metabolismo , Conducta Alimentaria/fisiología , Ratones , Masculino , Ratones Transgénicos , Ingestión de Alimentos/fisiología
5.
Metabolism ; 158: 155959, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942170

RESUMEN

OBJECTIVE: The molecular control of feeding after fasting is essential for maintaining energy homeostasis, while overfeeding usually leads to obesity. Identifying non-coding microRNAs (miRNAs) that control food intake could reveal new oligonucleotide-based therapeutic targets for treating obesity and its associated diseases. This study aims to identify a miRNA modulating food intake and its mechanism in neuronal regulation of food intake and energy homeostasis. METHODS: A comprehensive genome-wide miRNA screening in the arcuate nucleus of the hypothalamus (ARC) of fasted mice and ad libitum mice was performed. Through stereotactic virus injections, intracerebroventricular injections, and miRNA sponge technology, miR-7a-5p was inhibited specifically in AgRP neurons and the central nervous system, and metabolic phenotypes were monitored. Quantitative real-time PCR, Western blotting, immunofluorescence, whole-cell patch-clamp recording, and luciferase reporter assay were used to investigate the mechanisms underlying miR-7a-5p's regulation of food intake. RESULTS: We found a significant increase in miR-7a-5p levels after fasting. miR-7a-5p was highly expressed in the ARC, and inhibition of miR-7a-5p specifically in AgRP neurons reduced food intake and body weight gain. miR-7a-5p inhibited S6K1 gene expression by binding to its 3'-UTR. Furthermore, the knockdown of ribosomal S6 kinase 1 (S6K1) in AgRP neurons can partially reverse the effects caused by miR-7a-5p inhibition. Importantly, intracerebroventricular administration of the miR-7a-5p inhibitor could also reduce food intake and body weight gain. CONCLUSION: Our findings suggest that miR-7a-5p responds to energy deficit and regulates food intake by fine-tuning mTOR1/S6K1 signaling in the AgRP neurons, which could be a promising oligonucleotide-based therapeutic target for treating obesity and its associated diseases.


Asunto(s)
Proteína Relacionada con Agouti , Ingestión de Alimentos , Ayuno , MicroARNs , Neuronas , Animales , MicroARNs/genética , Neuronas/metabolismo , Ratones , Ayuno/fisiología , Ingestión de Alimentos/fisiología , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/genética , Masculino , Núcleo Arqueado del Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo
6.
Mol Metab ; 86: 101975, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925247

RESUMEN

OBJECTIVE: The lactational period is associated with profound hyperphagia to accommodate the energy demands of nursing. These changes are important for the long-term metabolic health of the mother and children as altered feeding during lactation increases the risk of mothers and offspring developing metabolic disorders later in life. However, the specific behavioral mechanisms and neural circuitry mediating the hyperphagia of lactation are incompletely understood. METHODS: Here, we utilized home cage feeding devices to characterize the dynamics of feeding behavior in lactating mice. A combination of pharmacological and behavioral assays were utilized to determine how lactation alters meal structure, circadian aspects of feeding, hedonic feeding, and sensitivity to hunger and satiety signals in lactating mice. Finally, we utilized chemogenetic, immunohistochemical, and in vivo imaging approaches to characterize the role of hypothalamic agouti-related peptide (AgRP) neurons in lactational-hyperphagia. RESULTS: The lactational period is associated with increased meal size, altered circadian patterns of feeding, reduced sensitivity to gut-brain satiety signals, and enhanced sensitivity to negative energy balance. Hypothalamic AgRP neurons display increased sensitivity to negative energy balance and altered in vivo activity during the lactational state. Further, using in vivo imaging approaches we demonstrate that AgRP neurons are directly activated by lactation. Chemogenetic inhibition of AgRP neurons acutely reduces feeding in lactating mice, demonstrating an important role for these neurons in lactational-hyperphagia. CONCLUSIONS: Together, these results show that lactation collectively alters multiple components of feeding behavior and position AgRP neurons as an important cellular substrate mediating the hyperphagia of lactation.


Asunto(s)
Proteína Relacionada con Agouti , Conducta Alimentaria , Hiperfagia , Hipotálamo , Lactancia , Neuronas , Animales , Proteína Relacionada con Agouti/metabolismo , Lactancia/metabolismo , Hiperfagia/metabolismo , Femenino , Ratones , Neuronas/metabolismo , Hipotálamo/metabolismo , Conducta Alimentaria/fisiología , Metabolismo Energético , Ratones Endogámicos C57BL
7.
Nutr Diabetes ; 14(1): 40, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844453

RESUMEN

BACKGROUND: High-protein diets are often enriched with branched-chain amino acids (BCAAs) known to enhance protein synthesis and provide numerous physiological benefits, but recent studies reveal their association with obesity and diabetes. In support of this, protein or BCAA supplementation is shown to disrupt glucose metabolism while restriction improves it. However, it is not clear if these are primary, direct effects of BCAAs or secondary to other physiological changes during chronic manipulation of dietary BCAAs. METHODS: Three-month-old C57Bl/6 mice were acutely treated with either vehicle/BCAAs or BT2, a BCAA-lowering compound, and detailed in vivo metabolic phenotyping, including frequent sampling and pancreatic clamps, were conducted. RESULTS: Using a catheter-guided frequent sampling method in mice, here we show that a single infusion of BCAAs was sufficient to acutely elevate blood glucose and plasma insulin. While pre-treatment with BCAAs did not affect glucose tolerance, a constant infusion of BCAAs during hyperinsulinemic-euglycemic clamps impaired whole-body insulin sensitivity. Similarly, a single injection of BT2 was sufficient to prevent BCAA rise during fasting and markedly improve glucose tolerance in high-fat-fed mice, suggesting that abnormal glycemic control in obesity may be causally linked to high circulating BCAAs. We further show that chemogenetic over-activation of AgRP neurons in the hypothalamus, as present in obesity, significantly impairs glucose tolerance that is completely normalized by acute BCAA reduction. Interestingly, most of these effects were demonstrated only in male, but not in female mice. CONCLUSION: These findings suggest that BCAAs per se can acutely impair glucose homeostasis and insulin sensitivity, thus offering an explanation for how they may disrupt glucose metabolism in the long-term as observed in obesity and diabetes. Our findings also reveal that AgRP neuronal regulation of blood glucose is mediated through BCAAs, further elucidating a novel mechanism by which brain controls glucose homeostasis.


Asunto(s)
Proteína Relacionada con Agouti , Aminoácidos de Cadena Ramificada , Glucemia , Resistencia a la Insulina , Ratones Endogámicos C57BL , Neuronas , Animales , Resistencia a la Insulina/fisiología , Proteína Relacionada con Agouti/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Masculino , Ratones , Glucemia/metabolismo , Femenino , Aminoácidos de Cadena Ramificada/metabolismo , Insulina/sangre , Insulina/metabolismo , Técnica de Clampeo de la Glucosa , Dieta Alta en Grasa , Obesidad/metabolismo
8.
Science ; 385(6707): 438-446, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38935778

RESUMEN

Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are effective antiobesity drugs. However, the precise central mechanisms of GLP-1RAs remain elusive. We administered GLP-1RAs to patients with obesity and observed a heightened sense of preingestive satiation. Analysis of human and mouse brain samples pinpointed GLP-1 receptor (GLP-1R) neurons in the dorsomedial hypothalamus (DMH) as candidates for encoding preingestive satiation. Optogenetic manipulation of DMHGLP-1R neurons caused satiation. Calcium imaging demonstrated that these neurons are actively involved in encoding preingestive satiation. GLP-1RA administration increased the activity of DMHGLP-1R neurons selectively during eating behavior. We further identified that an intricate interplay between DMHGLP-1R neurons and neuropeptide Y/agouti-related peptide neurons of the arcuate nucleus (ARCNPY/AgRP neurons) occurs to regulate food intake. Our findings reveal a hypothalamic mechanism through which GLP-1RAs control preingestive satiation, offering previously unexplored neural targets for obesity and metabolic diseases.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Núcleo Hipotalámico Dorsomedial , Agonistas Receptor de Péptidos Similares al Glucagón , Obesidad , Saciedad , Animales , Femenino , Humanos , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Hipotalámico Dorsomedial/efectos de los fármacos , Núcleo Hipotalámico Dorsomedial/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuropéptido Y/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/psicología , Optogenética , Saciedad/efectos de los fármacos , Agonistas Receptor de Péptidos Similares al Glucagón/administración & dosificación , Agonistas Receptor de Péptidos Similares al Glucagón/farmacología
9.
Nat Commun ; 15(1): 5439, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937485

RESUMEN

Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing 'hunger' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.


Asunto(s)
Proteína Relacionada con Agouti , Conducta Alimentaria , Plasticidad Neuronal , Neuropéptido Y , Núcleos Septales , Inanición , Animales , Neuropéptido Y/metabolismo , Neuropéptido Y/genética , Plasticidad Neuronal/fisiología , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/genética , Conducta Alimentaria/fisiología , Núcleos Septales/metabolismo , Núcleos Septales/fisiología , Ratones , Inanición/metabolismo , Masculino , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Neuronas GABAérgicas/metabolismo , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Ansiedad/metabolismo , Ansiedad/fisiopatología , Hambre/fisiología
10.
Endocrinology ; 165(7)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38815068

RESUMEN

The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)-producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR's effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)-expressing neurons. Analysis of various single-cell RNA-sequencing datasets further corroborated that the primary subset of cells coexpressing Gad2 and Ghsr in the mouse brain are non-AgRP ARH neurons. Next, we crossed Gad2-CreER mice with reactivable GHSR-deficient mice to generate mice expressing Ghsr only in Gad2-expressing neurons (Gad2-GHSR mice). We found that ghrelin treatment induced the expression of the marker of transcriptional activation c-Fos in the ARH of Gad2-GHSR mice, yet failed to induce food intake. In contrast, food deprivation-induced refeeding was higher in Gad2-GHSR mice than in GHSR-deficient mice and similar to wild-type mice, suggesting that ghrelin-independent roles of GHSR in a subset of GABA neurons is sufficient for eliciting full compensatory hyperphagia in mice.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Privación de Alimentos , Neuronas GABAérgicas , Ghrelina , Glutamato Descarboxilasa , Hiperfagia , Receptores de Ghrelina , Animales , Masculino , Ratones , Neuronas GABAérgicas/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Hiperfagia/metabolismo , Ghrelina/metabolismo , Ghrelina/farmacología , Núcleo Arqueado del Hipotálamo/metabolismo , Privación de Alimentos/fisiología , Glutamato Descarboxilasa/metabolismo , Glutamato Descarboxilasa/genética , Ratones Transgénicos , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/genética , Ratones Endogámicos C57BL
11.
Nat Commun ; 15(1): 4646, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821928

RESUMEN

AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.


Asunto(s)
Hambre , Factor 3 Regulador del Interferón , Leptina , Neuronas , Animales , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/genética , Núcleo Arqueado del Hipotálamo/metabolismo , Cromatina , Epigénesis Genética , Ayuno , Regulación de la Expresión Génica , Hambre/fisiología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Leptina/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Transducción de Señal , Transcriptoma
12.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691185

RESUMEN

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Asunto(s)
Proteína Relacionada con Agouti , Metabolismo Energético , Subunidades gamma de la Proteína de Unión al GTP , Homeostasis , Hipotálamo , Ratones Noqueados , Proopiomelanocortina , Rosiglitazona , Animales , Ratones , Hipotálamo/metabolismo , Metabolismo Energético/efectos de los fármacos , Proopiomelanocortina/genética , Proopiomelanocortina/biosíntesis , Proteína Relacionada con Agouti/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Rosiglitazona/farmacología , Masculino , Enfermedades Neuroinflamatorias/etiología , Ratones Endogámicos C57BL , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Neuropéptidos/genética , Neuropéptidos/deficiencia , Regulación de la Expresión Génica/efectos de los fármacos
13.
Sci Rep ; 14(1): 7844, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570726

RESUMEN

Obesity, a worldwide epidemic, leads to various metabolic disorders threatening human health. In response to stress or fasting, glucocorticoid (GC) levels are elevated to promote food intake. This involves GC-induced expression of the orexigenic neuropeptides in agouti-related protein (AgRP) neurons of the hypothalamic arcuate nucleus (ARC) via the GC receptor (GR). Here, we report a selective GR modulator (SGRM) that suppresses GR-induced transcription of genes with non-classical glucocorticoid response elements (GREs) such as Agrp-GRE, but not with classical GREs, and via this way may serve as a novel anti-obesity agent. We have identified a novel SGRM, 2-O-trans-p-coumaroylalphitolic acid (Zj7), a triterpenoid extracted from the Ziziphus jujube plant, that selectively suppresses GR transcriptional activity in Agrp-GRE without affecting classical GREs. Zj7 reduces the expression of orexigenic genes in the ARC and exerts a significant anorexigenic effect with weight loss in both high fat diet-induced obese and genetically obese db/db mouse models. Transcriptome analysis showed that Zj7 represses the expression of a group of orexigenic genes including Agrp and Npy induced by the synthetic GR ligand dexamethasone (Dex) in the hypothalamus. Taken together, Zj7, as a selective GR modulator, showed beneficial metabolic activities, in part by suppressing GR activity in non-classical GREs in orexigenic genes. This study demonstrates that a potential anorexigenic molecule may allow GRE-specific inhibition of GR transcriptional activity, which is a promising approach for the treatment of metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Receptores de Glucocorticoides , Ratones , Animales , Humanos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Proteína Relacionada con Agouti/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
14.
Neuron ; 112(13): 2130-2141.e7, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38642553

RESUMEN

Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe self-starvation as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether repeated stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress exposure, males but not females showed a mild aversion to AgRP stimulation. Strikingly, following multiple days of stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state and provides a powerful experimental framework for investigating the underlying neural mechanisms.


Asunto(s)
Proteína Relacionada con Agouti , Ansiedad , Inanición , Estrés Psicológico , Animales , Femenino , Ratones , Proteína Relacionada con Agouti/metabolismo , Masculino , Optogenética , Neuronas/metabolismo , Ratones Endogámicos C57BL , Hipotálamo/metabolismo
15.
Mol Autism ; 15(1): 14, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570876

RESUMEN

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Asunto(s)
Trastorno Autístico , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
16.
J Neuroendocrinol ; 36(5): e13389, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38599683

RESUMEN

Hunger increases the motivation for calorie consumption, often at the expense of low-taste appeal. However, the neural mechanisms integrating calorie-sensing with increased motivation for calorie consumption remain unknown. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus sense hunger, and the ingestion of caloric solutions promotes dopamine release in the absence of sweet taste perception. Therefore, we hypothesised that metabolic-sensing of hunger by AgRP neurons would be essential to promote dopamine release in the nucleus accumbens in response to caloric, but not non-caloric solutions. Moreover, we examined whether metabolic sensing in AgRP neurons affected taste preference for bitter solutions under conditions of energy need. Here we show that impaired metabolic sensing in AgRP neurons attenuated nucleus accumbens dopamine release in response to sucrose, but not saccharin, consumption. Furthermore, metabolic sensing in AgRP neurons was essential to distinguish nucleus accumbens dopamine response to sucrose consumption when compared with saccharin. Under conditions of hunger, metabolic sensing in AgRP neurons increased the preference for sucrose solutions laced with the bitter tastant, quinine, to ensure calorie consumption, whereas mice with impaired metabolic sensing in AgRP neurons maintained a strong aversion to sucrose/quinine solutions despite ongoing hunger. In conclusion, we demonstrate normal metabolic sensing in AgRP neurons drives the preference for calorie consumption, primarily when needed, by engaging dopamine release in the nucleus accumbens.


Asunto(s)
Proteína Relacionada con Agouti , Dopamina , Núcleo Accumbens , Sacarosa , Núcleo Accumbens/metabolismo , Animales , Dopamina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Ratones , Masculino , Preferencias Alimentarias/fisiología , Ratones Endogámicos C57BL , Neuronas/metabolismo , Hambre/fisiología , Percepción del Gusto/fisiología
17.
Trends Endocrinol Metab ; 35(6): 456-458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599900

RESUMEN

Obesity is associated with dysfunctions in hypothalamic neurons that regulate metabolism, including agouti-related protein (AgRP)-expressing neurons. In a recent article, Zhang et al. demonstrated that either diet- or genetically induced obesity promoted iron accumulation specifically in AgRP neurons. Preventing iron overload in AgRP neurons mitigated diet-induced obesity and related comorbidities in male mice.


Asunto(s)
Proteína Relacionada con Agouti , Hierro , Obesidad , Obesidad/metabolismo , Animales , Humanos , Hierro/metabolismo , Proteína Relacionada con Agouti/metabolismo , Ratones , Neuronas/metabolismo , Masculino , Hipotálamo/metabolismo , Sobrecarga de Hierro/metabolismo
18.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459068

RESUMEN

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Asunto(s)
Hambre , MicroARNs , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hambre/fisiología , Hipotálamo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo
19.
Nature ; 628(8009): 826-834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538787

RESUMEN

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Asunto(s)
Tronco Encefálico , Células Ependimogliales , Conducta Alimentaria , Calor , Hipotálamo , Vías Nerviosas , Neuronas , Animales , Femenino , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/citología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Dopamina/metabolismo , Ingestión de Alimentos/fisiología , Células Ependimogliales/citología , Células Ependimogliales/fisiología , Conducta Alimentaria/fisiología , Ácido Glutámico/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Sensación Térmica/fisiología , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/líquido cefalorraquídeo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Cell Rep ; 43(3): 113900, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38460132

RESUMEN

Iron overload is closely associated with metabolic dysfunction. However, the role of iron in the hypothalamus remains unclear. Here, we find that hypothalamic iron levels are increased, particularly in agouti-related peptide (AgRP)-expressing neurons in high-fat-diet-fed mice. Using pharmacological or genetic approaches, we reduce iron overload in AgRP neurons by central deferoxamine administration or transferrin receptor 1 (Tfrc) deletion, ameliorating diet-induced obesity and related metabolic dysfunction. Conversely, Tfrc-mediated iron overload in AgRP neurons leads to overeating and adiposity. Mechanistically, the reduction of iron overload in AgRP neurons inhibits AgRP neuron activity; improves insulin and leptin sensitivity; and inhibits iron-induced oxidative stress, endoplasmic reticulum stress, nuclear factor κB signaling, and suppression of cytokine signaling 3 expression. These results highlight the critical role of hypothalamic iron in obesity development and suggest targets for treating obesity and related metabolic disorders.


Asunto(s)
Sobrecarga de Hierro , Enfermedades Metabólicas , Ratones , Animales , Proteína Relacionada con Agouti/metabolismo , Obesidad/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Neuronas/metabolismo , Dieta Alta en Grasa/efectos adversos , Enfermedades Metabólicas/metabolismo , Hierro/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...