Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 107: 129780, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714262

RESUMEN

Oncogenic KRAS mutations drive an approximately 25 % of all human cancers. Son of Sevenless 1 (SOS1), a critical guanine nucleotide exchange factor, catalyzes the activation of KRAS. Targeting SOS1 degradation has engaged as a promising therapeutic strategy for KRAS-mutant cancers. Herein, we designed and synthesized a series of novel CRBN-recruiting SOS1 PROTACs using the pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor as the warhead. One representative compound 11o effectively induced the degradation of SOS1 in three different KRAS-mutant cancer cell lines with DC50 values ranging from 1.85 to 7.53 nM. Mechanism studies demonstrated that 11o-induced SOS1 degradation was dependent on CRBN and proteasome. Moreover, 11o inhibited the phosphorylation of ERK and displayed potent anti-proliferative activities against SW620, A549 and DLD-1 cells. Further optimization of 11o may provide us promising SOS1 degraders with favorable drug-like properties for developing new chemotherapies targeting KRAS-driven cancers.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diseño de Fármacos , Proteína SOS1 , Humanos , Proteína SOS1/metabolismo , Proteína SOS1/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Línea Celular Tumoral , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Pirimidinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/química , Pirimidinonas/farmacología , Pirimidinonas/síntesis química , Pirimidinonas/química , Quimera Dirigida a la Proteólisis
2.
Chembiochem ; 25(12): e202400008, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38622060

RESUMEN

The RAS-MAPK signaling pathway, crucial for cell proliferation and differentiation, involves key proteins KRAS and SOS1. Mutations in the KRAS and SOS1 genes are implicated in various cancer types, including pancreatic, lung, and juvenile myelomonocytic leukemia. There is considerable interest in identifying inhibitors targeting KRAS and SOS1 to explore potential therapeutic strategies for cancer treatment. In this study, advanced in silico techniques were employed to screen small molecule libraries at this interface, leading to the identification of promising lead compounds as potential SOS1 inhibitors. Comparative analysis of the average binding free energies of these predicted potent compounds with known SOS1 small molecule inhibitors revealed that the identified compounds display similar or even superior predicted binding affinities compared to the known inhibitors. These findings offer valuable insights into the potential of these compounds as candidates for further development as effective anti-cancer agents.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Proteína SOS1 , Bibliotecas de Moléculas Pequeñas , Proteína SOS1/metabolismo , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Humanos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Antineoplásicos/farmacología , Antineoplásicos/química , Simulación del Acoplamiento Molecular , Unión Proteica , Evaluación Preclínica de Medicamentos
3.
J Med Chem ; 67(9): 7130-7145, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38630077

RESUMEN

Multitarget medications represent an appealing therapy against the disease with multifactorial abnormalities─cancer. Therefore, simultaneously targeting son of sevenless 1 (SOS1) and epidermal growth factor receptor (EGFR), two aberrantly expressed proteins crucial for the oncogenesis and progression of prostate cancer, may achieve active antitumor effects. Here, we discovered dual SOS1/EGFR-targeting compounds via pharmacophore-based docking screening. The most prominent compound SE-9 exhibited nanomolar inhibition activity against both SOS1 and EGFR and efficiently suppressed the phosphorylation of ERK and AKT in prostate cancer cells PC-3. Cellular assays also revealed that SE-9 displayed strong antiproliferative activities through diverse mechanisms, such as induction of cell apoptosis and G1 phase cell cycle arrest, as well as reduction of angiogenesis and migration. Further in vivo findings showed that SE-9 potently inhibited tumor growth in PC-3 xenografts without obvious toxicity. Overall, SE-9 is a novel dual-targeting SOS1/EGFR inhibitor that represents a promising treatment strategy for prostate cancer.


Asunto(s)
Antineoplásicos , Proliferación Celular , Receptores ErbB , Neoplasias de la Próstata , Proteína SOS1 , Masculino , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratones Desnudos , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C
4.
Adv Cancer Res ; 153: 169-203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35101230

RESUMEN

RAS proteins play major roles in many human cancers, but programs to develop direct RAS inhibitors so far have only been successful for the oncogenic KRAS mutant G12C. As an alternative approach, inhibitors for the RAS guanine nucleotide exchange factor SOS1 have been investigated by several academic groups and companies, and major progress has been achieved in recent years in the optimization of small molecule activators and inhibitors of SOS1. Here, we review the discovery and development of small molecule modulators of SOS1 and their molecular binding modes and modes of action. As targeting the RAS pathway is expected to result in the development of resistance mechanisms, SOS1 inhibitors will most likely be best applied in vertical combination approaches where two nodes of the RAS signaling pathway are hit simultaneously. We summarize the current understanding of which combination partners may be most beneficial for patients with RAS driven tumors.


Asunto(s)
Neoplasias , Proteína SOS1 , Proteínas ras , Carcinogénesis , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/química , Proteína SOS1/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
5.
Expert Opin Ther Pat ; 31(12): 1189-1204, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34253125

RESUMEN

Introduction: Up to 30% of all human cancers are driven by the overactivation of RAS signaling. Son of Sevenless 1 (SOS1) is a central node in RAS signaling pathways and modulation of SOS1-mediated RAS activation represents a unique opportunity for treating RAS-addicted cancers. Several recent publications and patent documents have demonstrated the ability of small molecules to affect the activation of RAS by SOS1 and have shown their potential for the treatment of cancers driven by RAS mutants.Areas covered: Documents focusing on both small-molecule inhibitors and activators of the SOS1:RAS interaction and their potential use as cancer therapeutics are covered. A total of 10 documents from 4 applicants are evaluated with discussion focusing on structural modifications of these compounds as well as relevant preclinical data.Expert opinion: The last decade has seen a significant increase in research and disclosures in the development of small-molecule SOS1 inhibitors. Considering the promising data that have been disclosed, interest in this area of research will likely remain strong for the foreseeable future. With the first SOS1 inhibitor currently in phase I clinical trials, the outcome of these trials will likely influence future development of SOS1 inhibitors for treatment of RAS-driven cancers.


Asunto(s)
Neoplasias/tratamiento farmacológico , Proteína SOS1/antagonistas & inhibidores , Proteínas ras/genética , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Desarrollo de Medicamentos , Humanos , Mutación , Neoplasias/genética , Patentes como Asunto , Proteína SOS1/metabolismo , Transducción de Señal
7.
Curr Opin Chem Biol ; 62: 109-118, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33848766

RESUMEN

Son of Sevenless (SOS) is a guanine nucleotide exchange factor that activates the important cell signaling switch KRAS. SOS acts as a pacemaker for KRAS, the beating heart of cancer, by catalyzing the "beating" from the KRAS(off) to the KRAS(on) conformation. Activating mutations in SOS1 are common in Noonan syndrome and oncogenic alterations in KRAS drive 1 in seven human cancers. Promising clinical efficacy has been observed for selective KRASG12C inhibitors, but the vast majority of oncogenic KRAS alterations remain undrugged. The discovery of a druggable pocket on SOS1 has led to potent SOS1 inhibitors such as BI-3406. SOS1 inhibition leads to antiproliferative effects against all major KRAS mutants. The first SOS1 inhibitor has entered clinical trials for KRAS-mutated cancers. In this review, we provide an overview of SOS1 function, its association with cancer and RASopathies, known SOS1 activators and inhibitors, and a future perspective is provided.


Asunto(s)
Antineoplásicos/química , Proteínas Mutantes/química , Neoplasias/terapia , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/antagonistas & inhibidores , Acetonitrilos/farmacología , Antineoplásicos/farmacología , Regulación de la Expresión Génica , Humanos , Mutación , Marcapaso Artificial , Piperazinas/farmacología , Conformación Proteica , Piridinas/farmacología , Pirimidinas/farmacología , Proteína SOS1/metabolismo , Transducción de Señal , Relación Estructura-Actividad
8.
J Med Chem ; 64(10): 6569-6580, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33719426

RESUMEN

KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/metabolismo , Afatinib/química , Afatinib/metabolismo , Afatinib/uso terapéutico , Regulación Alostérica/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Proteína SOS1/agonistas , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/genética
9.
Elife ; 92020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32897190

RESUMEN

Drug treatment of 3D cancer spheroids more accurately reflects in vivo therapeutic responses compared to adherent culture studies. In EGFR-mutated lung adenocarcinoma, EGFR-TKIs show enhanced efficacy in spheroid cultures. Simultaneous inhibition of multiple parallel RTKs further enhances EGFR-TKI effectiveness. We show that the common RTK signaling intermediate SOS1 was required for 3D spheroid growth of EGFR-mutated NSCLC cells. Using two distinct measures of pharmacologic synergy, we demonstrated that SOS1 inhibition strongly synergized with EGFR-TKI treatment only in 3D spheroid cultures. Combined EGFR- and SOS1-inhibition markedly inhibited Raf/MEK/ERK and PI3K/AKT signaling. Finally, broad assessment of the pharmacologic landscape of drug-drug interactions downstream of mutated EGFR revealed synergy when combining an EGFR-TKI with inhibitors of proximal signaling intermediates SOS1 and SHP2, but not inhibitors of downstream RAS effector pathways. These data indicate that vertical inhibition of proximal EGFR signaling should be pursued as a potential therapy to treat EGFR-mutated tumors.


Lung cancer is the leading cause of cancer-related deaths worldwide. In non-smokers, this disease is usually caused by a mutation in a protein found on the surface of a cell, called EGFR. In healthy lung cells, these proteins trigger a chain of chemical signals that tell the cells to multiply. However, faulty forms of EFGR make the cells grow uncontrollably, leading to the formation of tumors. Current treatments use EGFR inhibitors that block the activity of these proteins. But cancer cells often become resistant to these treatments by activating other types of growth proteins. One way to overcome this resistance has been by targeting the signaling pathways within individual tumors. But since those pathways differ between tumors, it has been challenging to find a single therapy that can treat all drug-resistant cancer cells. Now, Theard et al. assessed the therapeutic effects of blocking a specific protein inside lung cells, called SOS1, which is involved in growth signaling in all tumor cells. Six different types of human lung cancer cells were used, all of which had faulty forms of EGFR, with three of the cell types showing drug resistance to current therapies. The cancer cells were either exposed to EGFR inhibitors only or to a combination of EGFR and SOS1 inhibitors. The most effective treatment was found to be through combinational therapy, with enhanced killing of drug-resistant cells. Theard et al. further assessed the effect of combinational therapy using cells kept in two different ways. Cancer cells were either grown in a two-dimensional format, with cells forming a single cell layer, or in a three-dimensional format, where cells were multi-layered and grew on top of each other as self-aggregating spheroids. Combinational therapy treatment was only successful when the cells where grown in a three-dimensional format. These findings highlight that future drug development studies should give consideration to the way cells are grown, as it can impact the results. They also provide a steppingstone towards tackling drug resistance in lung cancers that arise from EGFR mutations.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteína SOS1/antagonistas & inhibidores , Acrilamidas/farmacología , Compuestos de Anilina/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Mutación , Proteína SOS1/genética , Transducción de Señal/efectos de los fármacos , Esferoides Celulares
10.
Eur J Med Chem ; 185: 111844, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706640

RESUMEN

Lung cancer is one of the most malignant tumors with the highest morbidity and mortality. Most of them are non-small cell lung cancer (NSCLC). KRASG12C gene mutation is an important driving factor for NSCLC. However, the development of high-affinity inhibitors targeting KRASG12C mutants remains a daunting challenge. Here, we report the design and development of a series of hydrocarbon-stapled peptides containing d-amino acids to mimic the alpha helix of SOS1. D-hydrocarbon-stapled peptides maintain good alpha helix structure and bind to KRASG12C with high affinity. Subsequent anti-proliferation experiments indicated that D-hydrocarbon-stapled peptide 5 inhibited the proliferation of NSCLC H358 cells carrying KRASG12C. However, it showed no significant anti-proliferative effect on KRASG12S-positive A549 cells, suggesting that peptide 5 selectively inhibits KRASG12C-driven tumor cells. D-hydrocarbon-stapled peptide 5 could also cause the cell cycle of H358 cells to arrest in the G2/M phase and induce apoptosis. No significant cell arrest and apoptosis were observed in A549 cells treated by peptide 5. In summary, the introduction of d-amino acids could improve the affinity and cell selectivity of hydrocarbon peptides. We hope that peptides containing D-form amino acids can provide strategies for further optimization of the KRASG12C/SOS1 inhibitor.


Asunto(s)
Aminoácidos/farmacología , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Péptidos/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteína SOS1/antagonistas & inhibidores , Células A549 , Aminoácidos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/metabolismo , Relación Estructura-Actividad
11.
Ophthalmic Genet ; 40(1): 22-28, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30714452

RESUMEN

PURPOSE: The work outlined herein investigated the prognosis value and the potential role son of sevenless homolog 1 (SOS1) played in uveal melanoma (UM). METHODS: We analyzed the mRNA expression level of SOS1 in primary UM cells based on the GSE44295 dataset obtained from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/ ) database. The correlation between SOS1 expression and clinical characteristics were analyzed by Chi-squared (χ2) test. Then we used SOS1 siRNA to downregulate SOS1 expression in M23 cells. The effect of knockdown SOS1 on cell proliferation was studied using the Cell-Counting Kit-8 and colony formation assays. The influence of silencing SOS1 on cell motility was explored using wound-healing assays and transwell assays. In addition, the relationship between SOS1 and the MAPK signaling pathway was analyzed by western blot. RESULTS: Our results demonstrated that the mRNA expression level of SOS1 was markedly upregulated in UM cells (p < 0.001) and correlated with poor prognosis in UM patients (p = 0.015). Moreover, SOS1 mRNA expression level was found to be positively associated with histological-type (p = 0.043) and death (p = 0.012). Knockdown of SOS1 caused an inhibition on M23 cell proliferation, migration, and invasion. Moreover, the phosphorylation levels of MEK and ERK were reduced in UM cells after downregulating SOS1 expression (p < 0.010). CONCLUSION: Our data demonstrated that SOS1 might play a facilitating role in M23 cell growth and motility by regulating the MAPK signaling pathway. Furthermore, the data suggested that SOS1 may serve as an UM predictor of prognosis as well as a therapeutic target.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanoma/patología , Proteína SOS1/metabolismo , Neoplasias de la Úvea/patología , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Femenino , Estudios de Seguimiento , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Persona de Mediana Edad , Pronóstico , ARN Interferente Pequeño/genética , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(7): 2551-2560, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30683722

RESUMEN

Since the late 1980s, mutations in the RAS genes have been recognized as major oncogenes with a high occurrence rate in human cancers. Such mutations reduce the ability of the small GTPase RAS to hydrolyze GTP, keeping this molecular switch in a constitutively active GTP-bound form that drives, unchecked, oncogenic downstream signaling. One strategy to reduce the levels of active RAS is to target guanine nucleotide exchange factors, which allow RAS to cycle from the inactive GDP-bound state to the active GTP-bound form. Here, we describe the identification of potent and cell-active small-molecule inhibitors which efficiently disrupt the interaction between KRAS and its exchange factor SOS1, a mode of action confirmed by a series of biophysical techniques. The binding sites, mode of action, and selectivity were elucidated using crystal structures of KRASG12C-SOS1, SOS1, and SOS2. By preventing formation of the KRAS-SOS1 complex, these inhibitors block reloading of KRAS with GTP, leading to antiproliferative activity. The final compound 23 (BAY-293) selectively inhibits the KRAS-SOS1 interaction with an IC50 of 21 nM and is a valuable chemical probe for future investigations.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteína SOS1/antagonistas & inhibidores , Línea Celular , Cristalografía por Rayos X , Descubrimiento de Drogas , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/química , Proteína SOS1/metabolismo , Transducción de Señal
13.
Chem Biol ; 21(12): 1618-28, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25455859

RESUMEN

Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, was found to bind to SOS1, competitively suppress SOS1-Ras interaction, and dose-dependently inhibit SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity.


Asunto(s)
Diseño de Fármacos , Proteína SOS1/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Mutagénesis , Proteína SOS1/química , Proteína SOS1/genética , Proteína SOS1/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
14.
Chem Biol ; 21(12): 1599-600, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525987

RESUMEN

Inhibition of Ras-stimulating enzymes is a possible avenue to treat Ras-driven diseases. In this issue of Chemistry & Biology, Evelyn and coworkers report an inhibitor for one such enzyme, Sos1, capable of impairing wild-type Ras signaling in cells.


Asunto(s)
Diseño de Fármacos , Proteína SOS1/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Humanos
15.
Annu Rev Pharmacol Toxicol ; 54: 435-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24160698

RESUMEN

Protein-protein interactions (PPIs) are critical regulatory events in physiology and pathology, and they represent an important target space for pharmacological intervention. However, targeting PPIs with small molecules is challenging owing to the large surface area involved in protein-protein binding and the lack of obvious small-molecule-binding pockets at many protein-protein interfaces. Nonetheless, successful examples of small-molecule modulators of PPIs have been growing in recent years. This article reviews some of the recent advances in the discovery of small-molecule regulators of PPIs that involve key oncogenic proteins. Our discussion focuses on the three key modes of action for these small-molecule modulators: orthosteric inhibition, allosteric regulation, and interfacial binding/stabilization. Understanding the opportunities and challenges of these diverse mechanisms will help guide future efforts in developing small-molecule modulators against PPIs.


Asunto(s)
Terapia Molecular Dirigida , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas Portadoras/agonistas , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/genética , Proteína SOS1/metabolismo , Hormonas Tiroideas/agonistas , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas de Unión a Hormona Tiroide
16.
Proc Natl Acad Sci U S A ; 107(8): 3430-5, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133692

RESUMEN

Membrane-bound Ras is activated by translocation of the Son of Sevenless (SOS) protein to the plasma membrane. SOS is inactive unless Ras is bound to an allosteric site on SOS, and the Dbl homology (DH) and Pleckstrin homology (PH) domains of SOS (the DH-PH unit) block allosteric Ras binding. We showed previously that the activity of SOS at the membrane increases with the density of PIP(2) and the local concentration of Ras-GTP, which synergize to release the DH-PH unit. Here we present a new crystal structure of SOS that contains the N-terminal histone domain in addition to the DH-PH unit and the catalytic unit (SOS(HDFC), residues 1-1049). The structure reveals that the histone domain plays a dual role in occluding the allosteric site and in stabilizing the autoinhibitory conformation of the DH-PH unit. Additional insight is provided by kinetic analysis of the activation of membrane-bound Ras by mutant forms of SOS that contain mutations in the histone and the PH domains (E108K, C441Y, and E433K) that are associated with Noonan syndrome, a disease caused by hyperactive Ras signaling. Our results indicate that the histone domain and the DH-PH unit are conformationally coupled, and that the simultaneous engagement of the membrane by a PH domain PIP(2)-binding interaction and electrostatic interactions between a conserved positively charged patch on the histone domain and the negatively charged membrane coincides with a productive reorientation of SOS at the membrane and increased accessibility of both Ras binding sites on SOS.


Asunto(s)
Proteína SOS1/química , Regulación Alostérica , Secuencia de Aminoácidos , Cristalografía por Rayos X , Histonas/metabolismo , Humanos , Estructura Terciaria de Proteína , Proteína SOS1/agonistas , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/genética
17.
Proc Natl Acad Sci U S A ; 107(8): 3436-40, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133694

RESUMEN

Regulated activation of Ras by receptor tyrosine kinases (RTK) constitutes a key transduction step in signaling processes that control an array of fundamental cellular functions including proliferation, differentiation, and survival. The principle mechanism by which Ras is activated down stream of RTKs involves the stimulation of guanine nucleotide exchange by the ubiquitous guanine nucleotide exchange factor Son of sevenless (Sos). In resting conditions, Sos activity is constrained by intramolecular interactions that maintain the protein in an autoinhibited conformation. Structural, biochemical, and genetic studies have implicated the histone domain (Sos-H), which comprises the most N-terminal region of Sos, in the regulation of Sos autoinhibition. However, the molecular underpinnings of this regulatory function are not well understood. In the present study we demonstrate that Sos-H possesses in vitro and in vivo membrane binding activity that is mediated, in part, by the interactions between a cluster of basic residues and phosphatidic acid. This interaction is required for Sos-dependent activation of Ras following EGF stimulation. The inducible association of Sos-H with membranes contributes to the catalytic activity of Sos by forcing the domain to adopt a conformation that destabilizes the autoinhibitory state. Thus, Sos-H plays a critical role in governing the catalytic output of Sos through the coupling of membrane recruitment to the release of autoinhibition.


Asunto(s)
Histonas/metabolismo , Proteína SOS1/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Catálisis , Cristalografía por Rayos X , Humanos , Estructura Terciaria de Proteína , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/química
18.
J Biol Chem ; 282(28): 20245-55, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17510059

RESUMEN

Mutation of human SOS1 is responsible for hereditary gingival fibromatosis type 1, a benign overgrowth condition of the gingiva. Here, we investigated molecular mechanisms responsible for the increased rate of cell proliferation in gingival fibroblasts caused by mutant SOS1 in vitro. Using ectopic expression of wild-type and mutant SOS1 constructs, we found that truncated SOS1 could localize to the plasma membrane, without growth factor stimuli, leading to sustained activation of Ras/MAPK signaling. Additionally, we observed an increase in the magnitude and duration of ERK signaling in hereditary gingival fibromatosis gingival fibroblasts that was associated with phosphorylation of retinoblastoma tumor suppressor protein and the up-regulation of cell cycle regulators, including cyclins C, D, and E and the E2F/DP transcription factors. These factors promote cell cycle progression from G(1) to S phase, and their up-regulation may underlie the increased gingival fibroblast proliferation observed. Selective depletion of wild-type and mutant SOS1 through small interfering RNA demonstrates the link between mutation of SOS1, ERK signaling, cell proliferation rate, and the expression levels of Egr-1 and proliferating cell nuclear antigen. These findings elucidate the mechanisms for gingival overgrowth mediated by SOS1 gene mutation in humans.


Asunto(s)
Fibroblastos/metabolismo , Fibromatosis Gingival/metabolismo , Fase G1 , Sistema de Señalización de MAP Quinasas , Fase S , Proteína SOS1/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patología , Células Cultivadas , Ciclinas/biosíntesis , Factores de Transcripción E2F/biosíntesis , Proteína 1 de la Respuesta de Crecimiento Precoz/biosíntesis , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/patología , Fibromatosis Gingival/genética , Fibromatosis Gingival/patología , Fase G1/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Fosforilación , Antígeno Nuclear de Célula en Proliferación/biosíntesis , Antígeno Nuclear de Célula en Proliferación/genética , Procesamiento Proteico-Postraduccional/genética , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Fase S/genética , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/genética , Regulación hacia Arriba/genética
19.
Oncogene ; 21(13): 2037-50, 2002 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-11960376

RESUMEN

Protein-protein interactions play critical regulatory roles in mediating signal transduction. Previous studies have identified an unconventional, small-molecule, Src signal transduction inhibitor, UCS15A. UCS15A differed from conventional Src-inhibitors in that it did not alter the levels or the tyrosine kinase activity of Src. Our studies suggested that UCS15A exerted its Src-inhibitory effects by a novel mechanism that involved the disruption of protein-protein interactions mediated by Src. In the present study we have examined the ability of UCS15A to disrupt the interaction of Src-SH3 with Sam68, both in vivo and in vitro. This ability of UCS15A was not restricted to Src-SH3 mediated protein-protein interactions, since the drug was capable of disrupting the in vivo interactions of Sam68 with other SH3 domain containing proteins such as Grb2 and PLCgamma. In addition, UCS15A was capable of disrupting other typical SH3-mediated protein-protein interactions such as Grb2-Sos1, cortactin-ZO1, as well as atypical SH3-mediated protein-protein interactions such as Grb2-Gab1. However, UCS15A was unable to disrupt the non-SH3-mediated protein-protein interactions of beta-catenin, with E-cadherin and alpha-catenin. In addition, UCS15A had no effect on the SH2-mediated interaction between Grb2 and activated Epidermal Growth Factor receptor. Thus, the ability of UCS15A, to disrupt protein-protein interactions appeared to be restricted to SH3-mediated protein-protein interactions. In this regard, UCS15A represents the first example of a non-peptide, small molecule agent capable of disrupting SH3-mediated protein-protein interactions. In vitro analyses suggested that UCS15A did not bind to the SH3 domain itself but rather may interact directly with the target proline-rich domains.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Benzaldehídos/farmacología , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Transactivadores , Dominios Homologos src , Proteína Tirosina Quinasa CSK , Cadherinas/metabolismo , Línea Celular , Cortactina , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Proteína Adaptadora GRB2 , Humanos , Immunoblotting , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/metabolismo , Fosfolipasa C gamma , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Proteínas/química , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/química , Proteína SOS1/metabolismo , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/metabolismo , Proteína de la Zonula Occludens-1 , alfa Catenina , beta Catenina , Familia-src Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...