Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Exp Neurol ; 377: 114812, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729551

RESUMEN

Ischemic stroke induces a debilitating neurological insult, where inflammatory processes contribute greatly to the expansion and growth of the injury. Receptor-interacting protein kinase 2 (RIPK2) is most well-known for its role as the obligate kinase for NOD1/2 pattern recognition receptor signaling and is implicated in the pathology of various inflammatory conditions. Compared to a sham-operated control, ischemic stroke resulted in a dramatic increase in the active, phosphorylated form of RIPK2, indicating that RIPK2 may be implicated in the response to stroke injury. Here, we assessed the effects of pharmacological inhibition of RIPK2 to improve post-stroke outcomes in mice subjected to experimental ischemic stroke. We found that treatment at the onset of reperfusion with a RIPK2 inhibitor, which inhibits the phosphorylation and activation of RIPK2, resulted in marked improvements in post-stroke behavioral outcomes compared to the vehicle-administered group assessed 24 h after stroke. RIPK2 inhibitor-treated mice exhibited dramatic reductions in infarct volume, concurrent with reduced damage to the blood-brain barrier, as evidenced by reduced levels of active matrix metalloproteinase-9 (MMP-9) and leakage of blood-borne albumin in the ipsilateral cortex. To explore the protective mechanism of RIPK2 inhibition, we next pretreated mice with RIPK2 inhibitor or vehicle and examined transcriptomic alterations occurring in the ischemic brain 6 h after stroke. We observed a dramatic reduction in neuroinflammatory markers in the ipsilateral cortex of the inhibitor-treated group while also attaining a comprehensive view of the vast transcriptomic alterations occurring in the brain with inhibitor treatment through bulk RNA-sequencing of the injured cortex. Overall, we provide significant novel evidence that RIPK2 may represent a viable target for post-stroke pharmacotherapy and potentially other neuroinflammatory conditions.


Asunto(s)
Accidente Cerebrovascular Isquémico , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Animales , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/antagonistas & inhibidores , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Ratones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Masculino
2.
Front Immunol ; 15: 1374368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715616

RESUMEN

NOD1 and NOD2 as two representative members of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family play important roles in antimicrobial immunity. However, transcription mechanism of nod1 and nod2 and their signal circle are less understood in teleost fish. In this study, with the cloning of card9 and ripk2 in Chinese perch, the interaction between NOD1, NOD2, and CARD9 and RIPK2 were revealed through coimmunoprecipitation and immunofluorescence assays. The overexpression of NOD1, NOD2, RIPK2 and CARD9 induced significantly the promoter activity of NF-κB, IFNh and IFNc. Furthermore, it was found that nod1 and nod2 were induced by poly(I:C), type I IFNs, RLR and even NOD1/NOD2 themselves through the ISRE site of their proximal promoters. It is thus indicated that nod1 and nod2 can be classified also as ISGs due to the presence of ISRE in their proximal promoter, and their expression can be mechanistically controlled through PRR pathway as well as through IFN signaling in antiviral immune response.


Asunto(s)
Proteínas de Peces , Proteína Adaptadora de Señalización NOD1 , Proteína Adaptadora de Señalización NOD2 , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Transducción de Señal , Animales , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Percas/genética , Percas/inmunología , Percas/metabolismo , Interferones/metabolismo , Interferones/genética , Regiones Promotoras Genéticas , Transcripción Genética , Inmunidad Innata/genética , Unión Proteica
3.
J Immunol ; 212(11): 1791-1806, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629918

RESUMEN

RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.


Asunto(s)
Proteína Adaptadora de Señalización NOD2 , Peptidoglicano , Animales , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Adaptadora de Señalización NOD2/inmunología , Proteína Adaptadora de Señalización NOD2/genética , Peptidoglicano/metabolismo , Peptidoglicano/inmunología , Proteínas de Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Carpas/inmunología , Ratones , Unión Proteica , Transducción de Señal/inmunología , Humanos , Secuencias de Aminoácidos , Pez Cebra/inmunología
4.
J Stroke Cerebrovasc Dis ; 33(6): 107689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527567

RESUMEN

OBJECTIVES: Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, which still lacks effective therapeutic agents. Shikonin possesses anti-inflammatory and neuroprotective properties. However, its underlying mechanism remains elusive. This study aimed to investigate whether Shikonin confers protection against cerebral ischemia/reperfusion (I/R) injury by modulating microglial polarization and elucidate the associated mechanisms. METHODS: This study employed an oxygen-glucose deprivation and reoxygenation (OGD/R) BV2 microglial cellular model and a middle cerebral artery occlusion/reperfusion (MCAO/R) animal model to investigate the protection and underlying mechanism of Shikonin against ischemic stroke. RESULTS: The results demonstrated that Shikonin treatment significantly reduced brain infarction volume and improved neurological function in MCAO/R rats. Simultaneously, Shikonin treatment significantly reduced microglial proinflammatory phenotype and levels of proinflammatory markers (inducible-NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and IL-6), increased microglial anti-inflammatory phenotype and levels of anti-inflammatory markers (Arginase-1 (Arg1), transforming growth factor-beta (TGF-ß), and IL-10), reversed the expression of Nucleotide-binding oligomerization domain 2 (NOD2) and phosphorylation receptor interacting protein 2 (p-RIP2), and suppressed nuclear factor kappa-B (NF-κB) signaling activation in the ischemic penumbra regions. These effects of Shikonin were further corroborated in OGD/R-treated BV2 cells. Furthermore, overexpression of NOD2 markedly attenuated the neuroprotective effects of Shikonin treatment in MCAO/R rats. NOD2 overexpression also attenuated the regulatory effects of Shikonin on neuroinflammation, microglial polarization, and NF-κB signaling activation. CONCLUSION: This study illustrates that Shikonin mitigates inflammation mediated by microglial proinflammatory polarization by inhibiting the NOD2/RIP2/NF-κB signaling pathway, thereby exerting a protective role. The findings uncover a potential molecular mechanism for Shikonin in treating ischemic stroke.


Asunto(s)
Antiinflamatorios , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Mediadores de Inflamación , Microglía , FN-kappa B , Naftoquinonas , Fármacos Neuroprotectores , Proteína Adaptadora de Señalización NOD2 , Ratas Sprague-Dawley , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Daño por Reperfusión , Transducción de Señal , Animales , Naftoquinonas/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Masculino , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Antiinflamatorios/farmacología , Mediadores de Inflamación/metabolismo , Línea Celular , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Fenotipo , Citocinas/metabolismo
5.
Bioorg Med Chem Lett ; 97: 129567, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008339

RESUMEN

In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.


Asunto(s)
Inflamación , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Transducción de Señal , Humanos , Inflamación/tratamiento farmacológico , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/antagonistas & inhibidores , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
6.
J Neuroinflammation ; 20(1): 281, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012669

RESUMEN

BACKGROUND: Inflammatory response triggered by innate immunity plays a pivotal element in the progress of ischemic stroke. Receptor-interacting kinase 2 (RIP2) is implicated in maintaining immunity homeostasis and regulating inflammatory response. However, the underlying mechanism of RIP2 in ischemic stroke is still not well understood. Hence, the study investigated the role and the ubiquitination regulatory mechanism of RIP2 in ischemic stroke. METHODS: Focal cerebral ischemia was introduced by middle cerebral artery occlusion (MCAO) in wild-type (WT) and OTUD1-deficient (OTUD1-/-) mice, oxygen glucose deprivation and reoxygenation (OGD/R) models in BV2 cells and primary cultured astrocytes were performed for monitoring of experimental stroke. GSK2983559 (GSK559), a RIP2 inhibitor was intraventricularly administered 30 min before MCAO. Mice brain tissues were collected for TTC staining and histopathology. Protein expression of RIP2, OTUD1, p-NF-κB-p65 and IκBα was determined by western blot. Localization of RIP2 and OTUD1 was examined by immunofluorescence. The change of IL-1ß, IL-6 and TNF-α was detected by ELISA assay and quantitative real-time polymerase chain reaction. Immunoprecipitation and confocal microscopy were used to study the interaction of RIP2 and OTUD1. The activity of NF-κB was examined by dual-luciferase assay. RESULTS: Our results showed upregulated protein levels of RIP2 and OTUD1 in microglia and astrocytes in mice subjected to focal cerebral ischemia. Inhibition of RIP2 by GSK559 ameliorated the cerebral ischemic outcome by repressing the NF-κB activity and the inflammatory response. Mechanistically, OTUD1 interacted with RIP2 and sequentially removed the K63-linked polyubiquitin chains of RIP2, thereby inhibiting NF-κB activation. Furthermore, OTUD1 deficiency exacerbated cerebral ischemic injury in response to inflammation induced by RIP2 ubiquitination. CONCLUSIONS: These findings suggested that RIP2 mediated cerebral ischemic lesion via stimulating inflammatory response, and OTUD1 ameliorated brain injury after ischemia through inhibiting RIP2-induced NF-κB activation by specifically cleaving K63-linked ubiquitination of RIP2.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteasas Ubiquitina-Específicas , Animales , Ratones , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Daño por Reperfusión/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
7.
J Med Chem ; 66(21): 14391-14410, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37857324

RESUMEN

Receptor interacting serine/threonine protein kinase 2 (RIPK2) is a downstream signaling molecule essential for the activation of several innate immune receptors, including the NOD-like receptors (NOD1 and NOD2). Recognition of pathogen-associated molecular pattern proteins by NOD1/2 leads to their interaction with RIPK2, which induces release of pro-inflammatory cytokines through the activation of NF-κB and MAPK pathways, among others. Thus, RIPK2 has emerged as a key mediator of intracellular signal transduction and represents a new potential therapeutic target for the treatment of various conditions, including inflammatory diseases and cancer. In this Perspective, first, an overview of the mechanisms that underlie RIPK2 function will be presented along with its role in several diseases. Then, the existing inhibitors that target RIPK2 and different therapeutic strategies will be reviewed, followed by a discussion on current challenges and outlook.


Asunto(s)
Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Transducción de Señal , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , FN-kappa B/metabolismo , Citocinas/metabolismo , Proteína Adaptadora de Señalización NOD1 , Proteína Adaptadora de Señalización NOD2/metabolismo
8.
FEBS J ; 290(22): 5295-5312, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37488967

RESUMEN

The human Nod-like receptor protein NOD1 is a well-described pattern-recognition receptor (PRR) with diverse functions. NOD1 associates with F-actin and its protein levels are upregulated in metastatic cancer cells. A hallmark of cancer cells is their ability to migrate, which involves actin remodelling. Using chemotaxis and wound healing assays, we show that NOD1 expression correlated with the migration rate and chemotactic index in the cervical carcinoma cell line HeLa. The effect of NOD1 in cell migration was independent of the downstream kinase RIPK2 and NF-ĸB activity. Additionally, NOD1 negatively regulated the phosphorylation status of cofilin, which inhibits actin turnover. Co-immunoprecipitation assays identified HCLS1-associated protein X-1 (HAX-1) as a previously unknown interaction partner of NOD1. Silencing of HAX-1 expression reduced the migration behaviour to similar levels as NOD1 knockdown, and simultaneous knockdown of NOD1 and HAX-1 showed no additive effect, suggesting that both proteins act in the same pathway. In conclusion, our data revealed an important role of the PRR NOD1 in regulating cell migration as well as chemotaxis in human cervical cancer cells and identified HAX-1 as a protein that interacts with NOD1 and is involved in this signalling pathway.


Asunto(s)
Actinas , FN-kappa B , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Actinas/metabolismo , Transducción de Señal , Movimiento Celular , Células HeLa , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
9.
Microbiol Spectr ; 11(4): e0111523, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37306596

RESUMEN

Although the immunomodulatory potency of bacterial membrane vesicles (MVs) is widely acknowledged, their interactions with host cells and the underlying signaling pathways have not been well studied. Herein, we provide a comparative analysis of the proinflammatory cytokine profile secreted by human intestinal epithelial cells exposed to MVs derived from 32 gut bacteria. In general, outer membrane vesicles (OMVs) from Gram-negative bacteria induced a stronger proinflammatory response than MVs from Gram-positive bacteria. However, the quality and quantity of cytokine induction varied between MVs from different species, highlighting their unique immunomodulatory properties. OMVs from enterotoxigenic Escherichia coli (ETEC) were among those showing the strongest proinflammatory potency. In depth analyses revealed that the immunomodulatory activity of ETEC OMVs relies on a so far unprecedented two-step mechanism, including their internalization into host cells followed by intracellular recognition. First, OMVs are efficiently taken up by intestinal epithelial cells, which mainly depends on caveolin-mediated endocytosis as well as the presence of the outer membrane porins OmpA and OmpF on the MVs. Second, lipopolysaccharide (LPS) delivered by OMVs is intracellularly recognized by novel caspase- and RIPK2-dependent pathways. This recognition likely occurs via detection of the lipid A moiety as ETEC OMVs with underacylated LPS exhibited reduced proinflammatory potency but similar uptake dynamics compared to OMVs derived from wild-type (WT) ETEC. Intracellular recognition of ETEC OMVs in intestinal epithelial cells is pivotal for the proinflammatory response as inhibition of OMV uptake also abolished cytokine induction. The study signifies the importance of OMV internalization by host cells to exercise their immunomodulatory activities. IMPORTANCE The release of membrane vesicles from the bacterial cell surface is highly conserved among most bacterial species, including outer membrane vesicles (OMVs) from Gram-negative bacteria as well as vesicles liberated from the cytoplasmic membrane of Gram-positive bacteria. It is becoming increasingly evident that these multifactorial spheres, carrying membranous, periplasmic, and even cytosolic content, contribute to intra- and interspecies communication. In particular, gut microbiota and the host engage in a myriad of immunogenic and metabolic interactions. This study highlights the individual immunomodulatory activities of bacterial membrane vesicles from different enteric species and provides new mechanistic insights into the recognition of ETEC OMVs by human intestinal epithelial cells.


Asunto(s)
Escherichia coli Enterotoxigénica , Humanos , Escherichia coli Enterotoxigénica/metabolismo , Lipopolisacáridos/metabolismo , Intestinos , Bacterias/metabolismo , Citocinas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
10.
Exp Cell Res ; 429(1): 113644, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211186

RESUMEN

Colon cancer is a cancer with high morbidity and mortality worldwide. Receptor interacting serine/threonine kinase 2 (RIPK2) has been identified as a proto-oncogene, but its role in colon cancer is largely unknown. Herein, we found that RIPK2 interference could inhibit the proliferation and invasion of colon cancer cells, and promote apoptosis. Baculoviral IAP repeat containing 3 (BIRC3) is an E3 ubiquitin ligase, which was found highly expressed in colon cancer cells. Co-immunoprecipitation (Co-IP) experiments showed that RIPK2 could directly bind with BIRC3. Then, we demonstrated that RIPK2 overexpression promoted the expression of BIRC3, BIRC3 interference could eliminate RIPK2-dependent cell proliferation and invasion, and BIRC3 overexpression rescued the suppressive effect of RIPK2 interference on cell proliferation and invasion. We further identified IKBKG, an inhibitor of nuclear factor kappa B, as a ubiquitination substrate targeted by BIRC3. IKBKG interference could eliminate the inhibitory effect of BIRC3 interference on cell invasion. RIPK2 could promote BIRC3-mediated ubiquitination of IKBKG, inhibit the expression of IKBKG protein, and promote the expression of NF-κB subunits p50 and p65 proteins. In addition, DLD-1 cells transfected with sh-RIPK2 or/and sh-BIRC3 were injected into mice to establish a tumor xenograft model, and we found that administration of sh-RIPK2 or sh-BIRC3 impeded the growth of xenograft tumors in vivo, and co-administration displayed a better inhibitory effect. In general, RIPK2 promotes the progression of colon cancer by promoting BIRC3-mediated ubiquitination of IKBKG and activating the NF-κB signaling pathway.


Asunto(s)
Neoplasias del Colon , FN-kappa B , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Ubiquitinación , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Colon/genética , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/genética , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo
11.
Int Immunopharmacol ; 118: 110128, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37023697

RESUMEN

Receptor Interacting Serine/Threonine Kinase 2 (RIPK2) is an essential regulator of the inflammatory process and immune response. In innate immunity, the NOD-RIPK2 signaling axis is an important pathway that directly mediates inflammation and immune response. In adaptive immunity, RIPK2 may affect T cell proliferation, differentiation and cellular homeostasis thereby involving T cell-driven autoimmunity, but the exact mechanism remains unclear. Recent advances suggest a key role of RIPK2 in diverse autoimmune diseases (ADs) such as inflammatory bowel diseases, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and Behcet's disease. This review aims to provide valuable therapeutic direction for ADs by focusing on the function and modulation of RIPK2 in innate and adaptive immunity, its involvement with various ADs and the application of RIPK2-related drugs in ADs. We raise the notion that drug targeting RIPK2 could be a promising therapeutic strategy for the treatment of ADs, though much work remains to be done for clinical application.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Humanos , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Inflamación/tratamiento farmacológico , Inmunidad Innata , Transducción de Señal
12.
Eur J Pharmacol ; 947: 175679, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36967078

RESUMEN

PURPOSE: RIP2 is a member of the receptor-interacting protein family that has been associated with various pathophysiological processes, including immunity, apoptosis, and autophagy. However, no studies have hitherto reported the role of RIP2 in lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM). This study was designed to illustrate the role of RIP2 in LPS-induced SCM. METHODS: C57 and RIP2 knockout mice received intraperitoneal injections of LPS to establish models of SCM. Echocardiography was used to assess the cardiac function of the mice. Real-time-PCR, cytometric bead array and immunohistochemical staining were used to detect the inflammatory response. Immunoblotting was used to determine the protein expression of relevant signaling pathways. Our findings were validated by treatment with a RIP2 inhibitor. Neonatal rats cardiomyocytes (NRCMs) and cardiac fibroblasts (CFs) were transfected with Ad-RIP2 to further explore the role of RIP2 in vitro. RESULTS: RIP2 expression was upregulated in our mice models of septic cardiomyopathy and LPS-stimulated cardiomyocytes and fibroblasts. RIP2 knockout or RIP2 inhibitors attenuated LPS-induced cardiac dysfunction and reduced the inflammatory response in mice. Overexpression of RIP2 in vitro enhanced the inflammatory response, and TAK1 inhibitors attenuated the inflammatory response caused by overexpression of RIP2. CONCLUSION: Our findings substantiate that RIP2 induces an inflammatory response by regulating the TAK1/IκBα/NF-κB signaling pathway. RIP2 inhibition by genetic or pharmacological approaches has huge prospects for application as a potential treatment strategy for inhibiting inflammation, alleviating cardiac dysfunction, and improving survival.


Asunto(s)
Cardiomiopatías , Lipopolisacáridos , Ratones , Ratas , Animales , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Cardiomiopatías/inducido químicamente , Cardiomiopatías/tratamiento farmacológico , Ratones Noqueados
13.
J Enzyme Inhib Med Chem ; 38(1): 282-293, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36408835

RESUMEN

Receptor-interacting protein kinase 2 (RIPK2) is an essential protein kinase mediating signal transduction by NOD1 and NOD2, which play an important role in regulating immune signalling. In this study, we designed and synthesised a novel series of 4-aminoquinoline-based derivatives as RIPK2 inhibitors. In vitro, compound 14 exhibited high affinity (IC50 = 5.1 ± 1.6 nM) and excellent selectivity to RIPK2 showing in a dendrogram view of the human kinome phylogenetic tree. Bearing favourable lipophilicity and eligible lipophilic ligand efficiency (LipE), compound 14 was selected to investigate cellular anti-inflammatory effect and was identified as a potent inhibitor to reduce the secretion of MDP-induced TNF-α with a dose-dependent manner. Moreover, compound 14 showed moderate stability in human liver microsome. Given these promising results, compound 14 could serve as a favourable inhibitor of RIPK2 for further physiological and biochemical research so as to be used in therapeutic treatment.


Asunto(s)
Aminoquinolinas , Inflamación , Humanos , Filogenia , Inflamación/tratamiento farmacológico , Aminoquinolinas/farmacología , Transducción de Señal , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/farmacología
14.
Bioorg Med Chem ; 69: 116916, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792403

RESUMEN

Microglia-induced neuroinflammation plays a critical role in neurological diseases. At present, RIPK2 is considered to participate in inflammatory and autoimmune cellular pathways and diseases. RIPK2 is found to be a pivotal therapeutic target in neurologic disorders related to inflammation. In our research, we discovered the protective function of tunicatachalcone (TC) against neuroinflammation. TC is a natural chalcone compound derived from Pongamia pinnata, a medicinal plant. The results revealed that TC (5-20 µM) ameliorated the activation of BV-2 microglia induced by lipopolysaccharide (LPS) in a dose-dependent way, which was proved by the reduced production of inflammation-related mediators. By using SPR-LC-MS/MS analysis, we revealed the potent inhibitory function of TC against neuroinflammation mediated by microglia via targeting RIPK2. A strong binding between TC and RIPK2 was further demonstrated based on the results of SPR, MST and molecular modeling. Through applying mRNA transcriptomics and bioinformatics analysis, it was demonstrated that TC could mediate RIPK2-dependent gene transcription to exert the neuroprotective effect. In summary, our research presented that RIPK2 was a possible therapeutic target of TC.


Asunto(s)
Productos Biológicos , Microglía , Productos Biológicos/farmacología , Cromatografía Liquida , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/farmacología , Espectrometría de Masas en Tándem
15.
Neurosci Lett ; 783: 136743, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35716964

RESUMEN

Meningitis occurs when S. pneumonia invade the blood-brain barrier, provoking inflammatory host response and neurological injury. Nucleotide-binding oligomerization domain 2 (NOD2) has been identified to promote microglial activation and autophagy during pneumococcal meningitis, but the mechanism remains unclear. In the present study, we investigated the passway of NOD2-mediated autophagy activation and the role of autophagy in inflammatory damage of murine microglia and mouse meningitis model. We demonstrated that autophagy was activated during S. pneumonia infection, and NOD2-RIP2 signaling was involved in the process. Treatment of microglia with GSK583, the RIP2 kinase inhibitor resulted in reduced autophagy-related protein and p-ULK1, indicating that RIP2 regulated autophagy in a kinase-dependent manner by phosphorylating ULK1. In addition, microglia with ULK1 knockdown exhibited enhanced production of ROS, leading to IL-1ß and IL-18 release and cellular pyroptosis. Similar to the in vitro results, NOD2-RIP2 signaling induced autophagy in the brain in a mouse meningitis model. Moreover, ULK1 or RIP2 silencing significantly increased pyroptosis of brain and induced more inflammatory damage of pneumococcal meningitis mice. Taken together, our study demonstrate that NOD2-RIP2 signaling is involved in the activation of autophagy by promoting ULK1 phosphorylation, which alleviates microglial ROS damage and pyroptosis during S. pneumonia infection.


Asunto(s)
Meningitis Neumocócica , Neumonía , Animales , Autofagia , Meningitis Neumocócica/metabolismo , Ratones , Microglía/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Neumonía/metabolismo , Piroptosis , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Streptococcus/metabolismo
16.
Methods Mol Biol ; 2523: 133-150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35759195

RESUMEN

The receptor-interacting serine/threonine-protein kinase-2 (RIPK2, RIP2) is a key player in downstream signaling of nuclear oligomerization domain (NOD)-like receptor (NLR)-mediated innate immune response against bacterial infections. RIPK2 is recruited following activation of the pattern recognition receptors (PRRs) NOD1 and NOD2 by sensing bacterial peptidoglycans leading to activation of NF-κB and MAPK pathways and the production of pro-inflammatory cytokines. Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells, also called RIPosomes. These can be induced by Shigella flexneri or by the inhibition of RIPK2 by small compounds, such as GSK583 and gefitinib.In this chapter, we describe fluorescent light microscopic and Western blot approaches to analyze the cytoplasmic aggregation of RIPK2 upon infection with the invasive, Gram-negative bacterial pathogen Shigella flexneri, or by the treatment with RIPK2 inhibitors. This method is based on HeLa cells stably expressing eGFP-tagged RIPK2 and describes a protocol to induce and visualize RIPosome formation. The described method is useful to study the deposition of RIPK2 in speck-like structures, also in living cells, using live cell imaging and can be adopted for the study of other inhibitory proteins or to further analyze the process of RIPosome structure assembly.


Asunto(s)
FN-kappa B , Transducción de Señal , Citocinas/metabolismo , Células HeLa , Humanos , Inmunidad Innata , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
17.
Ann Rheum Dis ; 81(10): 1465-1473, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35732460

RESUMEN

OBJECTIVES: How inflammatory signalling contributes to osteoarthritis (OA) susceptibility is undetermined. An allele encoding a hyperactive form of the Receptor Interacting Protein Kinase 2 (RIPK2) proinflammatory signalling intermediate has been associated with familial OA. To test whether altered nucleotide-binding oligomerisation domain (NOD)/RIPK2 pathway activity causes heightened OA susceptibility, we investigated whether variants affecting additional pathway components are associated with familial OA. To determine whether the Ripk2104Asp disease allele is sufficient to account for the familial phenotype, we determined the effect of the allele on mice. METHODS: Genomic analysis of 150 independent families with dominant inheritance of OA affecting diverse joints was used to identify coding variants that segregated strictly with occurrence of OA. Genome editing was used to introduce the OA-associated RIPK2 (p.Asn104Asp) allele into the genome of inbred mice. The consequences of the Ripk2104Asp disease allele on physiology and OA susceptibility in mice were measured by histology, immunohistochemistry, serum cytokine levels and gene expression. RESULTS: We identified six novel variants affecting components of the NOD/RIPK2 inflammatory signalling pathway that are associated with familial OA affecting the hand, shoulder or foot. The Ripk2104Asp allele acts dominantly to alter basal physiology and response to trauma in the mouse knee. Whereas the knees of uninjured Ripk2Asp104 mice appear normal histologically, the joints exhibit a set of marked gene expression changes reminiscent of overt OA. Although the Ripk2104Asp mice lack evidence of chronically elevated systemic inflammation, they do exhibit significantly increased susceptibility to post-traumatic OA (PTOA). CONCLUSIONS: Two types of data support the hypothesis that altered NOD/RIPK2 signalling confers susceptibility to OA.


Asunto(s)
Osteoartritis , Alelos , Animales , Citocinas/metabolismo , Inflamación/genética , Ratones , Osteoartritis/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Transducción de Señal/genética
18.
Cell Death Dis ; 13(5): 502, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618701

RESUMEN

Sepsis is characterized by systemic inflammation, it's caused by primary infection of pathogenic microorganisms or secondary infection of damaged tissue. In this study, we focus on sepsis-induced intestine barrier functional disturbalice, presenting as increased permeability of intestinal epithelium. We observed that the phenotype of LPS-induced sepsis was exacerbated in Card9-/- mice, especially displaying more serious intestinal inflammation and gut barrier dysfunction. Next, we found the hyperactivation of NLRP3 inflammasome in the intestinal macrophages of Card9-/--sepsis mice. Moreover, Card9 over-expression decreased NLRP3 inflammasome activation in macrophages. Furthermore, we found that Card9 inhibited NLRP3 inflammasome activation by recruiting Ripk2. The competitive binding between Ripk2 with Caspase-1, instead of ASC with Caspase-1, inhibited the NLRP3 inflammasome activation. Over-expression of Ripk2 alleviated septic intestinal injury caused by Card9 deficiency. Taken together, we suggested Card9 acts as a negative regulation factor of NLRP3 inflammasome activation, which protects against intestinal damage during sepsis. Therefore, maintaining Card9-Ripk2 signaling homeostasis may provide a novel therapy of septic intestinal damage.


Asunto(s)
Inflamasomas , Sepsis , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Sepsis/metabolismo
19.
Mol Med ; 28(1): 47, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508972

RESUMEN

BACKGROUND: Receptor-interacting protein kinase 2 (RIPK2, also known as RIP2) was reported to be associated with bacterial infections as well as inflammatory responses. However, the role of RIPK2 in prognosis and immunotherapy response is yet to be elucidated in human pan-cancer. METHODS: In this study, we investigated the expression, gene alteration landscape and prognostic value of RIPK2 in 33 cancers through various databases including Ualcan, cBioportal and Gene Expression Profiling Interactive Analysis 2 (GEPIA2). Then, the correlation between RIPK2 and immune infiltration, immune score, stromal score, and ESTIMATE score was investigated in the Cancer Genome Atlas (TCGA) and tumor immune estimation resource (TIMER) databases. Independent cohorts were utilized to explore the role of RIPK2 in tumor immunotherapy response. Furthermore, Gene set enrichment analysis (GSEA) was conducted to explore the mechanisms by which RIPK2 regulates immune therapy resistance. Single-cell RNA-seq datasets were used to analyze the expression level of RIPK2 on different immune cells. Moreover, CellMiner database was used to explore the relationship between RIPK2 expression with drug response. RESULT: Compared with normal tissue, tumor tissue had a higher expression level of RIPK2 in various cancers. Survival analysis showed that high expression of RIPK2 associated with poor prognosis in numerous cancers. RIPK2 was found to promote a series of immune cell infiltration and B cells, macrophages, and neutrophils were significantly positively correlated with the expression of RIPK2. Moreover, RIPK2 affected immune score, stromal score and ESTIMATE score for a wide range of cancers. In the vast majority of 33 cancers, gene co-expression analysis showed that RIPK2 was positively correlated with the expression of immune checkpoint markers, such as PDCD1 (PD-1), CD274 (PD-L1), CTLA4 and TIGIT. RIPK2 aggravated cytotoxic T lymphocyte (CTL) dysfunction and related to the poor efficacy of immune checkpoint blockade in skin cutaneous melanoma (SKCM) and kidney renal clear cell carcinoma (KIRC). High expression of RIPK2 promoted innate immunotherapy resistance and adaptive immunotherapy resistance through IL-6/JAK/STAT3 signaling, interferon-gamma response, and interferon-alpha response pathway. CONCLUSIONS: These results confirmed that RIPK2 could serve as a prognostic biomarker and promoted immune therapy resistance via triggering cytotoxic T lymphocytes dysfunction.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Melanoma , Neoplasias Cutáneas , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Femenino , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Masculino , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/patología , Melanoma Cutáneo Maligno
20.
Clin Immunol ; 238: 108998, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398286

RESUMEN

Deciphering signaling pathways that regulate the complex interplay between inflammation and cell death is a key challenge in understanding innate immune responses. Over recent years, receptor interacting protein (RIP) kinases have been described to regulate the interplay between inflammation and cell death. Whereas RIP1 and 3, the most well described members of the RIP kinase family, play important roles in necroptosis, RIP2's involvement in regulating inflammation, cell death processes and cancer is less well described and controversially discussed. Here, we demonstrate that RIP2 exerts immune regulatory functions by regulating mitochondrial damage and mitochondrial superoxide production in response to SV40 LT-induced genotoxic stress by the induction of ULK1-phosphorylation, therefore regulating the expression of interferon stimulated genes (ISGs) and NLRP3-inflammasome dependent IL-1ß release. Because RIP2 is upregulated and/or activated in autoimmune/inflammatory disease and cancer, observations from this study promise implications of RIP kinases in human disease.


Asunto(s)
Inflamación , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Daño del ADN , Homeostasis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA