Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 94, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013194

RESUMEN

T-Cell Protein Tyrosine Phosphatase (TCPTP, PTPN2) is a non-receptor type protein tyrosine phosphatase that is ubiquitously expressed in human cells. TCPTP is a critical component of a variety of key signaling pathways that are directly associated with the formation of cancer and inflammation. Thus, understanding the molecular mechanism of TCPTP activation and regulation is essential for the development of TCPTP therapeutics. Under basal conditions, TCPTP is largely inactive, although how this is achieved is poorly understood. By combining biomolecular nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and chemical cross-linking coupled with mass spectrometry, we show that the C-terminal intrinsically disordered tail of TCPTP functions as an intramolecular autoinhibitory element that controls the TCPTP catalytic activity. Activation of TCPTP is achieved by cellular competition, i.e., the intrinsically disordered cytosolic tail of Integrin-α1 displaces the TCPTP autoinhibitory tail, allowing for the full activation of TCPTP. This work not only defines the mechanism by which TCPTP is regulated but also reveals that the intrinsically disordered tails of two of the most closely related PTPs (PTP1B and TCPTP) autoregulate the activity of their cognate PTPs via completely different mechanisms.


Asunto(s)
Integrina alfa1/química , Proteínas Intrínsecamente Desordenadas/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Clonación Molecular , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Integrina alfa1/genética , Integrina alfa1/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
2.
Biochemistry ; 60(51): 3856-3867, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34910875

RESUMEN

The T-cell protein tyrosine phosphatase (TCPTP/PTPN2) targets a broad variety of substrates across different subcellular compartments. In spite of that, the structural basis for the regulation of TCPTP's activity remains elusive. Here, we investigated whether the activity of TCPTP is regulated by a potential allosteric site in a comparable manner to its most similar PTP family member (PTP1B/PTPN1). We determined two crystal structures of TCPTP at 1.7 and 1.9 Å resolutions that include helix α7 at the TCPTP C-terminus. Helix α7 has been functionally characterized in PTP1B and was identified as its allosteric switch. However, its function is unknown in TCPTP. Here, we demonstrate that truncation or deletion of helix α7 reduced the catalytic efficiency of TCPTP by ∼4-fold. Collectively, our data supports an allosteric role of helix α7 in regulation of TCPTP's activity, similar to its function in PTP1B, and highlights that the coordination of helix α7 with the core catalytic domain is essential for the efficient catalytic function of TCPTP.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Regulación Alostérica , Sitio Alostérico/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Fenómenos Biofísicos , Dominio Catalítico/genética , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica en Hélice alfa , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
3.
Biochemistry ; 60(4): 254-258, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450156

RESUMEN

Allosteric regulation enables dynamic adjustments to protein function that permit tight control over cellular biochemistry. Discrepancies in the allosteric systems of related proteins can thus reveal important differences in their susceptibilities to influential stimuli (e.g., allosteric ligands, mutations, or post-translational modifications). This study uses an optogenetic actuator as a tool to compare the allosteric systems of two structurally related regulatory proteins: protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). It begins with an interesting observation: The fusion of a protein light switch to the allosterically influential α7 helix of PTP1B permits optical modulation of its catalytic activity, but a similar fusion to TCPTP does not. A subsequent analysis of different PTP chimeras shows that replacing regions of TCPTP with homologous regions from PTP1B can enhance photocontrol; as TCPTP becomes more "PTP1B-like", its photosensitivity increases. Interestingly, the structural changes required for photocontrol also enhance the sensitivity of TCPTP to other allosteric inputs, notably, an allosteric inhibitor and a newly reported activating mutation. Our findings indicate that the allosteric functionality of the α7 helix of PTP1B is not conserved across the PTP family and highlight residues necessary to transfer this functionality to other PTPs. More broadly, our results suggest that simple gene fusion events can strengthen allosteric communication within individual protein domains and describe an intriguing application for optogenetic actuators as structural probes-a sort of physically disruptive "ratchet"-for studying protein allostery.


Asunto(s)
Optogenética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Regulación Alostérica , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética
4.
Mol Pharmacol ; 96(2): 297-306, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31221825

RESUMEN

Etoposide is a widely prescribed anticancer drug that is, however, associated with an increased risk of secondary leukemia. Although the molecular basis underlying the development of these leukemias remains poorly understood, increasing evidence implicates the interaction of etoposide metabolites [i.e., etoposide quinone (EQ)] with topoisomerase II enzymes. However, effects of etoposide quinone on other cellular targets could also be at play. We investigated whether T-cell protein tyrosine phosphatase (TCPTP), a protein tyrosine phosphatase that plays a key role in normal and malignant hematopoiesis through regulation of Janus kinase/signal transducer and activator of transcription signaling, could be a target of EQ. We report here that EQ is an irreversible inhibitor of TCPTP phosphatase (IC50 = ∼7 µM, second-order rate inhibition constant of ∼810 M-1⋅min-1). No inhibition was observed with the parent drug. The inhibition by EQ was found to be due to the formation of a covalent adduct at the catalytic cysteine residue in the active site of TCPTP. Exposure of human hematopoietic cells (HL60 and Jurkat) to EQ led to inhibition of endogenous TCPTP and concomitant increase in STAT1 tyrosine phosphorylation. Our results suggest that in addition to alteration of topoisomerase II functions, EQ could also contribute to etoposide-dependent leukemogenesis through impairment of key hematopoietic signaling enzymes, such as TCPTP.


Asunto(s)
Etopósido/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Quinonas/farmacología , Sitios de Unión , Dominio Catalítico , Cisteína/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Células Jurkat , Fosforilación/efectos de los fármacos , Quinonas/química , Factor de Transcripción STAT1/metabolismo
5.
Bioorg Chem ; 88: 102900, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30991192

RESUMEN

A series of imidazole flavonoids as new type of protein tyrosine phosphatase inhibitors were synthesized and characterized. Most of them gave potent protein phosphatase 1B (PTP1B) inhibitory activities. Especially, compound 11a could effectively inhibit PTP1B with an IC50 value of 0.63 µM accompanied with high selectivity ratio (9.5-fold) over T-cell protein tyrosine phosphatase (TCPTP). This compound is cell permeable with relatively low cytotoxicity. The high binding affinity and selectivity was disclosed by molecular modeling and dynamics studies. The structural features essential for activity were confirmed by quantum chemical studies.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Imidazoles/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Pruebas de Enzimas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Flavonoides/síntesis química , Flavonoides/metabolismo , Flavonoides/toxicidad , Células HEK293 , Humanos , Imidazoles/síntesis química , Imidazoles/metabolismo , Imidazoles/toxicidad , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo
6.
Biomed Res Int ; 2019: 9852897, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30729132

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) is considered a potential target for the treatment of type II diabetes and obesity due to its critical negative role in the insulin signaling pathway. However, improving the selectivity of PTP1B inhibitors over the most closely related T-cell protein tyrosine phosphatase (TCPTP) remains a major challenge for inhibitor development. Lys120 at the active site and Ser27 at the second pTyr binding site are distinct in PTP1B and TCPTP, which may bring differences in binding affinity. To explore the determinant of selective binding of inhibitor, molecular dynamics simulations with binding free energy calculations were performed on K120A and A27S mutated PTP1B, and the internal changes induced by mutations were investigated. Results reveal that the presence of Lys120 induces a conformational change in the WPD-loop and YRD-motif and has a certain effect on the selective binding at the active site. Ser27 weakens the stability of the inhibitor at the second pTyr binding site by altering the orientation of the Arg24 and Arg254 side chains via hydrogen bonds. Further comparison of alanine scanning demonstrates that the reduction in the energy contribution of Arg254 caused by A27S mutation leads to a different inhibitory activity. These observations provide novel insights into the selective binding mechanism of PTP1B inhibitors to TCPTP.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores Enzimáticos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Sitios de Unión , Dominio Catalítico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Enlace de Hidrógeno , Insulina/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Unión Proteica , Conformación Proteica/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
7.
J Biomol Struct Dyn ; 37(14): 3697-3706, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30238851

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator in insulin signaling pathways, is regarded as a potential target for the treatment of type II diabetes and obesity. However, the mechanism underlying the selectivity of PTP1B inhibitors against T-cell protein tyrosine phosphatase (TCPTP) remains controversial, which is due to the high similarity between PTP1B and TCPTP sequence and the fact that no ligand-protein complex of TCPTP has been established yet. Here, the accelerated molecular dynamics (aMD) method was used to investigate the structural dynamics of PTP1B and TCPTP that are bound by two chemically similar inhibitors with distinct selectivity. The conformational transitions during the "open" to "close" states of four complexes were captured, and free energy profiles of important residue pairs were analyzed in detail. Additional MM-PBSA calculations confirmed that the binding free energies of final states were consistent with the experimental results, and the energetic contributions of important residues were further investigated by alanine scanning mutagenesis. By comparing the four complexes, the different conformational behavior of WPD-loop, R-loop, and the second pTyr binding site induced by inhibitors were featured and found to be crucial for the selectivity of inhibitors. This study provides new mechanistic insights of specific binding of inhibitors to PTP1B and TCPTP, which can be exploited to the further structural-based inhibitor design. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Sitios de Unión , Mutagénesis/genética , Fosforilación , Análisis de Componente Principal , Estructura Secundaria de Proteína , Termodinámica , Tirosina/metabolismo
8.
J Med Chem ; 61(24): 11144-11157, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30525586

RESUMEN

Celastrol is a natural pentacyclic triterpene used in traditional Chinese medicine with significant weight-lowering effects. Celastrol-administered mice at 100 µg/kg decrease food consumption and body weight via a leptin-dependent mechanism, yet its molecular targets in this pathway remain elusive. Here, we demonstrate in vivo that celastrol-induced weight loss is largely mediated by the inhibition of leptin negative regulators protein tyrosine phosphatase (PTP) 1B (PTP1B) and T-cell PTP (TCPTP) in the arcuate nucleus (ARC) of the hypothalamus. We show in vitro that celastrol binds reversibly and inhibits noncompetitively PTP1B and TCPTP. NMR data map the binding site to an allosteric site in the catalytic domain that is in proximity of the active site. By using a panel of PTPs implicated in hypothalamic leptin signaling, we show that celastrol additionally inhibited PTEN and SHP2 but had no activity toward other phosphatases of the PTP family. These results suggest that PTP1B and TCPTP in the ARC are essential for celastrol's weight lowering effects in adult obese mice.


Asunto(s)
Fármacos Antiobesidad/farmacología , Obesidad/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Triterpenos/farmacología , Sitio Alostérico , Animales , Fármacos Antiobesidad/metabolismo , Dominio Catalítico , Dieta Alta en Grasa/efectos adversos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones Transgénicos , Obesidad/etiología , Triterpenos Pentacíclicos , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/metabolismo , Pérdida de Peso/efectos de los fármacos
9.
J Chem Inf Model ; 58(4): 837-847, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29608303

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B), a promising target for type II diabetes, obesity, and cancer therapeutics, plays an important negative role in insulin signaling pathways. However, the lack of selectivity over other PTPs, especially for T-cell protein tyrosine phosphatase (TCPTP), is still a challenge for inhibitor development. Recent studies have suggested that the second phosphotyrosine (pTyr) binding site, close to the catalytic domain, may elevate binding affinity while bringing selectivity to inhibitors. Inspired by these studies, a virtual screening method based on a bidentate strategy was employed to identify novel selective inhibitors of PTP1B. Targeting both the active site and the second pTyr binding site of PTP1B, three compounds (CD00466, JFD02943, JFD02945) were found to be competitive inhibitors ( Ki range from 1.79 to 10.49 µM). The most effective compound, CD00466, exhibited selectivity over TCPTP (31-fold). Using molecular dynamics simulation and the MM/GBSA binding free energy calculation, this study confirmed that the three inhibitors bound to PTP1B in a bidentate pattern. Our work indicates that bidentate virtual screening is a potential approach to the further investigation of selective PTP1B inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Termodinámica , Interfaz Usuario-Computador
10.
Diabetes ; 67(3): 360-371, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29233935

RESUMEN

Peroxisome proliferator-activated receptor (PPAR) δ plays a pivotal role in metabolic homeostasis through its effect on insulin signaling. Although diverse genomic actions of PPARδ are postulated, the specific molecular mechanisms whereby PPARδ controls insulin signaling have not been fully elucidated. We demonstrate here that short-term activation of PPARδ results in the formation of a stable complex with nuclear T-cell protein tyrosine phosphatase 45 (TCPTP45) isoform. This interaction of PPARδ with TCPTP45 blocked translocation of TCPTP45 into the cytoplasm, thereby preventing its interaction with the insulin receptor, which inhibits insulin signaling. Interaction of PPARδ with TCPTP45 blunted interleukin 6-induced insulin resistance, leading to retention of TCPTP45 in the nucleus, thereby facilitating deactivation of the signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3) signal. Finally, GW501516-activated PPARδ improved insulin signaling and glucose intolerance in mice fed a high-fat diet through its interaction with TCPTP45. This novel interaction of PPARδ constitutes the most upstream component identified of the mechanism downregulating insulin signaling.


Asunto(s)
Intolerancia a la Glucosa/prevención & control , Hepatocitos/efectos de los fármacos , Resistencia a la Insulina , Obesidad/tratamiento farmacológico , PPAR delta/agonistas , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Tiazoles/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/inmunología , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Empalme Alternativo , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Línea Celular , Células Cultivadas , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/inmunología , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Masculino , Ratones Endogámicos ICR , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/inmunología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Obesidad/metabolismo , Obesidad/patología , Obesidad/fisiopatología , PPAR delta/antagonistas & inhibidores , PPAR delta/genética , PPAR delta/metabolismo , Multimerización de Proteína/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Organismos Libres de Patógenos Específicos , Tiazoles/uso terapéutico
11.
Mol Cell ; 53(5): 752-65, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24530303

RESUMEN

Impaired phosphatase activity contributes to the persistent activation of STAT3 in tumors. Given that STAT family members with various or even opposite functions are often phosphorylated or dephosphorylated by the same enzymes, the mechanism for STAT3-specific dephosphorylation in cells remains largely unknown. Here, we report that GdX (UBL4A) promotes STAT3 dephosphorylation via mediating the interaction between TC45 (the nuclear isoform of TC-PTP) and STAT3 specifically. GdX stabilizes the TC45-STAT3 complex to bestow upon STAT3 an efficient dephosphorylation by TC45. Inasmuch, GdX suppresses tumorigenesis and tumor development by reducing the level of phospho-STAT3 (p-STAT3), whereas deletion of GdX results in a high level of p-STAT3 and accelerated colorectal tumorigenesis induced by AOM/DSS. Thus, GdX converts TC45, a nonspecific phosphatase, into a STAT3-specific phosphatase by bridging an association between TC45 and STAT3.


Asunto(s)
Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Factor de Transcripción STAT3/química , Ubiquitinas/química , Animales , Células COS , Transformación Celular Neoplásica , Chlorocebus aethiops , Citocinas/metabolismo , Fibroblastos/metabolismo , Eliminación de Gen , Humanos , Células MCF-7 , Melanoma Experimental , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Trasplante de Neoplasias , Fosforilación , Unión Proteica , Ubiquitinas/genética
12.
Methods ; 65(2): 239-46, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23994241

RESUMEN

For years, the two main isoforms of PTPN2 have been an interesting yet academic topic of debate for researchers working on this phosphatase. In recent years, several studies were published in which these isoforms were attributed specific functions. Most importantly, differences in their stoichiometry have been reported to be associated with certain diseases such as inflammatory bowel diseases (IBDs). Hence, understanding the evolutionary ontogeny of the main transcripts and the physiological consequences of their expression have now become clinically relevant issues. Herein we describe the genomic controls placed upon PTPN2, the identified splice variants, the encoded PTPN2 proteins, and both the known and putative post-translational modifications that have been reported. Moreover, we examine the expression of PTPN2 isoforms in specific tissues as well as in a disease setting. PTPN2 is an important negative regulator of inflammation. Therefore, the following protocols are effective approaches for its adequate monitoring in inflammatory diseases' progression and outcome.


Asunto(s)
Biomarcadores/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Animales , Biomarcadores/análisis , Dominio Catalítico , Enfermedad de Crohn/diagnóstico , Evolución Molecular , Humanos , Ratones , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Linfocitos T/metabolismo
13.
Biochim Biophys Acta ; 1834(10): 1988-97, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23856547

RESUMEN

T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1ß1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation. By combining several molecular modeling and biochemical techniques, we demonstrate that α1-peptide and mitoxantrone activate TCPTP via direct binding to the catalytic domain, whereas spermidine does not interact with the catalytic domain of TCPTP in vitro. Furthermore, we have identified a hydrophobic groove surrounded by negatively charged residues on the surface of TCPTP as a putative binding site for the α1-peptide and mitoxantrone. Importantly, these data have allowed us to identify a new molecule that binds to TCPTP, but interestingly cannot activate its phosphatase activity. Accordingly, we describe here mechanism of TCPTP activation by mitoxantrone, the cytoplasmic tail of α1-integrin, and a mitoxantrone-like molecule at the atomic level. These data provide invaluable insight into the development of novel TCPTP activators, and may facilitate the rational discovery of small-molecule cancer therapeutics.


Asunto(s)
Antineoplásicos/química , Integrina alfa1beta1/química , Mitoxantrona/química , Péptidos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Bibliotecas de Moléculas Pequeñas/química , Espermidina/química , Bases de Datos de Proteínas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Electricidad Estática , Termodinámica
14.
PLoS One ; 6(8): e23681, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21876762

RESUMEN

The guanine nucleotide exchange factor, C3G (RapGEF1), functions in multiple signaling pathways involved in cell adhesion, proliferation, apoptosis and actin reorganization. C3G is regulated by tyrosine phosphorylation on Y504, known to be mediated by c-Abl and Src family kinases. In the present study we explored the possibility of cellular phospho-C3G (pC3G) being a substrate of the intracellular T-cell protein tyrosine phosphatase TC-PTP (PTPN2) using the human neuroblastoma cell line, IMR-32. In vivo and in vitro binding assays demonstrated interaction between C3G and TC-PTP. Interaction is mediated through the Crk-binding region of C3G and C-terminal noncatalytic residues of TC-PTP. C3G interacted better with a substrate trap mutant of TC48 and this complex formation was inhibited by vanadate. Endogenous pC3G colocalized with catalytically inactive mutant TC48 in the Golgi. Expression of TC48 abrogated pervanadate and c-Src induced phosphorylation of C3G without affecting total cellular phospho-tyrosine. Insulin-like growth factor treatment of c-Src expressing cells resulted in dephosphorylation of C3G dependent on the activity of endogenous TC48. TC48 expression inhibited forskolin induced tyrosine phosphorylation of C3G and neurite outgrowth in IMR-32 cells. Our results identify a novel Golgi localized substrate of TC48 and delineate a role for TC48 in dephosphorylation of substrates required during differentiation of human neuroblastoma cells.


Asunto(s)
Diferenciación Celular , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Neuroblastoma/enzimología , Neuroblastoma/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Colforsina/farmacología , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Factor 2 Liberador de Guanina Nucleótido/química , Células HEK293 , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Relación Estructura-Actividad , Vanadatos/farmacología , Familia-src Quinasas/metabolismo
15.
Biometals ; 24(6): 993-1004, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21618062

RESUMEN

A series of copper complexes with multi-benzimidazole derivatives, including mono- and di-nuclear, were synthesized and characterized by Fourier transform IR spectroscopy, UV-Vis spectroscopy, elemental analysis, electrospray ionization mass spectrometry. The speciation of Cu/NTB in aqueous solution was investigated by potentiometric pH titrations. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) were evaluated in vitro. The five copper complexes exhibit potent inhibition against PTP1B, TCPTP and PTP-MEG2 with almost same inhibitory effects with IC(50) at submicro molar level and about tenfold weaker inhibition versus SHP-1, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Fluorescence study on the interaction between PTP1B and complex 2 or 4 suggests that the complexes bind to PTP1B with the formation of a 1:1 complex. The binding constant are about 1.14 × 10(6) and 1.87 × 10(6) M(-1) at 310 K for 2 and 4, respectively.


Asunto(s)
Bencimidazoles/química , Bencimidazoles/metabolismo , Cobre/química , Cobre/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Bencimidazoles/síntesis química , Inhibidores Enzimáticos/síntesis química , Humanos , Estructura Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 6/química , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Análisis Espectral/métodos , Relación Estructura-Actividad
16.
Blood ; 117(26): 7090-8, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21551237

RESUMEN

We have recently reported inactivation of the tyrosine phosphatase PTPN2 (also known as TC-PTP) through deletion of the entire gene locus in ∼ 6% of T-cell acute lymphoblastic leukemia (T-ALL) cases. T-ALL is an aggressive disease of the thymocytes characterized by the stepwise accumulation of chromosomal abnormalities and gene mutations. In the present study, we confirmed the strong association of the PTPN2 deletion with TLX1 and NUP214-ABL1 expression. In addition, we found cooperation between PTPN2 deletion and activating JAK1 gene mutations. Activating mutations in JAK1 kinase occur in ∼ 10% of human T-ALL cases, and aberrant kinase activity has been shown to confer proliferation and survival advantages. Our results reveal that some JAK1 mutation-positive T-ALLs harbor deletions of the tyrosine phosphatase PTPN2, a known negative regulator of the JAK/STAT pathway. We provide evidence that down-regulation of Ptpn2 sensitizes lymphoid cells to JAK1-mediated transformation and reduces their sensitivity to JAK inhibition.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Janus Quinasa 1/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Linfocitos T/metabolismo , Adulto , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica , Niño , Hibridación Genómica Comparativa , Femenino , Eliminación de Gen , Silenciador del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/química , Janus Quinasa 1/genética , Masculino , Persona de Mediana Edad , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño , Adulto Joven
17.
BMC Cancer ; 10: 7, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20055993

RESUMEN

BACKGROUND: T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the alpha-cytoplasmic tail of alpha1beta1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. METHODS: We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRbeta and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. RESULTS: From the screen we identified six TCPTP agonists. Two compounds competed with alpha1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to alpha1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRbeta and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. CONCLUSIONS: In this study we showed that small molecules mimicking TCPTP-alpha1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening to identify small molecule PTP activators that could function as RTK antagonists in cells.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Endotelio Vascular/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Integrina alfa1beta1/metabolismo , Ratones , Mitoxantrona/farmacología , Neovascularización Patológica , Fosforilación , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/química , Transducción de Señal , Espermidina/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
J Chem Inf Model ; 48(10): 2030-41, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18831546

RESUMEN

Bidentate inhibitors of protein tyrosine phosphatase 1B (PTP1B) are considered as a group of ideal inhibitors with high binding potential and high selectivity in treating type II diabetes. In this paper, the binding models of five bidentate inhibitors to PTP1B, TCPTP, and SHP-2 were investigated and compared by using molecular dynamics (MD) simulations and free energy calculations. The binding free energies were computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology. The calculation results show that the predicted free energies of the complexes are well consistent with the experimental data. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicates that the residues ARG24, ARG254, and GLN262 in the second binding site of PTP1B are essential for the high selectivity of inhibitors. Furthermore, the residue PHE182 close to the active site is also important for the selectivity and the binding affinity of the inhibitors. According to our analysis, it can be concluded that in most cases the polarity of the portion of the inhibitor that binds to the second binding site of the protein is positive to the affinity of the inhibitors while negative to the selectivity of the inhibitors. We expect that the information we obtained here can help to develop potential PTP1B inhibitors with more promising specificity.


Asunto(s)
Simulación por Computador , Transferencia de Energía , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Análisis de los Mínimos Cuadrados , Modelos Moleculares , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Relación Estructura-Actividad
19.
Biochemistry ; 47(15): 4491-500, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18358001

RESUMEN

Small molecules that can be used to turn off the activities of specific cellular proteins are essential tools for chemical biology. Few such compounds are known, however, and they are particularly difficult to identify for members of large protein families. Here, we present a method for insertion of a chemical "off switch" into a catalytically essential loop region (the "WPD loop") of a protein tyrosine phosphatase (PTP). Using a combination of point mutations and amino acid insertions, we have engineered variants of T-cell PTP (TCPTP) that possess cysteine-rich WPD loops. The engineered WPD loops, which contain sequences that appear in no wild-type PTP, confer upon TCPTP the ability to bind a cell-permeable small molecule (the biarsenical fluorescein derivative, FlAsH) that is not an inhibitor of wild-type PTPs. We have identified sites in TCPTP's WPD loop that can be modified to display FlAsH-binding cysteine residues without disrupting TCPTP's inherent PTP activity, as assayed with either small-molecule or phosphorylated-peptide PTP substrates. Upon addition of the FlAsH ligand, however, the activities of the mutants drop dramatically. Inhibition of the FlAsH-sensitized TCPTP mutants is rapid and specific; and strong FlAsH sensitivity was observed in mutants that contain as few as two cysteine point mutations in their engineered WPD loops. Our results show that relatively conservative substitutions can be used to engineer precise small-molecule control of PTP activity. Moreover, since all known classical PTPs utilize the WPD-loop mechanism targeted in this study, it is likely that a substantial fraction of the PTP superfamily can be sensitized through an analogous approach.


Asunto(s)
Inhibidores Enzimáticos/química , Fluoresceínas/química , Compuestos Organometálicos/química , Ingeniería de Proteínas/métodos , Proteína Tirosina Fosfatasa no Receptora Tipo 2/química , Catálisis , Cisteína/genética , Mutagénesis Insercional , Fosfopéptidos/metabolismo , Mutación Puntual , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...