Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; 12(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436433

RESUMEN

Most antimicrobials currently in the clinical pipeline are modifications of existing classes of antibiotics and are considered short-term solutions due to the emergence of resistance. Pseudomonas aeruginosa represents a major challenge for new antimicrobial drug discovery due to its versatile lifestyle, ability to develop resistance to most antibiotic classes, and capacity to form robust biofilms on surfaces and in certain hosts such as those living with cystic fibrosis (CF). A precision antibiotic approach to treating Pseudomonas could be achieved with an antisense method, specifically by using peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs). Here, we demonstrate that PPMOs targeting acpP (acyl carrier protein), lpxC (UDP-(3-O-acyl)-N-acetylglucosamine deacetylase), and rpsJ (30S ribosomal protein S10) inhibited the in vitro growth of several multidrug-resistant clinical P. aeruginosa isolates at levels equivalent to those that were effective against sensitive strains. Lead PPMOs reduced established pseudomonal biofilms alone or in combination with tobramycin or piperacillin-tazobactam. Lead PPMO dosing alone or combined with tobramycin in an acute pneumonia model reduced lung bacterial burden in treated mice at 24 h and reduced morbidity up to 5 days postinfection. PPMOs reduced bacterial burden of extensively drug-resistant P. aeruginosa in the same model and resulted in superior survival compared to conventional antibiotics. These data suggest that lead PPMOs alone or in combination with clinically relevant antibiotics represent a promising therapeutic approach for combating P. aeruginosa infections.IMPORTANCE Numerous Gram-negative bacteria are becoming increasingly resistant to multiple, if not all, classes of existing antibiotics. Multidrug-resistant Pseudomonas aeruginosa bacteria are a major cause of health care-associated infections in a variety of clinical settings, endangering patients who are immunocompromised or those who suffer from chronic infections, such as people with cystic fibrosis (CF). Herein, we utilize antisense molecules that target mRNA of genes essential to bacterial growth, preventing the formation of the target proteins, including acpP, rpsJ, and lpxC We demonstrate here that antisense molecules targeted to essential genes, alone or in combination with clinically relevant antibiotics, were effective in reducing biofilms and protected mice in a lethal model of acute pneumonia.


Asunto(s)
Antibacterianos/farmacología , Morfolinos/farmacología , Péptidos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Proteína Transportadora de Acilo/efectos de los fármacos , Administración por Inhalación , Amidohidrolasas/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Farmacorresistencia Bacteriana , Femenino , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Proteínas Ribosómicas/efectos de los fármacos
2.
Biochim Biophys Acta ; 1123(2): 191-7, 1992 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-1310877

RESUMEN

Acyl Carrier Protein (ACP) is a small acidic protein which interacts with the various enzymes implicated in the biosynthesis of fatty acids in E. coli. It also interacts with the inner membrane proteins implicated in the biosynthesis of phospholipids. Samples of radioactive ACP were prepared with high specific activities and bearing photoactivable aryl azide derivatives. Two photoactivable reagents were used: para azido phenacyl bromide (pAPA) which reacts with the SH of the ACP prosthetic group and the N-hydroxysuccinimide ester of 4-azido salicylic acid (NHS-ASA) which reacts with the amino groups of the protein. Various methods were used to demonstrate that ACP could be cross-linked specifically to an inner membrane protein of E. coli, most probably to the glycerol-3-phosphate acyl transferase (GPAT). This covalent link should provide a powerful tool for further analysis of the structure of GPAT and its role in phospholipid biosynthesis. These photoactivable aryl azide derivatives of ACP could also be very useful for studying the interaction of ACP with the soluble enzymes implicated in fatty acid biosynthesis.


Asunto(s)
Proteína Transportadora de Acilo/química , Marcadores de Afinidad , Reactivos de Enlaces Cruzados , Escherichia coli/química , Proteína Transportadora de Acilo/síntesis química , Proteína Transportadora de Acilo/efectos de los fármacos , Membrana Celular/enzimología , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Escherichia coli/enzimología , Radioisótopos de Yodo , Proteínas de la Membrana/química , Receptores de Superficie Celular/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...