Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 643
Filtrar
1.
Open Biol ; 14(5): 240021, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772414

RESUMEN

Core mitochondrial processes such as the electron transport chain, protein translation and the formation of Fe-S clusters (ISC) are of prokaryotic origin and were present in the bacterial ancestor of mitochondria. In animal and fungal models, a family of small Leu-Tyr-Arg motif-containing proteins (LYRMs) uniformly regulates the function of mitochondrial complexes involved in these processes. The action of LYRMs is contingent upon their binding to the acylated form of acyl carrier protein (ACP). This study demonstrates that LYRMs are structurally and evolutionarily related proteins characterized by a core triplet of α-helices. Their widespread distribution across eukaryotes suggests that 12 specialized LYRMs were likely present in the last eukaryotic common ancestor to regulate the assembly and folding of the subunits that are conserved in bacteria but that lack LYRM homologues. The secondary reduction of mitochondria to anoxic environments has rendered the function of LYRMs and their interaction with acylated ACP dispensable. Consequently, these findings strongly suggest that early eukaryotes installed LYRMs in aerobic mitochondria as orchestrated switches, essential for regulating core metabolism and ATP production.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Animales , Evolución Molecular , Eucariontes/metabolismo , Proteína Transportadora de Acilo/metabolismo , Proteína Transportadora de Acilo/genética , Filogenia , Modelos Moleculares , Humanos , Secuencia de Aminoácidos
2.
J Biol Chem ; 300(2): 105600, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38335573

RESUMEN

The condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) by ß-ketoacyl-ACP synthase III (KAS III, FabH) and decarboxylation of malonyl-ACP by malonyl-ACP decarboxylase are the two pathways that initiate bacterial fatty acid synthesis (FAS) in Escherichia coli. In addition to these two routes, we report that Pseudomonas putida F1 ß-ketoacyl-ACP synthase I (FabB), in addition to playing a key role in fatty acid elongation, also initiates FAS in vivo. We report that although two P. putida F1 fabH genes (PpfabH1 and PpfabH2) both encode functional KAS III enzymes, neither is essential for growth. PpFabH1 is a canonical KAS III similar to E. coli FabH whereas PpFabH2 catalyzes condensation of malonyl-ACP with short- and medium-chain length acyl-CoAs. Since these two KAS III enzymes are not essential for FAS in P. putida F1, we sought the P. putida initiation enzyme and unexpectedly found that it was FabB, the elongation enzyme of the oxygen-independent unsaturated fatty acid pathway. P. putida FabB decarboxylates malonyl-ACP and condenses the acetyl-ACP product with malonyl-ACP for initiation of FAS. These data show that P. putida FabB, unlike the paradigm E. coli FabB, can catalyze the initiation reaction in FAS.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Pseudomonas putida , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Proteína Transportadora de Acilo/metabolismo , Escherichia coli/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos , Glucógeno Sintasa , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
3.
J Chem Inf Model ; 64(4): 1347-1360, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38346863

RESUMEN

Incomplete structural details of Mycobacterium tuberculosis (Mtb) fatty acid synthase-I (FAS-I) at near-atomic resolution have limited our understanding of the shuttling mechanism of its mobile acyl carrier protein (ACP). Here, we have performed atomistic molecular dynamics simulation of Mtb FAS-I with a homology-modeled structure of ACP stalled at dehydratase (DH) and identified key residues that mediate anchoring of the recognition helix of ACP near DH. The observed distance between catalytic residues of ACP and DH agrees with that reported for fungal FAS-I. Further, the conformation of the peripheral linker is found to be crucial in stabilizing ACP near DH. Correlated interdomain motion is observed between DH, enoyl reductase, and malonyl/palmitoyl transferase, consistent with prior experimental reports of fungal and Mtb FAS-I.


Asunto(s)
Proteína Transportadora de Acilo , Mycobacterium tuberculosis , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Ácido Graso Sintasas/química , Ácido Graso Sintasas/metabolismo , Simulación de Dinámica Molecular , Catálisis
4.
Angew Chem Int Ed Engl ; 63(4): e202312476, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37856285

RESUMEN

Megasynthases, such as type I fatty acid and polyketide synthases (FASs and PKSs), are multienzyme complexes responsible for producing primary metabolites and complex natural products. Fatty acids (FAs) and polyketides (PKs) are built by assembling and modifying small acyl moieties in a stepwise manner. A central aspect of FA and PK biosynthesis involves the shuttling of substrates between the domains of the multienzyme complex. This essential process is mediated by small acyl carrier proteins (ACPs). The ACPs must navigate to the different catalytic domains within the multienzyme complex in a particular order to guarantee the fidelity of the biosynthesis pathway. However, the precise mechanisms underlying ACP-mediated substrate shuttling, particularly the factors contributing to the programming of the ACP movement, still need to be fully understood. This Review illustrates the current understanding of substrate shuttling, including concepts of conformational and specificity control, and proposes a confined ACP movement within type I megasynthases.


Asunto(s)
Proteína Transportadora de Acilo , Policétidos , Proteína Transportadora de Acilo/metabolismo , Ácidos Grasos , Complejos Multienzimáticos/química , Policétidos/metabolismo , Sintasas Poliquetidas/metabolismo
5.
J Microbiol Biotechnol ; 34(1): 10-16, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-37830242

RESUMEN

The emergence of multi-drug resistant Enterococcus faecalis raises a serious threat to global public health. E. faecalis is a gram-positive intestinal commensal bacterium found in humans. E. faecalis can endure extreme environments such as high temperature, pressure, and high salt, which facilitates them to cause infection in hospitals. E. faecalis has two acyl carrier proteins, AcpA (EfAcpA) in de novo fatty acid synthesis (FAS) and AcpB (EfAcpB) which utilizes exogenous fatty acids. Previously, we determined the tertiary structures of these two ACPs and investigated their structure-function relationships. Solution structures revealed that overall folding of these two ACPs is similar to those of other bacterial ACPs. However, circular dichroism (CD) experiments showed that the melting temperature of EfAcpA is 76.3°C and that of EfAcpB is 79.2°C, which are much higher than those of other bacterial ACPs. In this study, to understand the origin of their structural stabilities, we verified the important residues for stable folding of these two ACPs by monitoring thermal and chemical denaturation. Hydrogen/deuterium exchange and chemical denaturation experiments on wild-type and mutant proteins revealed that Ile10 of EfAcpA and Ile14 of EfAcpB mediate compact intramolecular packing and promote high thermostability and stable folding. E. faecalis may maximize efficiency of FAS and increase adaptability to the environmental stress by having two thermostable ACPs. This study may provide insight into bacterial adaptability and development of antibiotics against multi-drug-resistant E. faecalis.


Asunto(s)
Proteína Transportadora de Acilo , Enterococcus faecalis , Humanos , Enterococcus faecalis/genética , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Antibacterianos/metabolismo , Ácidos Grasos/metabolismo , Pliegue de Proteína , Proteínas Bacterianas/metabolismo
6.
Angew Chem Int Ed Engl ; 63(9): e202315850, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134222

RESUMEN

Modular polyketide synthases (PKSs) are giant assembly lines that produce an impressive range of biologically active compounds. However, our understanding of the structural dynamics of these megasynthases, specifically the delivery of acyl carrier protein (ACP)-bound building blocks to the catalytic site of the ketosynthase (KS) domain, remains severely limited. Using a multipronged structural approach, we report details of the inter-domain interactions after C-C bond formation in a chain-branching module of the rhizoxin PKS. Mechanism-based crosslinking of an engineered module was achieved using a synthetic substrate surrogate that serves as a Michael acceptor. The crosslinked protein allowed us to identify an asymmetric state of the dimeric protein complex upon C-C bond formation by cryo-electron microscopy (cryo-EM). The possible existence of two ACP binding sites, one of them a potential "parking position" for substrate loading, was also indicated by AlphaFold2 predictions. NMR spectroscopy showed that a transient complex is formed in solution, independent of the linker domains, and photochemical crosslinking/mass spectrometry of the standalone domains allowed us to pinpoint the interdomain interaction sites. The structural insights into a branching PKS module arrested after C-C bond formation allows a better understanding of domain dynamics and provides valuable information for the rational design of modular assembly lines.


Asunto(s)
Proteína Transportadora de Acilo , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Microscopía por Crioelectrón , Sitios de Unión , Dominio Catalítico , Proteína Transportadora de Acilo/metabolismo
8.
Biochemistry ; 62(24): 3548-3553, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38039071

RESUMEN

Outside of their involvement in energy production, mitochondria play a critical role for the cell through their access to a discrete pathway for fatty acid biosynthesis. Despite decades of study in bacterial fatty acid synthases (the putative evolutionary mitochondrial precursor), our understanding of human mitochondrial fatty acid biosynthesis remains incomplete. In particular, the role of the key carrier protein, human mitochondrial acyl carrier protein (mACP), which shuttles the substrate intermediates through the pathway, has not been well-studied in part due to challenges in protein expression and purification. Herein, we report a reliable method for recombinant Escherichia coli expression and purification of mACP. Fundamental characteristics, including substrate sequestration and chain-flipping activity, are demonstrated in mACP using solvatochromic response. This study provides an efficient approach toward understanding the fundamental protein-protein interactions of mACP and its partner proteins, ultimately leading to a molecular understanding of human mitochondrial diseases such as mitochondrial fatty acid oxidation deficiencies.


Asunto(s)
Proteína Transportadora de Acilo , Ácidos Grasos , Humanos , Proteína Transportadora de Acilo/metabolismo , Escherichia coli/metabolismo , Ácido Graso Sintasas/química , Ácidos Grasos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo
9.
Biochemistry ; 62(23): 3347-3359, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37967383

RESUMEN

Prokaryotes synthesize fatty acids using a type II synthesis pathway (FAS). In this process, the central player, i.e., the acyl carrier protein (ACP), sequesters the growing acyl chain in its internal hydrophobic cavity. As the acyl chain length increases, the cavity expands in size, which is reflected in the NMR chemical shift perturbations and crystal structures of the acyl-ACP intermediates. A few eukaryotic organelles, such as plastids and mitochondria, also harbor type II fatty acid synthesis machinery. Plastid FAS from spinach and Plasmodium falciparum has been characterized at the molecular level, but the mitochondrial pathway remains unexplored. Here, we report NMR studies of the mitochondrial acyl-acyl carrier protein intermediates of Leishmania major (acyl-LmACP). Our studies show that LmACP experiences remarkably small conformational changes upon acylation, with perturbations confined to helices II and III only. CastP determined that the cavity size of apo-LmACP (PDB entry 5ZWT) is less than that of Escherichia coli ACP (PDB 1T8K). Thus, the small chemical shift perturbations observed in the LmACP intermediates, coupled with CastP results, suggest an unusually small cavity when fully expanded. The faster rate of C8-LmACP chain hydrolysis compared to E. coli ACP (EcACP) also supports these convictions. Structure comparison of LmACP with other type II ACP disclosed unique differences in the helix I and loop I conformations, as well as several residues present there. Numerous hydrophobic residues in helix I and loop I (conserved in all mitochondrial ACPs) are substituted with hydrophilic residues in the bacterial/plastid type II ACP. For instance, Phe and leucine at positions 14 and 34 in LmACP are substituted with a hydrophilic residue and Ala in bacterial/plastid type II ACP. Mutation of Leu 34 to Ala (corresponding residue in EcACP) resulted in a complete loss of structure, underscoring its importance in maintaining the ACP fold. Thus, our NMR studies, combined with insights from the crystal structure, highlight several unique features of LmACP, distinct from the prokaryote and plastid type II ACP. Given the high sequence identity, the features might be conserved in all mitochondrial ACPs.


Asunto(s)
Proteína Transportadora de Acilo , Leishmania major , Proteína Transportadora de Acilo/metabolismo , Leishmania major/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Conformación Molecular
10.
Plant Physiol ; 193(4): 2661-2676, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37658850

RESUMEN

ACYL CARRIER PROTEIN4 (ACP4) is the most abundant ACP isoform in Arabidopsis (Arabidopsis thaliana) leaves and acts as a scaffold for de novo fatty acid biosynthesis and as a substrate for acyl-ACP-utilizing enzymes. Recently, ACP4 was found to interact with a protein-designated plastid RHOMBOID LIKE10 (RBL10) that affects chloroplast monogalactosyldiacylglycerol (MGDG) biosynthesis, but the cellular function of this interaction remains to be explored. Here, we generated and characterized acp4 rbl10 double mutants to explore whether ACP4 and RBL10 directly interact in influencing chloroplast lipid metabolism. Alterations in the content and molecular species of chloroplast lipids such as MGDG and phosphatidylglycerol were observed in the acp4 and rbl10 mutants, which are likely associated with the changes in the size and profiles of diacylglycerol (DAG), phosphatidic acid (PA), and acyl-ACP precursor pools. ACP4 contributed to the size and profile of the acyl-ACP pool and interacted with acyl-ACP-utilizing enzymes, as expected for its role in fatty acid biosynthesis and chloroplast lipid assembly. RBL10 appeared to be involved in the conversion of PA to DAG precursors for MGDG biosynthesis as evidenced by the increased 34:x PA and decreased 34:x DAG in the rbl10 mutant and the slow turnover of radiolabeled PA in isolated chloroplasts fed with [14C] acetate. Interestingly, the impaired PA turnover in rbl10 was partially reversed in the acp4 rbl10 double mutant. Collectively, this study shows that ACP4 and RBL10 affect chloroplast lipid biosynthesis by modulating substrate precursor pools and appear to act independently.


Asunto(s)
Proteína Transportadora de Acilo , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Fosfatidicos/metabolismo , Plastidios/metabolismo , Proteína Transportadora de Acilo/metabolismo
11.
Biomol NMR Assign ; 17(2): 183-188, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37421542

RESUMEN

The N-acyl-L-homoserine lactone (AHL) quorum sensing regulates virulence in the opportunistic pathogen, Pseudomonas aeruginosa. The LasI and RhlI AHL synthases use acyl carrier protein substrates to synthesize, respectively, the 3-oxododecanoyl-L-homoserine lactone (3-oxoC12-HSL) and butyryl-L-homoserine lactone (C4-HSL) QS signals for this bacterium. Although P. aeruginosa genome contains three open reading frames to encode three acyl carrier proteins, namely the ACP1, ACP2 and ACP3, microarray and gene replacement studies show that only the ACP1 carrier protein is under quorum sensing regulation. In this study, we isotopically enriched one of the acyl carrier proteins, ACP1 from P. aeruginosa and describe the backbone resonance assignments for this protein to delineate the structural and molecular basis of ACP1 recognition in P. aeruginosa AHL quorum sensing signal synthesis.


Asunto(s)
Proteína Transportadora de Acilo , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Proteína Transportadora de Acilo/metabolismo , Resonancia Magnética Nuclear Biomolecular , Percepción de Quorum , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/metabolismo
12.
mSphere ; 8(4): e0012023, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37289195

RESUMEN

The Enterococcus faecalis acyl-acyl carrier protein (ACP) phosphate acyltransferase PlsX plays an important role in phospholipid synthesis and exogenous fatty acid incorporation. Loss of plsX almost completely blocks growth by decreasing de novo phospholipid synthesis, which leads to abnormally long-chain acyl chains in the cell membrane phospholipids. The ∆plsX strain failed to grow without supplementation with an appropriate exogenous fatty acid. Introduction of a ∆fabT mutation into the ∆plsX strain to increase fatty acid synthesis allowed very weak growth. The ∆plsX strain accumulated suppressor mutants. One of these encoded a truncated ß-ketoacyl-ACP synthase II (FabO) which restored normal growth and restored de novo phospholipid acyl chain synthesis by increasing saturated acyl-ACP synthesis. Saturated acyl-ACPs are cleaved by a thioesterase to provide free fatty acids for conversion to acyl-phosphates by the FakAB system. The acyl-phosphates are incorporated into position sn1 of the phospholipids by PlsY. We report the tesE gene encodes a thioesterase that can provide free fatty acids. However, we were unable to delete the chromosomal tesE gene to confirm that it is the responsible enzyme. TesE readily cleaves unsaturated acyl-ACPs, whereas saturated acyl-ACPs are cleaved much more slowly. Overexpression of an E. faecalis enoyl-ACP reductase either FabK or FabI which results in high levels of saturated fatty acid synthesis also restored the growth of the ∆plsX strain. The ∆plsX strain grew faster in the presence of palmitic acid than in the presence of oleic acid with improvement in phospholipid acyl chain synthesis. Positional analysis of the acyl chain distribution in the phospholipids showed that saturated acyl chains dominate the sn1-position indicating a preference for saturated fatty acids at this position. High-level production of saturated acyl-ACPs is required to offset the marked preference of the TesE thioesterase for unsaturated acyl-ACPs and allow the initiation of phospholipid synthesis.


Asunto(s)
Enterococcus faecalis , Ácidos Grasos , Enterococcus faecalis/genética , Ácidos Grasos no Esterificados/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fosfolípidos , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Fosfatos/metabolismo
13.
Biomol NMR Assign ; 17(2): 167-171, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37233945

RESUMEN

Acyl carrier proteins (ACPs) are universally conserved proteins amongst different species and are involved in fatty acid synthesis. Bacteria utilize ACPs as acyl carriers and donors for the synthesis of products such as endotoxins or acyl homoserine lactones (AHLs), which are used in quorum sensing mechanisms. In this study, wehave expressed isotopically labeled holo-ACP from Burkholderia mallei in Escherichia coli to assign 100% of non-proline backbone amide (HN) resonances, 95.5% of aliphatic carbon resonances and 98.6% of aliphatic hydrogen sidechain resonances.


Asunto(s)
Proteína Transportadora de Acilo , Burkholderia mallei , Proteína Transportadora de Acilo/metabolismo , Burkholderia mallei/metabolismo , Resonancia Magnética Nuclear Biomolecular , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo
14.
Enzyme Microb Technol ; 168: 110262, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37224590

RESUMEN

Alka(e)nes are high-value chemicals with a potentially broad range of industrial applications because of their following advantages: (1) chemical and structural resemblance to petroleum hydrocarbons and (2) higher energy density and hydrophobicity than those of other biofuels. The low yield of bio-alka(e)nes, however, hinders their commercial application. The activity and solubility of acyl carrier protein (ACP) reductase (AAR) affect alka(e)ne biosynthesis in cyanobacteria. The enhancement of the activity and concentration of soluble AAR through genetic and process engineering can improve bio-alka(e)ne yield. Although fusion tags are used to enhance the expression or solubility of recombinant proteins, their effectiveness in improving the production of bio-alka(e)nes has not yet been reported. Fusion tags can be used to improve the amount or activity of soluble AAR in Escherichia coli and to increase the yield of alka(e)nes in E. coli cells co-expressing aldehyde deformylating oxygenase (ADO). Hence, in the present study, histidine (His6/His12), thioredoxin (Trx), maltose-binding protein (MBP), and N-utilization substance (NusA) were used as AAR fusion tags. The strain expressing SeAAR with His12 tag and NpADO showed a 7.2-fold higher yield of alka(e)nes than the strain expressing AAR without fusion tag and NpADO. The highest titer of alka(e)nes (194.78 mg/L) was achieved with the His12 tag.


Asunto(s)
Escherichia coli , Oxidorreductasas , Oxidorreductasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Alcanos/metabolismo , Oxigenasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad
15.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047837

RESUMEN

Microbial fatty acids are synthesized by Type II fatty acid synthase and could be tailored by acyl-ACP thioesterase. With the prospects of medium-chain fatty-acid-derivative biofuels, the selectivity of thioesterase has been studied to control the fatty acid product chain length. Here, we report an alternative approach by manipulating the acyl carrier protein portion of acyl-ACP to switch the chain length propensity of the thioesterase. It was demonstrated that ChFatB2 from Cuphea hookeriana preferred C10-ACP to C8-ACP with ACP from E. coli, while converting preference to C8-ACP with ACP from Cuphea lanceolate. Circular dichroism (CD) results indicated that the C8-EcACP encountered a 34.4% α-helix increment compared to C10-EcACP, which resulted in an approximate binding affinity decrease in ChFatB2 compared to C10-EcACP. Similarly, the C10-ClACP2 suffered a 45% decrease in helix content compared to C8-ClACP2, and the conformational changes resulted in an 18% binding affinity decline with ChFatB2 compared with C10-ClACP2. In brief, the study demonstrates that the ACP portion of acyl-ACP contributes to the selectivity of acyl-ACP thioesterase, and the conformational changes of EcACP and ClACP2 switch the chain length preference of ChFatB2 between C8 and C10. The result provides fundamentals for the directed synthesis of medium-chain fatty acids based on regulating the conformational changes of ACPs.


Asunto(s)
Proteína Transportadora de Acilo , Escherichia coli , Proteína Transportadora de Acilo/metabolismo , Escherichia coli/metabolismo , Tioléster Hidrolasas/metabolismo , Ácidos Grasos/metabolismo
16.
Metab Eng ; 77: 21-31, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36863604

RESUMEN

The dominant strategy for tailoring the chain-length distribution of free fatty acids (FFA) synthesized by heterologous hosts is expression of a selective acyl-acyl carrier protein (ACP) thioesterase. However, few of these enzymes can generate a precise (greater than 90% of a desired chain-length) product distribution when expressed in a microbial or plant host. The presence of alternative chain-lengths can complicate purification in situations where blends of fatty acids are not desired. We report the assessment of several strategies for improving the dodecanoyl-ACP thioesterase from the California bay laurel to exhibit more selective production of medium-chain free fatty acids to near exclusivity. We demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) was an effective library screening technique for identification of thioesterase variants with favorable shifts in chain-length specificity. This strategy proved to be a more effective screening technique than several rational approaches discussed herein. With this data, we isolated four thioesterase variants which exhibited a more selective FFA distribution over wildtype when expressed in the fatty acid accumulating E. coli strain, RL08. We then combined mutations from the MALDI isolates to generate BTE-MMD19, a thioesterase variant capable of producing free fatty acids consisting of 90% of C12 products. Of the four mutations which conferred a specificity shift, we noted that three affected the shape of the binding pocket, while one occurred on the positively charged acyl carrier protein landing pad. Finally, we fused the maltose binding protein (MBP) from E. coli to the N - terminus of BTE-MMD19 to improve enzyme solubility and achieve a titer of 1.9 g per L of twelve-carbon fatty acids in a shake flask.


Asunto(s)
Escherichia coli , Ácidos Grasos no Esterificados , Ácidos Grasos no Esterificados/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Ácidos Grasos/genética , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Plantas
17.
ACS Chem Biol ; 18(4): 785-793, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36893402

RESUMEN

Natural products play critical roles as antibiotics, anticancer therapeutics, and biofuels. Polyketides are a distinct natural product class of structurally diverse secondary metabolites that are synthesized by polyketide synthases (PKSs). The biosynthetic gene clusters that encode PKSs have been found across nearly all realms of life, but those from eukaryotic organisms are relatively understudied. A type I PKS from the eukaryotic apicomplexan parasite Toxoplasma gondii,TgPKS2, was recently discovered through genome mining, and the functional acyltransferase (AT) domains were found to be selective for malonyl-CoA substrates. To further characterize TgPKS2, we resolved assembly gaps within the gene cluster, which confirmed that the encoded protein consists of three distinct modules. We subsequently isolated and biochemically characterized the four acyl carrier protein (ACP) domains within this megaenzyme. We observed self-acylation─or substrate acylation without an AT domain─for three of the four TgPKS2 ACP domains with CoA substrates. Furthermore, CoA substrate specificity and kinetic parameters were determined for all four unique ACPs. TgACP2-4 were active with a wide scope of CoA substrates, while TgACP1 from the loading module was found to be inactive for self-acylation. Previously, self-acylation has only been observed in type II systems, which are enzymes that act in-trans with one another, and this represents the first report of this activity in a modular type I PKS whose domains function in-cis. Site-directed mutagenesis of specific TgPKS2 ACP3 acidic residues near the phosphopantetheinyl arm demonstrated that they influence self-acylation activity and substrate specificity, possibly by influencing substrate coordination or phosphopantetheinyl arm activation. Further, the lack of TgPKS2 ACP self-acylation with acetoacetyl-CoA, which is utilized by previously characterized type II PKS systems, suggests that the substrate carboxyl group may be critical for TgPKS2 ACP self-acylation. The unexpected properties observed from T. gondii PKS ACP domains highlight their distinction from well-characterized microbial and fungal systems. This work expands our understanding of ACP self-acylation beyond type II systems and helps pave the way for future studies on biosynthetic enzymes from eukaryotes.


Asunto(s)
Proteína Transportadora de Acilo , Sintasas Poliquetidas , Toxoplasma , Proteína Transportadora de Acilo/metabolismo , Acilación , Aciltransferasas/química , Malonil Coenzima A/metabolismo , Sintasas Poliquetidas/metabolismo , Toxoplasma/metabolismo
18.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614187

RESUMEN

Ladderane lipids (found in the membranes of anaerobic ammonium-oxidizing [anammox] bacteria) have unique ladder-like hydrophobic groups, and their highly strained exotic structure has attracted the attention of scientists. Although enzymes encoded in type II fatty acid biosynthesis (FASII) gene clusters in anammox bacteria, such as S-adenosyl-l-methionine (SAM)-dependent enzymes, have been proposed to construct a ladder-like structure using a substrate connected to acyl carrier protein from anammox bacteria (AmxACP), no experimental evidence to support this hypothesis was reported to date. Here, we report the crystal structure of a SAM-dependent methyltransferase from anammox bacteria (AmxMT1) that has a substrate and active site pocket between a class I SAM methyltransferase-like core domain and an additional α-helix inserted into the core domain. Structural comparisons with homologous SAM-dependent C-methyltransferases in polyketide synthase, AmxACP pull-down assays, AmxACP/AmxMT1 complex structure predictions by AlphaFold, and a substrate docking simulation suggested that a small compound connected to AmxACP could be inserted into the pocket of AmxMT1, and then the enzyme transfers a methyl group from SAM to the substrate to produce branched lipids. Although the enzymes responsible for constructing the ladder-like structure remain unknown, our study, for the first time, supports the hypothesis that biosynthetic intermediates connected to AmxACP are processed by SAM-dependent enzymes, which are not typically involved in the FASII system, to produce the ladder-like structure of ladderane lipids in anammox bacteria.


Asunto(s)
Metionina , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Metionina/metabolismo , Proteína Transportadora de Acilo/metabolismo , Metiltransferasas/metabolismo , Oxidación Anaeróbica del Amoníaco , Bacterias/metabolismo , Racemetionina/metabolismo , Lípidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
19.
Protein Expr Purif ; 202: 106187, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36216219

RESUMEN

Recombinant expression and purification of proteins have become a staple of modern drug discovery as it enables more precise in vitro analyses of drug targets, which may help obtain biochemical and biophysical parameters of a known enzyme and even uncover unknown characteristics indicative of novel enzymatic functions. Such information is often necessary to prepare adequate screening assays and drug-discovery experiments in general. Toxoplasma gondii is an obligate protozoan parasite that is a member of the phylum Apicomplexa, can develop several neuro-degenerative symptoms and, in specific cases, certain death for human hosts. Its relict non-photosynthetic plastid, the apicoplast, harbours a unique de novo long-chain fatty acid synthesis pathway of a prokaryotic character, FASII. The FASII pathway shows plasticity and, is essential for many intracellular and membranal components, along with fatty acid uptake via salvaging from the host, therefore, its disruption causes parasite death. TgFabG, a FASII enzyme responsible for a single reduction step in the pathway, was recombinantly expressed, purified and biochemically and biophysically characterised in this study. The bioengineering hurdle of expressing the recombinant gene of a eukaryotic, signal peptide-containing protein in a prokaryotic system was overcome for the apicomplexan enzyme TgFabG, by truncating the N-terminal signal peptide. TgFabG was ultimately recombinantly produced in a plasmid expression vector from its 1131 base pair gene, purified as 260 and 272 amino acid proteins using a hexahistidine (6 × Histag) affinity chromatography and its biochemical (enzyme activity and kinetics) and biophysical characteristics were analysed in vitro.


Asunto(s)
Apicoplastos , Toxoplasma , Humanos , Apicoplastos/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Proteína Transportadora de Acilo/metabolismo , Oxidorreductasas/metabolismo , Ácidos Grasos/metabolismo , Señales de Clasificación de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
20.
Mol Genet Genomics ; 298(1): 49-65, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271918

RESUMEN

This study aimed to evaluate the postulated cellular function of a novel family of amino acid (acyl carrier protein) ligases (AALs) in natural product biosynthesis. Here, we analyzed the manually curated, putative, aal-associated natural product biosynthetic gene clusters (NP BGCs) using two computational platforms for NP prediction, antiSMASH-BiG-SCAPE-CORASON and DeepBGC. The detected BGCs included a diversity of type I polyketide/nonribosomal peptide (PKS/NRPS) hybrid BGCs, exemplified by the guadinomine BGC, which suggested a dedicated function of AALs in the biosynthesis of rare (2S)-aminomalonyl-ACP extension units. Besides modular PKS/NRPSs and NRPSs, AAL-associated BGCs were predicted to assemble arylpolyenes, ladderane lipids, phosphonates, aminoglycosides, ß-lactones, and thioamides of both nonribosomal and ribosomal origins. Additionally, we revealed a frequent association of AALs with putative, seldom observed transglutaminase-like and BtrH-like transferases of the cysteine protease superfamily, which may form larger families of ACP-dependent amide bond catalysts used in NP synthesis. Our results disclosed an exceptional chemical novelty and biosynthetic potential of the AAL-associated BGCs in NP biosynthesis. The presented in silico evidence supports the initial hypothesis and provides an important foundation for future experimental studies aimed at discovering novel pharmaceutically relevant active compounds.


Asunto(s)
Productos Biológicos , Ligasas , Ligasas/genética , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Aminoácidos/genética , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA