Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros













Intervalo de año de publicación
1.
Neuroreport ; 35(8): 518-528, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38597275

RESUMEN

The objective of this study is to disclose the role of emodin, a natural anthraquinone derivative that has been proposed to suppress microglial activation and inflammation, in morphine tolerance. Here, cell counting kit-8 method assayed the viability of BV2 microglial cells treated by ascending concentrations of emodin. In emodin-pretreated BV2 microglial cells challenged with morphine with or without transfection of toll-like receptor 4 (TLR4) overexpression plasmids, transwell assay measured cell migration. Immunofluorescence staining and western blot detected the expression of microglial markers. Inflammatory levels were subjected to ELISA and western blot. BODIPY 581/591 C11 assay estimated lipid reactive oxygen species activity. Iron assay kit examined total iron content. Western blot tested the expression of ferroptosis- and TLR4/nuclear factor-kappaB (NF-κB)/NOD-like receptor 3 (NLRP3) pathway-associated proteins. Molecular docking predicted the binding affinity of emodin to TLR4. Emodin was noted to obstruct the migration, activation, inflammatory response, and ferroptosis of BV2 microglial cells induced by morphine. In addition, emodin had a high binding affinity with TLR4 and inactivated TLR4/NF-κB/NLRP3 pathway in morphine-challenged BV2 microglial cells. Upregulation of TLR4 partially countervailed the protective role of emodin against morphine-elicited BV2 microglial cell migration, activation, inflammation, and ferroptosis. Accordingly, emodin might target TLR4 and act as an inactivator of TLR4/NF-κB/NLRP3 pathway, thus inhibiting BV2 microglial activation and inflammation to mitigate morphine tolerance.


Asunto(s)
Emodina , Inflamación , Microglía , Morfina , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Receptor Toll-Like 4 , Emodina/farmacología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Morfina/farmacología , FN-kappa B/metabolismo , FN-kappa B/efectos de los fármacos , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Línea Celular
2.
Biomed Pharmacother ; 174: 116548, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599064

RESUMEN

BACKGROUND: Various heart diseases ultimately lead to chronic heart failure (CHF). In CHF, the inflammatory response is associated with pyroptosis, which is mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome. Fu Xin decoction (FXD) is commonly used in clinical practice to treat CHF and improve inflammatory conditions. However, the specific pharmacological mechanisms of action for FXD in these processes have yet to be fully understood. PURPOSE: The objective of this study was to examine the protective mechanism of FXT against CHF, both in H9c2 cells and mice. METHOD: A CHF mouse model was established, and the effect of FXD was observed via gavage. Cardiac function was evaluated using echocardiography, while serum BNP and LDH levels were analyzed to assess the severity of CHF. Hematoxylin and eosin staining (H&E) and Masson staining were performed to evaluate myocardial pathological changes, and TdT-mediated dUTP Nick-End Labeling staining was used to detect DNA damage. Additionally, doxorubicin was utilized to induce myocardial cell injury in H9c2 cells, establishing a relevant model. CCK8 was used to observe cell viability and detect LDH levels in the cell supernatant. Subsequently, the expression of pyroptosis-related proteins was detected using immunohistochemistry, immunofluorescence, and western blotting. Finally, the pharmacological mechanism of FXD against CHF was further validated by treating H9c2 cells with an NLRP3 activator and inducing NLRP3 overexpression. RESULT: According to current research findings, echocardiography demonstrated a significant improvement of cardiac function by FXD, accompanied by reduced levels of BNP and LDH, indicating the amelioration of cardiac injury in CHF mice. FXD exhibited the ability to diminish serum CRP and MCP inflammatory markers in CHF mice. The results of HE and Masson staining analyses revealed a significant reduction in pathological damage of the heart tissue following FXD treatment. The CCK8 assay demonstrated the ability of FXD to enhance H9c2 cell viability, improve cell morphology, decrease LDH levels in the cell supernatant, and alleviate cell damage. Immunohistochemistry, Western blotting, and immunofluorescence staining substantiated the inhibitory effect of FXD on the NLRP3/caspase-1/GSDMD pyroptosis signaling pathway in both CHF and H9c2 cell injury models. Ultimately, the administration of the NLRP3 activator (Nigericin) and the overexpression of NLRP3 counteract the effects of FXD on cardiac protection and pyroptosis inhibition in vitro. CONCLUSION: FXD exhibits a cardioprotective effect, improving CHF and alleviating pyroptosis by inhibiting the NLRP3/caspase-1/GSDMD pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Ratones , Caspasa 1/efectos de los fármacos , Caspasa 1/metabolismo , Línea Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Gasderminas/efectos de los fármacos , Gasderminas/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
Brain Res ; 1836: 148954, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649135

RESUMEN

Parkinson's disease (PD) is a multifactorial neurodegenerative disorder whose cause is unclear. Neuroinflammation is recognized as one of the major pathogenic mechanisms involved in the development and progression of PD. NLRP3 inflammasome is the most widely studied inflammatory mediator in various diseases including PD. Several phytoconstituents have shown neuroprotective role in PD. Carvacrol is a phenolic monoterpene commonly found in the essential oils derived from plants belonging to Lamiaceae family. It is well known for its anti-inflammatory and antioxidant properties and has been widely explored in several diseases. In this study, we explored the role of Carvacrol in suppressing neuroinflammation by regulating NLRP3 inflammasome through Nrf2/HO-1 axis and subsequently, inflammatory cytokines like IL-1ß, IL-18 in Rotenone induced PD mice model. Three doses (25 mg/kg, 50 mg/kg, 100 mg/kg p.o.) of Carvacrol were administered to, respectively, three groups (LD, MD, HD), one hour after administration of Rotenone (1.5 mg/kg, i.p.), every day, for 21 days. Treatment with Carvacrol ameliorated the motor impairment caused by Rotenone. It alleviated neurotoxicity and reduced inflammatory cytokines. Further, Carvacrol also alleviated oxidative stress and increased antioxidant enzymes. From these results, we show that Carvacrol exerts neuroprotective effects in PD via anti-inflammatory and antioxidant mechanisms and could be a potential therapeutic option in PD.


Asunto(s)
Cimenos , Modelos Animales de Enfermedad , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Fármacos Neuroprotectores , Rotenona , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Cimenos/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Masculino , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Proteínas de la Membrana , Hemo-Oxigenasa 1
4.
J Cell Mol Med ; 28(9): e18338, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683122

RESUMEN

Respiratory syncytial virus (RSV) infects neuronal cells in the central nervous system (CNS), resulting in neurological symptoms. In the present study, we intended to explore the mechanism of RSV infection-induced neuroinflammatory injury from the perspective of the immune response and sought to identify effective protective measures against the injury. The findings showed that toll-like receptor 4 (TLR4) was activated after RSV infection in human neuronal SY5Y cells. Furthermore, TLR4 activation induced autophagy and apoptosis in neuronal cells, promoted the formation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, and increased the secretion of downstream inflammatory cytokines such as interleukin-1ß (IL-1ß), interleukin-18 (IL-18) and tumour necrosis factor-α (TNF-α). Interestingly, blockade of TLR4 or treatment with exogenous melatonin significantly suppressed TLR4 activation as well as TLR4-mediated apoptosis, autophagy and immune responses. Therefore, we infer that melatonin may act on the TLR4 to ameliorate RSV-induced neuronal injury, which provides a new therapeutic target for RSV infection.


Asunto(s)
Apoptosis , Autofagia , Inflamasomas , Melatonina , Proteína con Dominio Pirina 3 de la Familia NLR , Infecciones por Virus Sincitial Respiratorio , Receptor Toll-Like 4 , Humanos , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Sistema Nervioso Central/virología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Citocinas/metabolismo , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Melatonina/farmacología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/virología , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/fisiología , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
5.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 183-188, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430023

RESUMEN

This study aimed to elucidate the effect of mitochondria-targeted reactive oxygen species (ROS) blockor SS-31 on hepatic stellate cells (HSC) activation during liver fibrosis. TGF-ß1 was employed to induce HSC activation, while MitoSOX Red was utilized to assess the presence of mitochondrial ROS. The mitochondrial membrane potential (MMP) was measured using the JC-1 probe, and the ATP level was determined using a specific kit. The proliferation of HSCs was assessed using CCK-8 and colony formation assays, whereas flow cytometry was employed to detect HSC apoptosis. Fibrotic markers (COL1A1 and α-SMA) and NLRP3 inflammasome components (NLRP3, caspase-1, and ASC) were analyzed via Western blotting. Liver fibrosis was induced in mice using CCl4, and subsequently, histopathological changes were observed through HE staining and Masson staining. In TGF-ß1-activated HSCs, mitochondrial ROS expression increased, MMP and ATP content decreased, indicating mitochondrial damage. After TGF-ß1 induction, HSC proliferation increased, apoptosis decreased, and COL1A1, α-SMA, and NLRP3 inflammasome protein expression increased. After SS-31 treatment, mitochondrial ROS expression decreased, MMP recovered, ATP level increased, HSC proliferation decreased, apoptosis increased, and the expressions of COL1A1, α-SMA, and NLRP3 inflammasome decreased. NLRP3 blockor MCC950 treatment blocked HSC activation. CCL4-induced liver fibrosis mice had inflammatory cell infiltration and significant collagen fiber deposition in the liver. After SS-31 treatment, liver inflammation and collagen deposition were significantly reduced. SS-31, as a mitochondria-targeted ROS blockor, can block HSC activation by regulating the NLRP3 inflammasome, thereby alleviating liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Adenosina Trifosfato/metabolismo , Colágeno/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
6.
Environ Sci Pollut Res Int ; 31(13): 19844-19855, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367109

RESUMEN

It is widespread of endemic fluorosis in China, and the exposure of excessive fluoride will cause nervous system disease and activate microglia. However, the mechanism of the damage is not clear. It is well-known that NLRP3/Caspase-1/GSDMD pathway, a classic pyroptosis pathway, is widely involved in the occurrence and development of nervous system-related diseases, infectious diseases, and atherosclerotic diseases. This research aimed to explore the molecular mechanism of sodium fluoride on inflammation and pyroptosis in BV2 microglia based on the NLRP3/Caspase-1/GSDMD signaling pathway. BV2 microglia was treated with sodium fluoride at the dose of 0.25, 1, and 2 mmol/L for 24, 48, and 72 h, respectively. Cell viability, cell morphology, lactate dehydrogenase content, and related proteins and genes were examined to investigate if sodium fluoride caused damage to BV2 microglia through the pyroptosis pathway. Dithiolam (5 µmol/L), a pyroptosis inhibitor, was added for further verification. NaF could induced BV2 cells injury in a dose-dependent fashion through disrupting the integrity of cell membranes and increasing IL-1ß via upregulating NLRP3, Caspase-1, and its downstream protein GSDMD. Disulfiram could improve these changes caused by NaF. In conclusion, our results suggested that NLRP3/Caspase-1/GSDMD-mediated classical pyroptosis pathway was involved in fluoride-induced BV2 microglia damage.


Asunto(s)
Fluoruros , Microglía , Fluoruro de Sodio , Caspasa 1/efectos de los fármacos , Caspasa 1/metabolismo , Fluoruros/toxicidad , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fluoruro de Sodio/toxicidad , Gasderminas/efectos de los fármacos , Gasderminas/metabolismo , Animales , Ratones
7.
Phytother Res ; 37(12): 5974-5990, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778741

RESUMEN

Acute kidney injury (AKI) is a common clinical condition associated with increased incidence and mortality rates. Hederasaponin C (HSC) is one of the main active components of Pulsatilla chinensis (Bunge) Regel. HSC possesses various pharmacological activities, including anti-inflammatory activity. However, the protective effect of HSC against lipopolysaccharide (LPS)-induced AKI in mice remains unclear. Therefore, we investigated the protective effect of HSC against LPS-induced renal inflammation and the underlying molecular mechanisms. Herein, using MTT and LDH assays to assess both cell viability and LDH activity; using dual staining techniques to identify different cell death patterns; conducting immunoblotting, QRT-PCR, and immunofluorescence analyses to evaluate levels of protein and mRNA expression; employing immunoblotting, molecular docking, SPR experiments, and CETSA to investigate the interaction between HSC and TLR4; and studying the anti-inflammatory effects of HSC in the LPS-induced AKI. The results indicate that HSC inhibits the expression of TLR4 and the activation of NF-κB and PIP2 signaling pathways, while simultaneously suppressing the activation of the NLRP3 inflammasome. In animal models, HSC ameliorated LPS-induced AKI and diminished inflammatory response and the level of renal injury markers. These findings suggest that HSC has potential as a therapeutic agent to mitigate sepsis-related AKI.


Asunto(s)
Lesión Renal Aguda , FN-kappa B , Saponinas , Animales , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Fosfoinositido Fosfolipasa C
8.
J Chem Neuroanat ; 134: 102349, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37879571

RESUMEN

Depression is a common but serious sickness which causes a considerable burden on individuals and society. Recently, it has been well established that the occurrence of depression was related to the microbiota-gut-brain axis. The toll-like receptor 4 (TLR4)/ nuclear factor kappa-B kinase (NFκB)/ NOD-like receptor thermal protein domain associated protein 3 (NLRP3) pathway is closely associated with the regulation of microbiota-gut-brain axis. Suanzaoren Decoction (SZRD), which recorded in Jin Gui Yao Lve in Han dynasty, has been used for treating insomnia and depression for a long time. However, the action mechanism of the depression regulation through the TLR4/NFκB/NLRP3 pathway by SZRD was still unclear. In this study, SZRD was firstly performed on a chronic unpredictable mild stress (CUMS) mice model. The results of behavioral tests showed that SZRD treatment could ameliorate the depressive-like behaviors of CUMS mice effectively. According to our previous researches about the components of SZRD in vitro and in vivo, the identification of serum metabolites in depression model rats was further analyzed qualitatively using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. 27 prototypes and 44 metabolites were identified. The main types of metabolic reactions are glucuronization, sulfation, and so on. Then, using immunohistochemistry and western blotting to monitor the difference in activation of TLR4/NFκB/NLRP3 signaling pathway in mice brain and colon. The results showed that SZRD treatment could reduce expression levels of related factors. Additionally, the SZRD treatment could also inhibit the histopathological damage in the path morphology of the hippocampus and colon. The results of 16SrRNA demonstrated that SZRD could reduce the dysbiosis of the intestinal flora of depressive mice. The above results provided important information for studying the action mechanism of SZRD in treating depression by regulating microbiota-gut-brain axis via inhibiting TLR4/NFκB/NLRP3 pathway.


Asunto(s)
Eje Cerebro-Intestino , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Toll-Like 4 , Animales , Ratones , Ratas , Eje Cerebro-Intestino/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/etiología , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo
9.
Adv Med Sci ; 68(2): 322-331, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37716182

RESUMEN

PURPOSE: The possible effects of ramelteon, a melatonin receptor agonist on bleomycin-induced lung fibrosis were analyzed via transforming growth factor ß1 (TGF-ß1), the high mobility group box 1 (HMGB1) and Nod-like receptor pyrin domain-containing 3 (NLRP3) which are related to the fibrosis process. MATERIALS AND METHODS: Bleomycin (0.1 â€‹mL of 5 â€‹mg/kg) was administered by intratracheal instillation to induce pulmonary fibrosis (PF). Starting 24 â€‹h after bleomycin administration, a single dose of ramelteon was administered by oral gavage to the healthy groups, i.e. PF â€‹+ â€‹RM2 (pulmonary fibrosis model with bleomycin â€‹+ â€‹ramelteon at 2 â€‹mg/kg) and PF â€‹+ â€‹RM4 (pulmonary fibrosis model with bleomycin â€‹+ â€‹ramelteon at 4 â€‹mg/kg) at 2 and 4 â€‹mg/kg doses, respectively. Real-time polymerase chain reaction (real-time PCR) analyses, histopathological, and immunohistochemical staining were performed on lung tissues. Lung tomography images of the rats were also examined. RESULTS: The levels of TGF-ß1, HMGB1, NLRP3, and interleukin 1 beta (IL-1ß) mRNA expressions increased as a result of PF and subsequently decreased with both ramelteon doses (p â€‹< â€‹0.0001). Both doses of ramelteon partially ameliorated the reduction in the peribronchovascular thickening, ground-glass appearances, and reticulations, and the loss of lung volume. CONCLUSIONS: The severity of fibrosis decreased with ramelteon application. These effects of ramelteon may be associated with NLRP3 inflammation cascade.


Asunto(s)
Proteína HMGB1 , Melatonina , Fibrosis Pulmonar , Animales , Ratas , Bleomicina/toxicidad , Proteína HMGB1/efectos de los fármacos , Proteína HMGB1/metabolismo , Pulmón , Melatonina/antagonistas & inhibidores , Melatonina/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo
10.
Int Immunopharmacol ; 123: 110677, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37523973

RESUMEN

Eucommia ulmoides Oliv (EUO) is a traditional therapeutic drug that tonifies the liver and kidney and may improve depression. However, the mechanism of action of the main component, aucubin (AU), is unknown. To study the therapeutic effect of AU, we constructed a chronic unpredictable mild stress (CUMS) depression model in mice. Depression-like behaviors, pathological damage, hormonal changes, inflammation, intranuclear expression of glucocorticoidreceptor (GR), and hippocampal protein expression were assessed. Immunofluorescence staining of the hippocampus showed that CUMS decreased neuronal regeneration, and axons were observed to be reduced and broken. Intracellular GR expression decreased in the hippocampus and hypothalamus, and serum levels of stress hormones increased. Furthermore, molecular changes indicative of pyroptosis were observed. AU administration reversed these changes and significantly improved the depression-like behavior induced by CUMS. Our results suggested that AU improves depression by promoting the intranuclear expression of GR and inhibiting nuclear factor-kappa B-mediated inflammatory activation-driven cell pyroptosis.


Asunto(s)
Trastorno Depresivo , FN-kappa B , Animales , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Modelos Animales de Enfermedad , Hipocampo , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Receptores de Glucocorticoides/efectos de los fármacos
11.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36362011

RESUMEN

Manganese neurotoxicity has been reported to cause a neurodegenerative disease known as parkinsonism. Previous reports have shown that the expression of the KH-type splicing regulatory protein (KHSRP), a nucleic acid-binding protein, and NLRP3 is increased upon Mn exposure. However, the relation between these two during Mn toxicity has not been fully deduced. The mouse neuroblastoma (N2a) and SD rats are treated with LPS and MnCl2 to evaluate the expression of KHSRP and NLRP3. Further, the effect of the NLRP3 inhibitor MCC950 is checked on the expression of NLRP3, KHSRP and pro-inflammatory markers (TNFα, IL-18 and IL-1ß) as well as the caspase-1 enzyme. Our results demonstrated an increment in NLRP3 and KHSRP expression post-MnCl2 exposure in N2a cells and rat brain, while on the other hand with LPS exposure only NLRP3 expression levels were elevated and KHSRP was found to be unaffected. An increased expression of KHSRP, NLRP3, pro-inflammatory markers and the caspase-1 enzyme was observed to be inhibited with MCC950 treatment in MnCl2-exposed cells and rats. Manganese exposure induces NLRP3 and KHSRP expression to induce neuroinflammation, suggesting a correlation between both which functions in toxicity-related pathways. Furthermore, MCC950 treatment reversed the role of KHSRP from anti-inflammatory to pro-inflammatory.


Asunto(s)
Manganeso , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Animales , Ratones , Ratas , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Inflamasomas/metabolismo , Lipopolisacáridos/toxicidad , Manganeso/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/etiología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/etiología , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley
12.
Int J Radiat Biol ; 98(9): 1442-1451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35445640

RESUMEN

PURPOSE: After radiation therapy of brain tumors, radiation-induced cognitive impairment is a common and severe complication. Neuroinflammation mediated by microglia is a critical event that accelerates cognitive or functional decline. Ferulic acid (FA), a phenolic plant component, possesses multiple pharmacological effects, such as anti-inflammatory and anti-radiation. The current research attempts to ascertain the protection of FA on radiation-induced neuroinflammation and the mechanism of this effect. MATERIALS AND METHODS: C57BL/6 mice were irradiated with 60Co γ-ray to establish a brain injury model. The Morris water maze experiment was used to observe the effects of FA on the spatial learning and memory impairment of irradiated mice. The pathological changes of hippocampal tissue were observed by HE staining. Besides, microglia BV-2 cell lines were used to study the anti-neuroinflammatory impacts of FA on radiation-induced microglial activation and further elucidate the potential mechanisms influencing FA-mediated neuroprotective properties. The cell morphological changes were observed using an optical microscope. The cytotoxicity of FA and radiation to BV-2 cells was determined using the CCK-8 assay. Additionally, Western blot and quantitative real-time PCR detected the expression and transcription of NLRP3 inflammasome and pro-inflammatory cytokines in hippocampus and BV-2 cells. RESULTS: FA could enhance learning and memory capacity and ameliorate pathological changes in the hippocampal tissues of irradiated mice. The cell radiation injury model was established by 8 Gy 60Co γ-ray, and the concentration of subsequent administration was determined to be 2.5, 5, and 10 µmol/L. Furthermore, FA could suppress the transcription and expression of NLRP3 in hippocampal tissue and microglia, and also the increased secretion of pro-inflammatory factors. CONCLUSION: This study established that FA targeting the NLRP3 inflammasome has a neuroprotective effect against radiation-induced nerve damage, implying that FA might have some potential in the treatment of radiation-induced cognitive impairment.


Asunto(s)
Ácidos Cumáricos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ácidos Cumáricos/farmacología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Neuroprotección
13.
Hum Exp Toxicol ; 41: 9603271221078870, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35230166

RESUMEN

AIM: To explore whether LPA5 was involved in the inflammatory responses in CI/R injury by regulation of NLRC4. METHOD: The cerebral I/R model in rats was constructed with ischemia of 2h and different time points of reperfusion. After that, western blot was used to determine protein expression (LPA5, NLRC4, AIM2, caspase-1, cleaved-caspase-1, mature IL-1ß, and precursor IL-1ß). And LPA5 and NLRC4 expression were also detected by using immunofluorescence experiment. Afterward, two sequence of LPA5-siRNA were injected into rats via intracerebroventricular administration. TTC staining and HE staining were performed. RESULT: As the reperfusion time was prolonged, LPA5 content was continuously increased, and the highest expression of NLRC4 was found at 4h of reperfusion. And protein expression of AIM2, cleaved-caspase-1, and mature IL-1ß was also at highest level at 4h. And after reperfusion of 4h, LPA5 siRNA1# or 2# was injected into lateral ventricles. LPA5 silence markedly reduced the infract volume and improved the histological change of ischemic zone. And LPA5 silence significantly downregulated NLRC4, AIM2, and the ratio of cleaved-caspase-1/caspase-1 and mature IL-1ß/precursor IL-1ß. And compared with LPA5-siRNA2#, LPA5-siRNA1# exerted a more significant effect. CONCLUSION: Low expression of LPA5 can protect against the inflammatory responses in CI/R model of rats through inhibiting NLRC4 inflammasomes.


Asunto(s)
Encéfalo/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/fisiopatología , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/uso terapéutico , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología
14.
Behav Brain Res ; 423: 113775, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35101458

RESUMEN

The NLRP3 inflammasome activation and neuroinflammation play a crucial role in nerve damage, which can lead to sickness and depressive-like behavior. Dihydromyricetin (DMY) is an important flavanone extracted from Ampelopsis grossedentata. It has been shown to have a significant anti-inflammatory effect in multiple disease models. However, its protective effects on sickness and depressive-like behavior caused by neuroinflammation and its underlying mechanism are still unclear. In this study, we investigated the effects and mechanism of DMY on lipopolysaccharide (LPS)-treated mice with sickness behavior and BV2 cells in Vitro. The effects of LPS treatment and DMY administration on behavioral changes were determined by using behavioral tests including an open field test, tail suspension test and a sucrose preference test. The anti-inflammatory effects of DMY in conditions of neuroinflammatory injury in Vitro and in Vivo were analyzed by using real-time PCR analysis and western blot. The results indicated that DMY improved sickness and depressive-like behaviors in mice induced by LPS. DMY suppressed the expression of microglia markers CD11b, accompanied by reduced expression of pro-inflammatory cytokines, such as TNFα, IL-6, IL-1ß, COX-2, and iNOS in a dose-dependent manner. Interestingly, DMY dramatically inhibited the expression of TLR4/Akt/HIF1a/NLRP3 signaling pathway-related proteins both in Vitro and in Vivo, including TLR4, CD14, PDPk1, p-Akt, p-NF-κB p65, p-GSK-3ß, HIF1a, NLRP3, ASC, and caspase-1. The above results suggested that DMY suppressed the activation of the TLR4/Akt/HIF1a/NLRP3 pathway, which may contribute to its anti-depressive effects.


Asunto(s)
Depresión/tratamiento farmacológico , Flavonoles/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Conducta de Enfermedad/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Receptor Toll-Like 4/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Depresión/inducido químicamente , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología , Ratones , Transducción de Señal/efectos de los fármacos
15.
Oxid Med Cell Longev ; 2022: 1733834, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35035656

RESUMEN

Calycosin (CAL) is the main active component present in Astragalus and reportedly possesses diverse pharmacological properties. However, the cardioprotective effect and underlying mechanism of CAL against doxorubicin- (DOX-) induced cardiotoxicity need to be comprehensively examined. Herein, we aimed to investigate whether the cardioprotective effects of CAL are related to its antipyroptotic effect. A cardiatoxicity model was established by stimulating H9c2 cells and C57BL/6J mice using DOX. In vitro, CAL increased H9c2 cell viability and decreased DOX-induced pyroptosis via NLRP3, caspase-1, and gasdermin D signaling pathways in a dose-dependent manner. In vivo, CAL-DOX cotreatment effectively suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis via the same molecular mechanism. Next, we used nigericin (Nig) and NLRP3 forced overexpression to determine whether CAL imparts antipyroptotic effects by inhibiting the NLRP3 inflammasome in vitro. Furthermore, CAL suppressed DOX-induced mitochondrial oxidative stress injury in H9c2 cells by decreasing the generation of reactive oxygen species and increasing mitochondrial membrane potential and adenosine triphosphate. Likewise, CAL attenuated the DOX-induced increase in malondialdehyde content and decreased superoxide dismutase and glutathione peroxidase activities in H9c2 cells. In vivo, CAL afforded a protective effect against DOX-induced cardiac injury by improving myocardial function, inhibiting brain natriuretic peptide, and improving the changes of the histological morphology of DOX-treated mice. Collectively, our findings confirmed that CAL alleviates DOX-induced cardiotoxicity and pyroptosis by inhibiting NLRP3 inflammasome activation in vivo and in vitro.


Asunto(s)
Cardiotoxicidad/tratamiento farmacológico , Doxorrubicina/efectos adversos , Medicamentos Herbarios Chinos/uso terapéutico , Inflamasomas/efectos de los fármacos , Isoflavonas/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Humanos , Isoflavonas/farmacología , Masculino , Ratones , Piroptosis
16.
Clin Sci (Lond) ; 136(2): 167-180, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35048962

RESUMEN

Activation of nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome has been reported in diabetic complications including diabetic kidney disease (DKD). However, it remains unknown if NLRP3 inhibition is renoprotective in a clinically relevant interventional approach with established DKD. We therefore examined the effect of the NLRP3-specific inhibitor MCC950 in streptozotocin-induced diabetic mice to measure the impact of NLRP3 inhibition on renal inflammation and associated pathology in DKD. We identified an adverse effect of MCC950 on renal pathology in diabetic animals. Indeed, MCC950-treated diabetic animals showed increased renal inflammation and macrophage infiltration in association with enhanced oxidative stress as well as increased mesangial expansion and glomerulosclerosis when compared with vehicle-treated diabetic animals. Inhibition of the inflammasome by MCC950 in diabetic mice led to renal up-regulation of markers of inflammation (Il1ß, Il18 and Mcp1), fibrosis (Col1, Col4, Fn1, α-SMA, Ctgf and Tgfß1) and oxidative stress (Nox2, Nox4 and nitrotyrosine). In addition, enhanced glomerular accumulation of pro-inflammatory CD68 positive cells and pro-oxidant factor nitrotyrosine was identified in the MCC950-treated diabetic compared with vehicle-treated diabetic animals. Collectively, in this interventional model of established DKD, NLRP3 inhibition with MCC950 did not show renoprotective effects in diabetic mice. On the contrary, diabetic mice treated with MCC950 exhibited adverse renal effects particularly enhanced renal inflammation and injury including mesangial expansion and glomerulosclerosis.


Asunto(s)
Nefropatías Diabéticas/patología , Furanos/farmacología , Indenos/farmacología , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Diabetes Mellitus Experimental , Fibrosis , Furanos/efectos adversos , Indenos/efectos adversos , Inflamación/tratamiento farmacológico , Masculino , Ratones Noqueados para ApoE , Estrés Oxidativo/efectos de los fármacos , Sulfonamidas/efectos adversos
17.
Neuropharmacology ; 207: 108963, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065082

RESUMEN

Microglia-mediated neuroinflammation and mitochondrial dysfunction play critical role in the pathogenic process of Parkinson's disease (PD). Mitophagy plays central role in mitochondrial quality control. Hence, regulation of microglial activation through mitophagy could be a valuable strategy in controlling microglia-mediated neurodegeneration and neuroinflammation. Urolithin A (UA) is a natural compound produced by gut bacteria from ingested ellagitannins (ETs) and ellagic acid (EA). Several preclinical studies have reported the beneficial effects of UA on age-related conditions by increasing mitophagy and blunting excessive inflammatory responses. However, the specific role of UA in pathology of PD remains unknown. In this study, we showed that treatment with UA reduced the loss of dopaminergic neurons, ameliorated behavioral deficits and neuroinflammation in MPTP mouse model of PD. Further study revealed that UA promotes mitophagy, restores mitochondrial function and attenuate proinflammatory response in BV2 microglial cells exposed to LPS. Moreover, UA also reduced NLRP3 inflammasome activation both in vitro and in vivo. Importantly, disruption of microglial mitophagy with pharmacological or genetic approach partly blunted the neuroprotective effects of UA in MPTP mouse model of PD. Collectively, these results provide strong evidence that UA protects against dopaminergic neurodegeneration and neuroinflammation. The mechanism may be related with its inhibition of NLRP3 inflammasome activation via promoting mitophagy in microglia.


Asunto(s)
Cumarinas/farmacología , Inflamasomas/efectos de los fármacos , Microglía/efectos de los fármacos , Enfermedades Mitocondriales/tratamiento farmacológico , Mitofagia/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología , Intoxicación por MPTP/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL
18.
CNS Neurosci Ther ; 28(2): 247-258, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837343

RESUMEN

BACKGROUND: Fisetin, the effective ingredient of the traditional Chinese medicine named Cotinus coggygria, is recommended to be active therapeutic in many disorders. However, its role in sepsis-associated encephalopathy (SAE) remains unclarified. METHODS: Cecal ligation and puncture (CLP) operation was performed to establish a rat model of SAE. Rats were grouped according to the surgery operation and fisetin administration. Cognitive impairment was assessed by Morris water maze test. Disruption of blood-brain barrier (BBB) integrity was detected by Evan's blue staining. The mitophagy, reactive oxygen species (ROS) generation, NLRP3 inflammasome activation, and pro-inflammatory cytokines levels were measured through western blot and double immunofluorescence labeling. A transmission electron microscope was applied for the observation of mitochondrial autophagosomes. RESULTS: Rats in the CLP group presented increased expression of IL-1R1, pNF-κB, TNF-α, and iNOS in microglial cells, indicating severe inflammation in the central nervous system (CNS). Nevertheless, there was no increase in BBB permeability. Meanwhile, NLRP3 inflammasome was activated in cerebral microvascular endothelial cells (CMECs), presented with an elevation of caspase-1 expression and IL-1ß secretion into CNS. In addition, we found fisetin significantly improved cognitive dysfunction in rats with SAE. Neuroprotective effects of fisetin might be associated with inhibition of neuroinflammation, represented with decreased expression of IL-1R1, pNF-κB, TNF-α, and iNOS in microglia. Furthermore, fisetin induced mitophagy, scavenged ROS, blocked NLRP3 inflammasome activation of CMECs, as evidenced by decreased expression of caspase-1 and reduced release of IL-1ß into CNS. CONCLUSION: Collectively, fisetin-blocked NLRP3 inflammasome activation via promoting mitophagy in CMECs may suppress the secretion of IL-1ß into CNS, reduce neuroinflammation, and contribute to the amelioration of cognitive impairment.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Flavonoles/farmacología , Mitofagia/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Encefalopatía Asociada a la Sepsis/complicaciones , Animales , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Flavonoles/administración & dosificación , Inflamasomas/efectos de los fármacos , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Ratas
19.
Brain Res Bull ; 180: 12-23, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953929

RESUMEN

Studies have found that Platonin has neuroprotective effect, but its molecular mechanism needs further study. We found that at the early stage of cerebral ischemia/reperfusion injury, Platonin treatment significantly reduced cerebral infarct lesions, improved neurological scores, and exerted neuroprotective effects. Our group has shown that NLRP3 inflammasomes activation is required to mediate neuronal injury during cerebral ischemia /reperfusion injury. The brain protective effect of Platonin is related to its ability to effectively regulate autophagy and NLRP3 inflammasomes-derived inflammation. Platonin treatment effectively induced autophagy (LC3II/I, p62) and reduced NLRP3 inflammasomes activation(NLRP3, cleaved-IL-1ß,cleaved-IL-18, cleaved-caspase1). However, 3-MA (15 mg/kg) treatment downregulated the inhibitory effect of Platonin on NLRP3 inflammasomes. We also studied the location of BNIP3 in Platonin-mediated neuroprotection and found that Platonin induced the expression of autophagic protein BNIP3 and enhanced the co-immunoprecipitation of BNIP3 with LC3, and double-labeled immunofluorescence also showed enhanced co-localization of BNIP3 with LC3. Finally, si-BNIP3 transfection attenuated the co localization of BNIP3 with LC3, decreased the autophagy activity to a certain extent and blocked the inhibition of NLRP3 inflammasomes-derived inflammation by Platonin. This study demonstrated that Platonin may play a neuroprotection role in cerebral I / R injury by inhibiting NLRP3 inflammasomes activation through upregulating autophagy via BNIP3 / LC3 pathway.


Asunto(s)
Autofagia/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Proteínas de la Membrana/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteínas Mitocondriales/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Tiazoles/farmacología , Animales , Modelos Animales de Enfermedad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA