Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 25(7): 975-988, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37414850

RESUMEN

Metabolic demands fluctuate rhythmically and rely on coordination between the circadian clock and nutrient-sensing signalling pathways, yet mechanisms of their interaction remain not fully understood. Surprisingly, we find that class 3 phosphatidylinositol-3-kinase (PI3K), known best for its essential role as a lipid kinase in endocytosis and lysosomal degradation by autophagy, has an overlooked nuclear function in gene transcription as a coactivator of the heterodimeric transcription factor and circadian driver Bmal1-Clock. Canonical pro-catabolic functions of class 3 PI3K in trafficking rely on the indispensable complex between the lipid kinase Vps34 and regulatory subunit Vps15. We demonstrate that although both subunits of class 3 PI3K interact with RNA polymerase II and co-localize with active transcription sites, exclusive loss of Vps15 in cells blunts the transcriptional activity of Bmal1-Clock. Thus, we establish non-redundancy between nuclear Vps34 and Vps15, reflected by the persistent nuclear pool of Vps15 in Vps34-depleted cells and the ability of Vps15 to coactivate Bmal1-Clock independently of its complex with Vps34. In physiology we find that Vps15 is required for metabolic rhythmicity in liver and, unexpectedly, it promotes pro-anabolic de novo purine nucleotide synthesis. We show that Vps15 activates the transcription of Ppat, a key enzyme for the production of inosine monophosphate, a central metabolic intermediate for purine synthesis. Finally, we demonstrate that in fasting, which represses clock transcriptional activity, Vps15 levels are decreased on the promoters of Bmal1 targets, Nr1d1 and Ppat. Our findings open avenues for establishing the complexity for nuclear class 3 PI3K signalling for temporal regulation of energy homeostasis.


Asunto(s)
Relojes Circadianos , Relojes Circadianos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Purinas , Lípidos
2.
EMBO J ; 40(14): e105985, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34121209

RESUMEN

Autophagy is a process through which intracellular cargoes are catabolised inside lysosomes. It involves the formation of autophagosomes initiated by the serine/threonine kinase ULK and class III PI3 kinase VPS34 complexes. Here, unbiased phosphoproteomics screens in mouse embryonic fibroblasts deleted for Ulk1/2 reveal that ULK loss significantly alters the phosphoproteome, with novel high confidence substrates identified including VPS34 complex member VPS15 and AMPK complex subunit PRKAG2. We identify six ULK-dependent phosphorylation sites on VPS15, mutation of which reduces autophagosome formation in cells and VPS34 activity in vitro. Mutation of serine 861, the major VPS15 phosphosite, decreases both autophagy initiation and autophagic flux. Analysis of VPS15 knockout cells reveals two novel ULK-dependent phenotypes downstream of VPS15 removal that can be partially recapitulated by chronic VPS34 inhibition, starvation-independent accumulation of ULK substrates and kinase activity-regulated recruitment of autophagy proteins to ubiquitin-positive structures.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Proteómica/métodos
3.
Nat Commun ; 12(1): 1564, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692360

RESUMEN

The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a-GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations.


Asunto(s)
Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas de Unión al GTP rab1/química , Proteínas de Unión al GTP rab1/metabolismo , Proteínas de Unión al GTP rab5/química , Proteínas de Unión al GTP rab5/metabolismo , Beclina-1/química , Beclina-1/genética , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Endosomas/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Estructura Secundaria de Proteína , Tomografía , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Clasificación Vacuolar VPS15/química , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab5/genética
4.
Life Sci ; 259: 118383, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32896555

RESUMEN

AIMS: Previous studies have shown that the widespread use of estrogen preparations can cause adverse outcomes such as thrombosis and cardiovascular disease. Autophagy is a biochemical process necessary to maintain cell homeostasis. The present study investigated whether E-2 mediates autophagy-induced endothelial cell dysfunction. The role of aspirin in this process was then studied. MAIN METHODS: Western blot, fluorescence microscopy, electron transmission microscopy, plasma construction and transfection, vasoreactivity study in wire myograph are all used in this study. KEY FINDINGS: We found that E-2 activated the PI3K/mTOR signaling pathway and inhibited the formation of the Atg14L-Beclin1-Vps34-Vps15 complex, thereby inhibiting autophagy. Aspirin promoted Beclin1 phosphorylation in autophagy initiation complexes and enhanced autophagy. Furthermore, E-2 treatment of HAECs resulted in endothelial dysfunction by inhibiting autophagy and leading to accumulation of α-smooth muscle actin (α-SMA). E-2 inhibited the activation of eNOS and reduced the expression of eNOS protein. In the mouse aortic vascular function test, E-2 disrupted endothelium-dependent vasodilation. An α-SMA-shRNA lentivirus eliminated the disruption to endothelium-dependent vasodilation by E-2. Aspirin inhibited α-SMA accumulation by enhancing autophagy, reversed endothelial functional impairment caused by E-2, and promoted endothelium-dependent vasodilation. SIGNIFICANCE: This study provides new evidence that E-2 inhibits autophagy and induces abnormal accumulation of α-SMA, resulting in endothelial cell dysfunction and affecting vasodilation. Aspirin can effectively restore the endothelial cell function disrupted E-2.


Asunto(s)
Actinas/metabolismo , Aspirina/farmacología , Autofagia/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Estradiol/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Western Blotting , Células Cultivadas , Endotelio Vascular/ultraestructura , Femenino , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Fosforilación/efectos de los fármacos
5.
Stem Cells Dev ; 29(11): 682-694, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32143554

RESUMEN

Differentiation of trophoblast stem (TS) cells into various cell lineages of the placenta during mammalian development is accompanied by dynamic changes in its proteome for exerting the highly specialized functions of various cell subtypes. In the present study, we demonstrate that the autophagic machinery, which includes proteins for initiation, vesicle nucleation, and autophagosome maturation are robustly upregulated during differentiation of TS cells. Interestingly, basal levels of autophagy were detectable in the developing mouse placenta as well as TS cells. However, autophagic flux was actively triggered by induction of differentiation evident from LC3 maturation. Formation of Beclin1, Vps34, and PIK3R4 ternary complex at the phagophore assembly site that is typically known to induce autophagy was also enhanced during differentiation. Degradation of the p62/SQSTM1 cargo protein and its colocalization with LC3, a mature autophagosome marker, was most prevalent in the trophoblast giant cells (TGCs) and negligible in other trophoblast cells at day 6 of differentiation. Furthermore, disruption of autophagy by impairing lysosomal fusion in TS cells before induction of differentiation led to a decrease in the giant cell and spongiotrophoblast cell markers Prl3d1, Prl2c2, Prl4a1, and Tpbpα upon differentiation. In addition, inhibition of autophagy was associated with a decrease in nuclear size of TGCs. Taken together, these data highlight that autophagy is a necessary prelude in commitment of trophoblast differentiation from the multipotent TS cells probably by regulating protein turnover at the onset of differentiation.


Asunto(s)
Autofagia , Diferenciación Celular , Células Madre Embrionarias de Ratones/metabolismo , Trofoblastos/citología , Animales , Beclina-1/genética , Beclina-1/metabolismo , Células Cultivadas , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo
6.
Life Sci ; 233: 116701, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31356904

RESUMEN

AIMS: Vps15 is an important regulator on the activity of class III PI3K in autophagy induction. AngII plays a positive role of autophagy in the early protection of endothelial cells. In this study, the expression of Vps15 was knocked down using the specific shRNA to investigate the effects of Vps15 on cell autophagy, senescence and apoptosis in HUVECs stimulated by AngII. The associated cell signaling pathway was also explored. MATERIALS AND METHODS: MDC staining was applied to show autophagic bodies. Cell senescence was detected using ß-galactosidase staining. Cell apoptosis was examined by flow cytometry using Annexin V-FITC/PI staining. And western blot was used to evaluate the ratio of LC3-II/I and the activation of associated cell signaling pathway. KEY FINDINGS: Cell autophagy induced by AngII was inhibited in HUVECs transfected with Vps15-shRNA, while cell senescence and apoptosis were enhanced. Rescue experiment revealed that cell autophagy was activated after Vps15 reexpression, while cell senescence and apoptosis were inhibited. Moreover, the phosphorylations of PDK1 and PKC substrates were increased after AngII treatment, which were decreased by Vps15 knockdown. Pretreatment of cells with the inhibitor for PDK1 or PKC attenuated cell autophagy after AngII stimulation, yet promoted cell senescence and apoptosis. The phosphorylations of both PDK1 and PKC were inhibited in cells pretreated with PDK1 inhibitor. Only the activation of PKC was inhibited when the inhibitor for pan-PKC was used. SIGNIFICANCE: These results suggested that Vps15 was critical to the protective autophagy in HUVECs induced by AngII, and PDK1/PKC signaling pathway was probably involved.


Asunto(s)
Angiotensina II/farmacología , Autofagia , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Apoptosis , Senescencia Celular , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteína Quinasa C/genética , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Interferente Pequeño/genética , Transducción de Señal , Proteína de Clasificación Vacuolar VPS15/genética
7.
Nat Commun ; 10(1): 1566, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952952

RESUMEN

The class 3 phosphoinositide 3-kinase (PI3K) is required for lysosomal degradation by autophagy and vesicular trafficking, assuring nutrient availability. Mitochondrial lipid catabolism is another energy source. Autophagy and mitochondrial metabolism are transcriptionally controlled by nutrient sensing nuclear receptors. However, the class 3 PI3K contribution to this regulation is unknown. We show that liver-specific inactivation of Vps15, the essential regulatory subunit of the class 3 PI3K, elicits mitochondrial depletion and failure to oxidize fatty acids. Mechanistically, transcriptional activity of Peroxisome Proliferator Activated Receptor alpha (PPARα), a nuclear receptor orchestrating lipid catabolism, is blunted in Vps15-deficient livers. We find PPARα repressors Histone Deacetylase 3 (Hdac3) and Nuclear receptor co-repressor 1 (NCoR1) accumulated in Vps15-deficient livers due to defective autophagy. Activation of PPARα or inhibition of Hdac3 restored mitochondrial biogenesis and lipid oxidation in Vps15-deficient hepatocytes. These findings reveal roles for the class 3 PI3K and autophagy in transcriptional coordination of mitochondrial metabolism.


Asunto(s)
Autofagia/fisiología , Metabolismo de los Lípidos , Mitocondrias/metabolismo , PPAR alfa/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Fenofibrato/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/fisiología , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transcripción Genética/efectos de los fármacos , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteína de Clasificación Vacuolar VPS15/fisiología
8.
Cancer Lett ; 442: 483-490, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423407

RESUMEN

While the recently developed antiandrogen Enzalutamide (Enz) can extend survival for 4.8 months in castration-resistant prostate cancer (CRPC) patients, eventually most of these CRPC patients may develop resistance to the Enz without a clear mechanism. Here we found the expression of Beclin 1 was decreased in both Enz-resistant (EnzR) cell lines (EnzR1-C4-2 and EnzR2-C4-2B) as compared to their parental Enz-sensitive (EnzS) (EnzS1-C4-2 and EnzS2-C4-2B) cells, and targeting the Beclin 1 could lead to increase the Enz-sensitivity in these two CRPC cell lines. Mechanism dissection revealed that Enz might function via altering the interaction between Beclin 1 and the androgen receptor (AR) to decrease the activity of Beclin 1/Vps15/Vps34 complex thus increasing the ERK-mediated growth factor signaling to alter the Enz sensitivity. Interrupting the AR-Beclin 1/ERK signaling with ectopic BECN1 or ERK inhibitor led to alter the Enz sensitivity in both EnzR1-C4-2 and EnzR2-C4-2B cells compared to EnzS1-C4-2 and EnzS2-C4-2B cells, respectively. Together, these results suggest that targeting this newly identified AR-Beclin 1 complex-mediated ERK growth factor signaling with small molecule ERK inhibitor may help potentially develop new therapies to better suppress the EnzR CRPC.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Beclina-1/metabolismo , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Receptores Androgénicos/metabolismo , Beclina-1/genética , Benzamidas , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Masculino , Nitrilos , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Transducción de Señal/efectos de los fármacos , Proteína de Clasificación Vacuolar VPS15/metabolismo
9.
Autophagy ; 14(12): 2104-2116, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30081750

RESUMEN

The initiation of macroautophagy/autophagy is tightly regulated by the upstream ULK1 kinase complex, which affects many downstream factors including the PtdIns3K complex. The phosphorylation of the right position at the right time on downstream molecules is governed by proper complex formation. One component of the ULK1 complex, ATG101, known as an accessory protein, is a stabilizer of ATG13 in cells. The WF finger region of ATG101 plays an important role in the recruitment of WIPI1 (WD repeat domain, phosphoinositide interacting protein 1) and ZFYVE1 (zinc finger FYVE-type containing 1). Here, we report that the C-terminal region identified in the structure of the human ATG101-ATG13HORMA complex is responsible for the binding of the PtdIns3K complex. This region adopts a ß-strand conformation in free ATG101, but either an α-helix or random coil in our ATG101-ATG13HORMA complex, which protrudes from the core and interacts with other molecules. The C-terminal deletion of ATG101 shows a significant defect in the interaction with PtdIns3K components and subsequently impairs autophagosome formation. This result clearly presents an additional role of ATG101 for bridging the ULK1 and PtdIns3K complexes in the mammalian autophagy process. Abbreviations: ATG: autophagy related; BECN1: beclin 1; GFP: green fluorescent protein; HORMA: Hop1p/Rev7p/MAD2; HsATG13HORMA: HORMA domain of ATG13 from Homo sapiens; KO: knockout; MAD2: mitotic arrest deficient 2 like 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K: phosphatidylinositol 3-kinase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SAXS: small-angle X-ray scattering; ScAtg13HORMA: HORMA domain of Atg13 from Sccharomyces cerevisiae; SEC-SAXS: size-exclusion chromatography with small-angle X-ray scattering; SpAtg13HORMA: HORMA domain of Atg13 from Schizosaccharomyces pombe; SQSTM1/p62: sequestosome 1; ULK1: unc51-like autophagy activating kinase 1; UVRAG: UV radiation resistance associated; WIPI1: WD repeat domain: phosphoinositide interacting 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Fosfatidilinositol 3-Quinasas Clase III/química , Cristalografía por Rayos X , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Masculino , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Dispersión del Ángulo Pequeño , Células Tumorales Cultivadas , Difracción de Rayos X
10.
Mol Biochem Parasitol ; 219: 33-41, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155083

RESUMEN

The class III phosphatidylinositol 3-kinase (PI3K) Vps34 is an important regulator of key cellular functions, including cell growth, survival, intracellular trafficking, autophagy and nutrient sensing. In yeast, Vps34 is associated with the putative serine/threonine protein kinase Vps15, however, its role in signaling has not been deeply evaluated. Here, we have identified the Vps15 orthologue in Trypanosoma brucei, named TbVps15. Knockdown of TbVps15 expression by interference RNA resulted in inhibition of cell growth and blockage of cytokinesis. Scanning electron microcopy revealed a variety of morphological abnormalities, with enlarged parasites and dividing cells that often exhibited a detached flagellum. Transmission electron microscopy analysis of TbVps15 RNAi cells showed an increase in intracellular vacuoles of the endomembrane system and some cells displayed an enlargement of the flagellar pocket, a common feature of cells defective in endocytosis. Moreover, uptake of dextran, transferrin and Concanavalin A was impaired. Finally, TbVps15 downregulation affected the PI3K activity, supporting the hypothesis that TbVps15 and TbVps34 form a complex as occurs in other organisms. In summary, we propose that TbVps15 has a role in the maintenance of cytokinesis, endocytosis and intracellular trafficking in T. brucei.


Asunto(s)
Citocinesis , Endocitosis , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/fisiología , Proteína de Clasificación Vacuolar VPS15/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Transmisión de Enfermedad Infecciosa , Técnicas de Silenciamiento del Gen , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Fosfatidilinositol 3-Quinasa/análisis , Unión Proteica , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética , Proteína de Clasificación Vacuolar VPS15/genética
11.
Mol Cell ; 67(3): 528-534.e3, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28757208

RESUMEN

The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) is required for the initiation of essentially all macroautophagic processes. PI3KC3-C1 consists of the lipid kinase catalytic subunit VPS34, the VPS15 scaffold, and the regulatory BECN1 and ATG14 subunits. The VPS34 catalytic domain and BECN1:ATG14 subcomplex do not touch, and it is unclear how allosteric signals are transmitted to VPS34. We used EM and crosslinking mass spectrometry to dissect five conformational substates of the complex, including one in which the VPS34 catalytic domain is dislodged from the complex but remains tethered by an intrinsically disordered linker. A "leashed" construct prevented dislodging without interfering with the other conformations, blocked enzyme activity in vitro, and blocked autophagy induction in yeast cells. This pinpoints the dislodging and tethering of the VPS34 catalytic domain, and its regulation by VPS15, as a master allosteric switch in autophagy induction.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Regulación Alostérica , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/genética , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Mutación , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Relación Estructura-Actividad , Proteína de Clasificación Vacuolar VPS15/química , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo
12.
Biol Cell ; 109(5): 190-209, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28248428

RESUMEN

BACKGROUND INFORMATION: Exosomes are small vesicles secreted from virtually every cell from bacteria to humans. Saccharomyces cerevisiae is a model system to study trafficking of small vesicles in response to changes in the environment. When yeast cells are grown in low glucose, vesicles carrying gluconeogenic enzymes are present as free vesicles and aggregated clusters in the cytoplasm. These vesicles are also secreted into the periplasm and account for more than 90% of total extracellular organelles, while less than 10% are larger 100-300 nm structures with unknown functions. When glucose is added to glucose-starved cells, secreted vesicles are endocytosed and then targeted to the vacuole. Recent secretomic studies indicated that more than 300 proteins involved in diverse biological functions are secreted during glucose starvation and endocytosed during glucose re-feeding. We hypothesised that extracellular vesicles are internalised using novel mechanisms independent of clathrin-mediated endocytosis. RESULTS: Our results showed that vesicles carrying metabolic enzymes were endocytosed at a fast rate, whereas vesicles carrying the heat shock protein Ssa1p were endocytosed at a slow rate. The PI3K regulator Vps15p is critical for the fast internalisation of extracellular vesicles. VPS15 regulates the distribution of the 100-300 nm organelles that contain the major eisosome protein Pil1p to the extracellular fraction. These Pil1p-containing structures were purified and showed unique cup-shape with their centres deeper than the peripheries. In the absence of VPS15, PIL1 or when PIL1 was mutated, the 100-300 nm structures were not observed in the extracellular fraction and the rapid internalisation of vesicles was impaired. CONCLUSIONS: We conclude that VPS15 regulates the distribution of the 100-300 nm Pil1p-containing organelles to the extracellular fraction required for fast endocytosis of vesicles carrying metabolic enzymes. This work provides the first evidence showing that Pil1p displayed unique distribution patterns in the intracellular and extracellular fractions. This work also demonstrates that endocytosis of vesicles is divided into a fast and a slow pathway. The fast pathway is the predominant pathway and is used by vesicles carrying metabolic enzymes. Cup-shaped Pil1p-containing structures are critical for the rapid endocytosis of vesicles into the cytoplasm. SIGNIFICANCE: This work provides the first evidence showing that Pil1p displayed unique distribution patterns in the intracellular and extracellular fractions. This work also demonstrates that endocytosis of vesicles is divided into a fast and a slow pathway. The fast pathway is the predominant pathway and is used by vesicles carrying metabolic enzymes. Cup-shaped Pil1p-containing structures are critical for the rapid endocytosis of vesicles into the cytoplasm.


Asunto(s)
Endocitosis , Vesículas Extracelulares/enzimología , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Actinas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/ultraestructura , Glucosa/farmacología , Mutación/genética , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/ultraestructura
13.
J Eukaryot Microbiol ; 64(3): 308-321, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27603757

RESUMEN

Autophagy is a degradative process by which eukaryotic cells digest their own components to provide aminoacids that may function as energy source under nutritional stress conditions. There is experimental evidence for autophagy in parasitic protists belonging to the family Trypanosomatidae. However, few proteins implicated in this process have been characterized so far in these parasites. Moreover, it has been shown that autophagy is involved in Trypanosoma cruzi differentiation and thus might have a role in pathogenicity. Here, we report the cloning and biochemical characterization of TcVps15. In addition, we demonstrate that TcVps15 interact with the PI3K TcVps34 and that both proteins associate with cellular membranes. Under nutritional stress conditions, TcVps15 and TcVps34 modify their subcellular distribution showing a partial co-localization in autophagosomes with TcAtg8.1 and using an active site TcVps15-mutated version (TcVps15-K219D-HA) we demonstrated that this relocalization depends on the TcVps15 catalytic activity. Overexpression of TcVps15-HA and TcVps15-K219D-HA also leads to increased accumulation of monodansylcadaverine (MDC) in autophagic vacuoles under nutritional stress conditions compared to wild-type cells. In addition, the MDC-specific activity shows to be significantly higher in TcVps15-HA overexpressing cells when compared with TcVps15-K219D-HA. Our results reveal for the first time a role of TcVps15 as a key regulator of TcVps34 enzymatic activity and implicate the TcVps15-Vps34 complex in autophagy in T. cruzi, exposing a new key pathway to explore novel chemotherapeutic targets.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Cadaverina/análogos & derivados , Cadaverina/metabolismo , Técnicas de Cultivo de Célula , Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/fisiología , Clonación Molecular , ADN Protozoario , Pruebas de Enzimas , Regulación Enzimológica de la Expresión Génica , Estadios del Ciclo de Vida , Mutagénesis Sitio-Dirigida , Fagosomas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Análisis de Secuencia , Transfección , Trypanosoma cruzi/citología , Trypanosoma cruzi/genética , Técnicas del Sistema de Dos Híbridos , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/fisiología , Vacuolas/metabolismo
14.
Cell Rep ; 13(7): 1407-1417, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26549445

RESUMEN

Autophagy is essential for maintaining tissue homeostasis. Although adaptors have been demonstrated to facilitate the assembly of the Atg14L-Beclin 1-Vps34-Vps15 complex, which functions in autophagosome formation, it remains unknown whether the autophagy machinery actively recruits such adaptors. WD40-repeat proteins are a large, highly conserved family of adaptors implicated in various cellular activities. However, the role of WD40-repeat-only proteins, such as RACK1, in postnatal mammalian physiology remains unknown. Here, we report that hepatocyte-specific RACK1 deficiency leads to lipid accumulation in the liver, accompanied by impaired Atg14L-linked Vps34 activity and autophagy. Further exploration indicates that RACK1 participates in the formation of autophagosome biogenesis complex upon its phosphorylation by AMPK at Thr50. Thr50 phosphorylation of RACK1 enhances its direct binding to Vps15, Atg14L, and Beclin 1, thereby promoting the assembly of the autophagy-initiation complex. These observations provide insight into autophagy induction and establish a pivotal role for RACK1 in postnatal mammalian physiology.


Asunto(s)
Adenilato Quinasa/metabolismo , Autofagia , Neuropéptidos/fisiología , Procesamiento Proteico-Postraduccional , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1 , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Hígado Graso/metabolismo , Femenino , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína , Receptores de Cinasa C Activada , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteínas de Transporte Vesicular/metabolismo
15.
Nat Commun ; 6: 8283, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26387534

RESUMEN

Defective hepatic insulin receptor (IR) signalling is a pathogenic manifestation of metabolic disorders including obesity and diabetes. The endo/lysosomal trafficking system may coordinate insulin action and nutrient homeostasis by endocytosis of IR and the autophagic control of intracellular nutrient levels. Here we show that class III PI3K--a master regulator of endocytosis, endosomal sorting and autophagy--provides negative feedback on hepatic insulin signalling. The ultraviolet radiation resistance-associated gene protein (UVRAG)-associated class III PI3K complex interacts with IR and is stimulated by insulin treatment. Acute and chronic depletion of hepatic Vps15, the regulatory subunit of class III PI3K, increases insulin sensitivity and Akt signalling, an effect that requires functional IR. This is reflected by FoxO1-dependent transcriptional defects and blunted gluconeogenesis in Vps15 mutant cells. On depletion of Vps15, the metabolic syndrome in genetic and diet-induced models of insulin resistance and diabetes is alleviated. Thus, feedback regulation of IR trafficking and function by class III PI3K may be a therapeutic target in metabolic conditions of insulin resistance.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Diabetes Mellitus/metabolismo , Retroalimentación Fisiológica , Homeostasis , Humanos , Resistencia a la Insulina , Hígado/enzimología , Masculino , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Clasificación Vacuolar VPS15/genética
16.
J Cell Sci ; 128(2): 207-17, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25568150

RESUMEN

Autophagy is a pivotal cytoprotective process that secures cellular homeostasis, fulfills essential roles in development, immunity and defence against pathogens, and determines the lifespan of eukaryotic organisms. However, autophagy also crucially contributes to the development of age-related human pathologies, including cancer and neurodegeneration. Macroautophagy (hereafter referred to as autophagy) clears the cytoplasm by stochastic or specific cargo recognition and destruction, and is initiated and executed by autophagy related (ATG) proteins functioning in dynamical hierarchies to form autophagosomes. Autophagosomes sequester cytoplasmic cargo material, including proteins, lipids and organelles, and acquire acidic hydrolases from the lysosomal compartment for cargo degradation. Prerequisite and essential for autophagosome formation is the production of phosphatidylinositol 3-phosphate (PtdIns3P) by phosphatidylinositol 3-kinase class III (PI3KC3, also known as PIK3C3) in complex with beclin 1, p150 (also known as PIK3R4; Vps15 in yeast) and ATG14L. Members of the human WD-repeat protein interacting with phosphoinositides (WIPI) family play an important role in recognizing and decoding the PtdIns3P signal at the nascent autophagosome, and hence function as autophagy-specific PtdIns3P-binding effectors, similar to their ancestral yeast Atg18 homolog. The PtdIns3P effector function of human WIPI proteins appears to be compromised in cancer and neurodegeneration, and WIPI genes and proteins might present novel targets for rational therapies. Here, we summarize the current knowledge on the roles of the four human WIPI proteins, WIPI1-4, in autophagy. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'ERES: sites for autophagosome biogenesis and maturation?' by Jana Sanchez-Wandelmer et al. (J. Cell Sci. 128, 185-192) and 'Membrane dynamics in autophagosome biogenesis' by Sven R. Carlsson and Anne Simonsen (J. Cell Sci. 128, 193-205).


Asunto(s)
Autofagia/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Fagosomas/genética , Fosfatos de Fosfatidilinositol/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Relacionadas con la Autofagia , Beclina-1 , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas Nucleares/metabolismo , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Factores de Transcripción/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo
17.
Cell Microbiol ; 17(2): 269-87, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25223215

RESUMEN

The yeast class III phosphoinositide 3-kinase (PI3K) that catalyses production of the lipid signalling molecule, phosphatidylinositol-3-phosphate, is primarily implicated in vesicle-mediated transport and autophagy. In this study, we identified, through a genetic screen, the Candida glabrata CgVPS15 gene, an orthologue of the Saccharomyces cerevisiae PI3K regulatory subunit-encoding open reading frame (ORF) to be required for impairment of phagosomal maturation in human macrophages. We also disrupted catalytic subunit of the C. glabrata PI3K complex, CgVps34, and found it to be pivotal to arrest mature phagolysosome biogenesis. Further, deletion of either CgVPS15 or CgVPS34 rendered C. glabrata cells hyperadherent to epithelial cells and susceptible to the antimicrobial arsenal of primary murine and cultured human macrophages and diverse stresses. Despite no growth retardation at 37°C, Cgvps15Δ and Cgvps34Δ mutants were severely virulence attenuated in mice. We demonstrate that trafficking and/or processing of the vacuolar lumenal hydrolase, carboxypeptidase Y, and the major adhesin, Epa1, rely on PI3K regulatory mechanisms in C. glabrata. By disrupting autophagy-related PI3K complex genes, we show that C. glabrata PI3K-impeded phagolysosomal acidification is primarily owing to its role in cellular trafficking events. Altogether, our findings underscore the essentiality of PI3K signalling in modulation of host immune response, intracellular survival and virulence in C. glabrata.


Asunto(s)
Candida glabrata/enzimología , Candida glabrata/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Interacciones Huésped-Patógeno , Fagosomas/metabolismo , Fagosomas/microbiología , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Candida glabrata/crecimiento & desarrollo , Candida glabrata/inmunología , Células Cultivadas , Fosfatidilinositol 3-Quinasas Clase III/genética , Eliminación de Gen , Humanos , Ratones , Viabilidad Microbiana , Temperatura , Proteína de Clasificación Vacuolar VPS15/genética
18.
J Microbiol ; 52(10): 842-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25163837

RESUMEN

The Saccharomyces cerevisiae NatB N-terminal acetylase contains a catalytic subunit Naa20 and an auxiliary subunit Naa25. To elucidate the cellular functions of the NatB, we utilized the Synthetic Genetic Array to screen for genes that are essential for cell growth in the absence of NAA20. The genome-wide synthetic lethal screen of NAA20 identified genes encoding for serine/threonine protein kinase Vps15, 1,3-beta-glucanosyltransferase Gas5, and a catabolic repression regulator Mig3. The present study suggests that the catalytic activity of the NatB N-terminal aceytase is involved in vacuolar protein sorting and cell wall maintenance.


Asunto(s)
Eliminación de Gen , Genes Esenciales , Acetiltransferasa B N-Terminal/genética , Acetiltransferasa B N-Terminal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/fisiología , Dominio Catalítico/genética , Genes Fúngicos , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo
19.
Biochem J ; 461(2): 315-22, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24785657

RESUMEN

Macroautophagy is a physiological cellular response to nutrient stress, which leads to the engulfment of cytosolic contents by a double-walled membrane structure, the phagophore. Phagophores seal to become autophagosomes, which then fuse with lysosomes to deliver their contents for degradation. Macroautophagy is regulated by numerous cellular factors, including the Class III PI3K (phosphoinositide 3-kinase) Vps34 (vacuolar protein sorting 34). The autophagic functions of Vps34 require its recruitment to a complex that includes Vps15, Beclin-1 and Atg14L (autophagy-related 14-like protein) and is known as Vps34 Complex I. We have now identified NRBF2 (nuclear receptor-binding factor 2) as a new member of Vps34 Complex I. NRBF2 binds to complexes that include Vps34, Vps15, Beclin-1 and ATG-14L, but not the Vps34 Complex II component UVRAG (UV radiation resistance-associated gene). NRBF2 directly interacts with Vps15 via the Vps15 WD40 domain as well as other regions of Vps15. The formation of GFP-LC3 (light chain 3) punctae and PE (phosphatidylethanolamine)-conjugated LC3 (LC3-II) in serum-starved cells was inhibited by NRBF2 knockdown in the absence and presence of lysosomal inhibitors, and p62 levels were increased. Thus NRBF2 plays a critical role in the induction of starvation-induced autophagy as a specific member of Vps34 Complex I.


Asunto(s)
Autofagia/genética , Fosfatidilinositol 3-Quinasas Clase III/genética , Transactivadores/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1 , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fagosomas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Vacuolas/metabolismo
20.
Nat Cell Biol ; 16(5): 401-14, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705551

RESUMEN

The plasma membrane contributes to the formation of autophagosomes, the double-membrane vesicles that sequester cytosolic cargo and deliver it to lysosomes for degradation during autophagy. In this study, we have identified a regulatory role for connexins (Cx), the main components of plasma membrane gap junctions, in autophagosome formation. We have found that plasma-membrane-localized Cx proteins constitutively downregulate autophagy through a direct interaction with several autophagy-related proteins involved in the initial steps of autophagosome formation, such as Atg16 and components of the PI(3)K autophagy initiation complex (Vps34, Beclin-1 and Vps15). On nutrient starvation, this inhibitory effect is released by the arrival of Atg14 to the Cx-Atg complex. This promotes the internalization of Cx-Atg along with Atg9, which is also recruited to the plasma membrane in response to starvation. Maturation of the Cx-containing pre-autophagosomes into autophagosomes leads to degradation of these endogenous inhibitors, allowing for sustained activation of autophagy.


Asunto(s)
Autofagia , Membrana Celular/metabolismo , Conexina 43/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Conexina 43/deficiencia , Conexina 43/genética , Células HeLa , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , Ratas , Ratas Wistar , Transducción de Señal , Inanición/metabolismo , Inanición/patología , Factores de Tiempo , Transfección , Vesículas Transportadoras/ultraestructura , Proteína de Clasificación Vacuolar VPS15/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA