Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Mol Oncol ; 18(6): 1510-1530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459621

RESUMEN

The transcription factor receptor-interacting protein 140 (RIP140) regulates intestinal homeostasis and tumorigenesis through Wnt signaling. In this study, we investigated its effect on the Notch/HES1 signaling pathway. In colorectal cancer (CRC) cell lines, RIP140 positively regulated HES1 gene expression at the transcriptional level via a recombining binding protein suppressor of hairless (RBPJ)/neurogenic locus notch homolog protein 1 (NICD)-mediated mechanism. In support of these in vitro data, RIP140 and HES1 expression significantly correlated in mouse intestine and in a cohort of CRC samples, thus supporting the positive regulation of HES1 gene expression by RIP140. Interestingly, when the Notch pathway is fully activated, RIP140 exerted a strong inhibition of HES1 gene transcription controlled by the level of HES1 itself. Moreover, RIP140 directly interacts with HES1 and reversed its mitogenic activity in human CRC cells. In line with this observation, HES1 levels were associated with a better patient survival only when tumors expressed high levels of RIP140. Our data identify RIP140 as a key regulator of the Notch/HES1 signaling pathway, with a dual effect on HES1 gene expression at the transcriptional level and a strong impact on colon cancer cell proliferation.


Asunto(s)
Proliferación Celular , Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica , Proteína de Interacción con Receptores Nucleares 1 , Factor de Transcripción HES-1 , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Transducción de Señal , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética
2.
J Biochem ; 175(3): 323-333, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38102728

RESUMEN

Nuclear receptor interacting protein 1 (NRIP1) is a transcription cofactor that regulates the activity of nuclear receptors and transcription factors. Functional expression of NRIP1 has been identified in multiple cancers. However, the expression and function of NRIP1 in lung adenocarcinoma have remained unclear. Thus, we aimed to clarify the NRIP1 expression and its functions in lung adenocarcinoma cells. NRIP1 and Ki-67 were immunostained in the tissue microarray section consisting of 64 lung adenocarcinoma cases, and the association of NRIP1 immunoreactivity with clinical phenotypes was examined. Survival analysis was performed in lung adenocarcinoma data from The Cancer Genome Atlas (TCGA). Human A549 lung adenocarcinoma cell line with an NRIP1-silencing technique was used in vitro study. Forty-three of 64 cases were immunostained with NRIP1. Ki-67-positive cases were more frequent in NRIP1-positive cases as opposed to NRIP1-negative cases. Higher NRIP1 mRNA expression was associated with poor prognosis in the TCGA lung adenocarcinoma data. NRIP1 was mainly located in the nucleus of A549 cells. NRIP1 silencing significantly reduced the number of living cells, suppressed cell proliferation, and induced apoptosis. These results suggest that NRIP1 participates in the progression and development of lung adenocarcinoma. Targeting NRIP1 may be a possible therapeutic strategy against lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Proliferación Celular/genética , Línea Celular Tumoral , Apoptosis/genética , Neoplasias Pulmonares/metabolismo , Regulación Neoplásica de la Expresión Génica
3.
Environ Toxicol ; 38(11): 2632-2644, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37466171

RESUMEN

Biliary tract cancer (BTC) is a devastating malignancy that is notoriously difficult to diagnose and is associated with high mortality. Circular RNA (circRNA) is a class of endogenous non-coding RNA which has been regarded as the key regulator of tumor initiation and progression, including BTC. Circular RNA nuclear receptor interacting protein 1 (circ_NRIP1), as a circular RNA, is abnormally expressed in many human tumors and exhibits diverse functions in cancer progression. However, its biological significance in BTC has not been thoroughly investigated. In this research, we elucidated that circ_NRIP1 was notably overexpressed in both BTC tissues and cells. We further established a correlation between circ_NRIP1 expression and clinicopathological features in BTC patients, highlighting its clinical relevance. Through functional assays, we observed that knockdown of circ_NRIP1 significantly inhibited tumor cell proliferation, invasion, stemness maintenance, and epithelial-mesenchymal transition, indicating its active involvement in promoting BTC progression. Additionally, it attenuated growth of xenograft and metastasis models. Mechanically, we revealed that circ_NRIP1 served as the competing endogenous RNA to sequester miR-515-5p through complementary base pairing mechanism, thereby upregulated AKT2 expression and indirectly activated PI3K/AKT/mTOR signaling pathway. Generally, targeting the circ_NRIP1/miR-515-5p/AKT2 axis and aberrant activation of the PI3K/AKT/mTOR pathway may hold promising therapeutic strategies for BTC. Our research contributes to a better understanding of the underlying biological basis of BTC and paves the way for the development of innovative treatment approaches.


Asunto(s)
Neoplasias del Sistema Biliar , MicroARNs , Humanos , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transición Epitelial-Mesenquimal/genética , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular/genética , Neoplasias del Sistema Biliar/genética , Movimiento Celular
4.
Mol Metab ; 76: 101780, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37482187

RESUMEN

OBJECTIVES: Nuclear receptor interacting protein 1 (NRIP1) suppresses energy expenditure via repression of nuclear receptors, and its depletion markedly elevates uncoupled respiration in mouse and human adipocytes. We tested whether NRIP1 deficient adipocytes implanted into obese mice would enhance whole body metabolism. Since ß-adrenergic signaling through cAMP strongly promotes adipocyte thermogenesis, we tested whether the effects of NRIP1 knock-out (NRIP1KO) require the cAMP pathway. METHODS: NRIP1KO adipocytes were implanted in recipient high-fat diet (HFD) fed mice and metabolic cage studies conducted. The Nrip1 gene was disrupted by CRISPR in primary preadipocytes isolated from control vs adipose selective GsαKO (cAdGsαKO) mice prior to differentiation to adipocytes. Protein kinase A inhibitor was also used. RESULTS: Implanting NRIP1KO adipocytes into HFD fed mice enhanced whole-body glucose tolerance by increasing insulin sensitivity, reducing adiposity, and enhancing energy expenditure in the recipients. NRIP1 depletion in both control and GsαKO adipocytes was equally effective in upregulating uncoupling protein 1 (UCP1) and adipocyte beiging, while ß-adrenergic signaling by CL 316,243 was abolished in GsαKO adipocytes. Combining NRIP1KO with CL 316,243 treatment synergistically increased Ucp1 gene expression and increased the adipocyte subpopulation responsive to beiging. Estrogen-related receptor α (ERRα) was dispensable for UCP1 upregulation by NRIPKO. CONCLUSIONS: The thermogenic effect of NRIP1 depletion in adipocytes causes systemic enhancement of energy expenditure when such adipocytes are implanted into obese mice. Furthermore, NRIP1KO acts independently but cooperatively with the cAMP pathway in mediating its effect on adipocyte beiging.


Asunto(s)
Adipocitos , Transducción de Señal , Ratones , Humanos , Animales , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Ratones Obesos , Adipocitos/metabolismo , Obesidad/metabolismo , Termogénesis/genética
5.
Tohoku J Exp Med ; 260(3): 193-204, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37045786

RESUMEN

Oral squamous cell carcinoma (OSCC) remains the most prevalent malignance in the head and neck with highly aggressive attributes. This study investigates the functions of nuclear receptor interacting protein 1 (NRIP1) and its target transcripts in the progression of OSCC. By analyzing four OSCC-related Gene Expression Omnibus (GEO) datasets (GSE9844, GSE23558, GSE25104 and GSE74530) and querying bioinformatics systems, we obtained NRIP1 as an aberrantly highly expressed transcription factor in OSCC. Increased NRIP1 was detected in OSCC cell lines. Artificial downregulation of NRIP1 significantly suppressed proliferation, migration and invasion, resistance to apoptosis, tumorigenicity, and in vivo metastatic potential of OSCC cells. Moreover, the bioinformatics analyses suggested nuclear receptor binding SET domain protein 2 (NSD2) as a target of NRIP1 and DGCR8 microprocessor complex subunit (DGCR8) as a target of NSD2. Indeed, we validated by chromatin immunoprecipitation and luciferase assays that NRIP1 activated the transcription of NSD2, and NSD2 increased DGCR8 transcription by modulating histone methylation near the DGCR8 promoter. Either NSD2 or DGCR8 upregulation in OSCC cells rescued their malignant properties. Collectively, this study demonstrates that NRIP1 augments malignant properties of OSCC cells by activating NSD2-mediated histone methylation of DGCR8.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , MicroARNs/genética , Histonas/genética , Histonas/metabolismo , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Proteínas de Unión al ARN/metabolismo , Metilación de ADN , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
6.
J Clin Invest ; 133(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36927960

RESUMEN

During the development of heart failure (HF), the capacity for cardiomyocyte (CM) fatty acid oxidation (FAO) and ATP production is progressively diminished, contributing to pathologic cardiac hypertrophy and contractile dysfunction. Receptor-interacting protein 140 (RIP140, encoded by Nrip1) has been shown to function as a transcriptional corepressor of oxidative metabolism. We found that mice with striated muscle deficiency of RIP140 (strNrip1-/-) exhibited increased expression of a broad array of genes involved in mitochondrial energy metabolism and contractile function in heart and skeletal muscle. strNrip1-/- mice were resistant to the development of pressure overload-induced cardiac hypertrophy, and CM-specific RIP140-deficient (csNrip1-/-) mice were protected against the development of HF caused by pressure overload combined with myocardial infarction. Genomic enhancers activated by RIP140 deficiency in CMs were enriched in binding motifs for transcriptional regulators of mitochondrial function (estrogen-related receptor) and cardiac contractile proteins (myocyte enhancer factor 2). Consistent with a role in the control of cardiac fatty acid oxidation, loss of RIP140 in heart resulted in augmented triacylglyceride turnover and fatty acid utilization. We conclude that RIP140 functions as a suppressor of a transcriptional regulatory network that controls cardiac fuel metabolism and contractile function, representing a potential therapeutic target for the treatment of HF.


Asunto(s)
Insuficiencia Cardíaca , Proteína de Interacción con Receptores Nucleares 1 , Animales , Ratones , Cardiomegalia/metabolismo , Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo
7.
Cancer Sci ; 114(6): 2318-2334, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36851875

RESUMEN

Although circular RNAs (circRNAs) are involved in cell proliferation, differentiation, apoptosis, and invasion, the underlying regulatory mechanisms of circRNAs in thyroid cancer have not been fully elucidated. This article aimed to study the role of circRNA regulated by N6-methyladenosine modification in papillary thyroid cancer (PTC). Quantitative real-time PCR, western blotting, and immunohistochemistry were used to investigate the expressions of circRNA nuclear receptor-interacting protein 1 (circNRIP1) in PTC tissues and adjacent noncancerous thyroid tissues. In vitro and in vivo assays were carried out to assess the effects of circNRIP1 on PTC glycolysis and growth. The N6-methyladenosine mechanisms of circNRIP1 were evaluated by methylated RNA immunoprecipitation sequencing, luciferase reporter gene, and RNA stability assays. Results showed that circNRIP1 levels were significantly upregulated in PTC tissues. Furthermore, elevated circNRIP1 levels in PTC patients were correlated with high tumor lymph node metastasis stage and larger tumor sizes. Functionally, circNRIP1 significantly promoted glycolysis, PTC cell proliferation in vitro, and tumorigenesis in vivo. Mechanistically, circNRIP1 acted as a sponge for microRNA (miR)-541-5p and miR-3064-5p and jointly upregulated pyruvate kinase M2 (PKM2) expression. Knockdown of m6 A demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) significantly enhanced circNRIP1 m6 A modification and upregulated its expression. These results show that ALKBH5 knockdown upregulates circNRIP1, thus promoting glycolysis in PTC cells. Therefore, circNRIP1 can be a prognostic biomarker and therapeutic target for PTC by acting as a sponge for oncogenic miR-541-5p and miR-3064-5p to upregulate PKM2 expression.


Asunto(s)
MicroARNs , Neoplasias de la Tiroides , Humanos , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Movimiento Celular/genética , Neoplasias de la Tiroides/patología , Cáncer Papilar Tiroideo/patología , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
8.
Cell Mol Life Sci ; 79(5): 270, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35501580

RESUMEN

Glycolysis is essential to support cancer cell proliferation, even in the presence of oxygen. The transcriptional co-regulator RIP140 represses the activity of transcription factors that drive cell proliferation and metabolism and plays a role in mammary tumorigenesis. Here we use cell proliferation and metabolic assays to demonstrate that RIP140-deficiency causes a glycolysis-dependent increase in breast tumor growth. We further demonstrate that RIP140 reduces the transcription of the glucose transporter GLUT3 gene, by inhibiting the transcriptional activity of hypoxia inducible factor HIF-2α in cooperation with p53. Interestingly, RIP140 expression was significantly associated with good prognosis only for breast cancer patients with tumors expressing low GLUT3, low HIF-2α and high p53, thus confirming the mechanism of RIP140 anti-tumor activity provided by our experimental data. Overall, our work establishes RIP140 as a critical modulator of the p53/HIF cross-talk to inhibit breast cancer cell glycolysis and proliferation.


Asunto(s)
Neoplasias de la Mama , Proteína p53 Supresora de Tumor , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/genética , Femenino , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Glucólisis/genética , Humanos , Hipoxia , Proteína de Interacción con Receptores Nucleares 1 , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Aging (Albany NY) ; 14(8): 3529-3539, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35460552

RESUMEN

Recently, evidence has shown that nuclear receptor interacting protein 1 (NRIP1) is involved in acute lung injury (ALI) progression, but the specific mechanism remains unclear. Pseudomonas aeruginosa (PA)-treated TC-1 cells were transfected with pcDNA-NRIP1 or si-NRIP1, and we found that overexpression of NRIP1 inhibited cell viability and promoted cell apoptosis and secretion of inflammatory factors, and transfection of si-NRIP1 reversed these effects. Furthermore, online bioinformatics analysis and co-immunoprecipitation assay results indicated that NRIP1 could bind to Ubiquitin Conjugating Enzyme E2I (UBE2I), and promoted UBE2I expression. Next, the PA-treated TC-1 cells were transfected with si-NRIP1 alone or together with pcDNA-UBE2I, and we observed that transfection with si-NRIP1 inhibited UBE2I expression, promoted cell viability, and reduced cell apoptosis and inflammatory factor secretion, which could be reversed by UBE2I overexpression. Moreover, UBE2I could bind to protein inhibitor of activated signal transducer and activators of transcription 1 (PIAS1). Overexpression of NRIP1 promoted UBE2I expression and inhibited PIAS1 expression, and NRIP1 promoted PIAS1 ubiquitination and degradation by UBE2I. The PA-treated TC-1 cells were transfected with si-UBE2I alone or together with si-PIAS1, and the results indicated that transfection of si-UBE2I had the same effect as transfection of si-NRIP1. Finally, our in vivo findings indicated that the expression of NRIP1 and UBE2I was decreased, and PIAS1 expression was increased, in the lung tissues of mice with NRIP1 knocked-down, and the inflammatory infiltration in the lung tissue was reduced. In conclusion, our study demonstrates that NRIP1 aggravates PA-induced lung injury in mice by promoting PIAS1 ubiquitination.


Asunto(s)
Lesión Pulmonar Aguda , Proteínas Inhibidoras de STAT Activados , Animales , Ratones , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Pseudomonas aeruginosa/metabolismo , Ubiquitinación
10.
Bioengineered ; 13(2): 3981-3992, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35113002

RESUMEN

The main pathological feature of acute lung injury (ALI) is pulmonary edema caused by increased permeability of pulmonary microvascular endothelial cells (PMVECs). LPS was has been confirmed to lead to cell damage and barrier dysfunction in PMVECs. Furthermore, receptor interacting protein 140 (RIP140) was discovered to be increased in LPS-induced human pulmonary microvascular endothelial cells (HPMECs), but the mechanism of RIP140 on LPS-induced HPMECs has not been investigated. In this study, an acute lung injury model was constructed in LPS-induced HPMECs. After RIP140 was downregulated, inflammation, apoptosis and cell permeability levels were detected by RT-qPCR, TUNEL staining and FITC-Dextran, respectively. Western blotting was used to detect the protein levels of related factors. The binding of RIP140 and C-terminal binding protein 2 (CTBP2) was predicted by database and verified by Co-IP. Subsequently, CTBP2 overexpression was transfected into cells and the above experiments were performed again. The results showed that inflammation, apoptosis and permeability levels of LPS-induced HPMECs were remarkably increased compared to the untreated control group. However, these levels were suppressed after RIP140 was silenced compared to the LPS-induced HPMECs group. Notably, the Co-IP study demonstrated that RIP140 and CTBP2 interacted with each other. Moreover, CTBP2 overexpression reversed the inhibitory effects of RIP140 silencing on LPS-induced inflammation, apoptosis and permeability levels in HPMECs. Together, the study found that interference of RIP140 could alleviate LPS-induced inflammation, apoptosis and permeability in HPMECs by regulating CTBP2.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Apoptosis/genética , Proteínas Co-Represoras/genética , Inflamación/genética , Pulmón , Proteína de Interacción con Receptores Nucleares 1/genética , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/inducido químicamente , Lipopolisacáridos/efectos adversos , Pulmón/citología , Pulmón/metabolismo
11.
Neuromolecular Med ; 24(2): 113-124, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34075570

RESUMEN

Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Co-Represor 1 de Receptor Nuclear , Temozolomida , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioma/tratamiento farmacológico , Glioma/genética , Humanos , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Proteína de Interacción con Receptores Nucleares 1 , Temozolomida/farmacología
12.
Haematologica ; 107(8): 1758-1772, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34854277

RESUMEN

Aberrant expression of Ecotropic Viral Integration Site 1 (EVI1) is a hallmark of acute myeloid leukemia (AML) with inv(3) or t(3;3), which is a disease subtype with especially poor outcome. In studying transcriptomes from AML patients with chromosome 3q rearrangements, we identified a significant upregulation of the Nuclear Receptor Interacting Protein 1 (NRIP1) as well as its adjacent non-coding RNA LOC101927745. Utilizing transcriptomic and epigenomic data from over 900 primary samples from patients as well as genetic and transcriptional engineering approaches, we have identified several mechanisms that can lead to upregulation of NRIP1 in AML. We hypothesize that the LOC101927745 transcription start site harbors a context-dependent enhancer that is bound by EVI1, causing upregulation of NRIP1 in AML with chromosome 3 abnormalities. Furthermore, we showed that NRIP1 knockdown negatively affects the proliferation and survival of 3qrearranged AML cells and increases their sensitivity to all-trans retinoic acid, suggesting that NRIP1 is relevant for the pathogenesis of inv(3)/t(3;3) AML and could serve as a novel therapeutic target in myeloid malignancies with 3q abnormalities.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de Interacción con Receptores Nucleares 1 , Aberraciones Cromosómicas , Cromosomas/metabolismo , Humanos , Leucemia Mieloide Aguda/patología , Proteína del Locus del Complejo MDS1 y EV11/genética , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Receptores de Ácido Retinoico/genética
13.
Am J Med Genet A ; 188(1): 310-313, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525250

RESUMEN

Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of early-onset chronic kidney disease. In a previous study, we identified a heterozygous truncating variant in nuclear receptor-interacting protein 1 (NRIP1) as CAKUT causing via dysregulation of retinoic acid signaling. This large family remains the only family with NRIP1 variant reported so far. Here, we describe one additional CAKUT family with a truncating variant in NRIP1. By whole-exome sequencing, we identified one heterozygous frameshift variant (p.Asn676Lysfs*27) in an isolated CAKUT patient with bilateral hydroureteronephrosis and right grade V vesicoureteral reflux (VUR) and in the affected father with left renal hypoplasia. The variant is present twice in a heterozygous state in the gnomAD database of 125,000 control individuals. We report the second CAKUT family with a truncating variant in NRIP1, confirming that loss-of-function mutations in NRIP1 are a novel monogenic cause of human autosomal dominant CAKUT.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Reflujo Vesicoureteral , Árabes , Humanos , Riñón/anomalías , Proteína de Interacción con Receptores Nucleares 1/genética , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Secuenciación del Exoma
14.
Neuropathol Appl Neurobiol ; 48(1): e12747, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34237158

RESUMEN

AIMS: Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS: We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS: Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.


Asunto(s)
Adrenoleucodistrofia , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/uso terapéutico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animales , Modelos Animales de Enfermedad , Homeostasis , Ratones , Mitocondrias/metabolismo , Proteína de Interacción con Receptores Nucleares 1
15.
Nat Commun ; 12(1): 6931, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836963

RESUMEN

Obesity and type 2 diabetes are associated with disturbances in insulin-regulated glucose and lipid fluxes and severe comorbidities including cardiovascular disease and steatohepatitis. Whole body metabolism is regulated by lipid-storing white adipocytes as well as "brown" and "brite/beige" adipocytes that express thermogenic uncoupling protein 1 (UCP1) and secrete factors favorable to metabolic health. Implantation of brown fat into obese mice improves glucose tolerance, but translation to humans has been stymied by low abundance of primary human beige adipocytes. Here we apply methods to greatly expand human adipocyte progenitors from small samples of human subcutaneous adipose tissue and then disrupt the thermogenic suppressor gene NRIP1 by CRISPR. Ribonucleoprotein consisting of Cas9 and sgRNA delivered ex vivo are fully degraded by the human cells following high efficiency NRIP1 depletion without detectable off-target editing. Implantation of such CRISPR-enhanced human or mouse brown-like adipocytes into high fat diet fed mice decreases adiposity and liver triglycerides while enhancing glucose tolerance compared to implantation with unmodified adipocytes. These findings advance a therapeutic strategy to improve metabolic homeostasis through CRISPR-based genetic enhancement of human adipocytes without exposing the recipient to immunogenic Cas9 or delivery vectors.


Asunto(s)
Adipocitos Marrones/trasplante , Sistemas CRISPR-Cas/genética , Intolerancia a la Glucosa/terapia , Obesidad/terapia , Termogénesis/genética , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Células Madre Adultas/fisiología , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Edición Génica/métodos , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , ARN Guía de Kinetoplastida/genética , Grasa Subcutánea/citología
16.
Sci Rep ; 11(1): 21159, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707101

RESUMEN

Using chip array assays, we identified differentially expressed genes via a comparison between luminal A breast cancer subtype and normal mammary ductal cells from healthy donors. In silico analysis confirmed by western blot and immunohistochemistry revealed that C-JUN and C-FOS transcription factors are activated in luminal A patients as potential upstream regulators of these differentially expressed genes. Using a chip-on-chip assay, we identified potential C-JUN and C-FOS targets. Among these genes, the NRIP1 gene was revealed to be targeted by C-JUN and C-FOS. This was confirmed after identification and validation with transfection assays specific binding of C-JUN and C-FOS at consensus binding sites. NRIP1 is not only upregulated in luminal A patients and cell lines but also regulates breast cancer-related genes, including PR, ESR1 and CCND1. These results were confirmed by NRIP1 siRNA knockdown and chip array assays, thus highlighting the putative role of NRIP1 in PGR, ESR1 and CCND1 transcriptional regulation and suggesting that NRIP1 could play an important role in breast cancer ductal cell initiation.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Adulto , Anciano , Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células MCF-7 , Persona de Mediana Edad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de Interacción con Receptores Nucleares 1/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transcriptoma
17.
In Vivo ; 35(5): 2631-2640, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34410950

RESUMEN

BACKGROUND: The aim of the study was to analyze the expression of nuclear receptor interacting protein 1 (NRIP1) and its partner ligand-dependent nuclear receptor co-repressor (LCOR) in endometrioid endometrial cancer and to investigate their association with estrogen receptor (ER), progesterone receptor (PR), Ki-67, clinicopathological parameters and patient survival. MATERIALS AND METHODS: Immunohistochemical evaluation was carried out to investigate the subcellular expression of NRIP1 and LCOR in endometrioid endometrial cancer samples. Statistical analysis was used to identify the correlations of NRIP1 and LCOR expression with clinicopathological variables and to estimate the survival rates. RESULTS: Endometrial cancer tissues exhibited higher expression of NRIP1 and LCOR in comparison with the normal tissues. Cytoplasmic LCOR expression was positively associated with ER and PR expression, while cytoplasmic NRIP1 expression was positively associated with ER expression. Moreover, cytoplasmic expression of NRIP1 was positively associated with Ki-67. CONCLUSION: Our study demonstrated that high cytoplasmic expression of LCOR may predict a longer overall survival of patients with endometrioid endometrial cancer. Patients with tumors expressing low levels of LCOR showed a worse survival compared to those expressing high levels.


Asunto(s)
Carcinoma Endometrioide , Neoplasias Endometriales , Proteína de Interacción con Receptores Nucleares 1/genética , Proteínas Represoras/genética , Biomarcadores de Tumor/genética , Carcinoma Endometrioide/genética , Neoplasias Endometriales/genética , Femenino , Humanos , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
18.
Oncol Rep ; 46(4)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34396434

RESUMEN

The present study aimed to investigate the influence of circular RNA nuclear receptor­interacting protein 1 (circNRIP1) on the chemotherapeutic effect of 5­fluorouracil (5­FU) in colorectal cancer (CRC) and reveal its potential molecular mechanisms. The effects of circNRIP1 on cell proliferation, migration and invasion, and apoptosis were evaluated using Cell Counting Kit­8, Transwell and flow cytometric assays, respectively. A dual­luciferase reporter assay was performed to verify the potential interaction between circNRIP1 and microRNA (miR)­532­3p. The results of the present study indicated that circNRIP1 was upregulated in CRC and its increased expression was associated with CRC progression. Furthermore, overexpression of circNRIP1 promoted CRC cell proliferation, invasion and migration, while it inhibited apoptosis. Knockdown of circNRIP1 significantly enhanced the 5­FU­induced inhibition of the viability of HCT116 and SW480 cells. Bioinformatics analysis predicted that miR­532­3p was a direct target of circNRIP1, which was further confirmed by a dual­luciferase reporter assay. miR­532­3p silencing reversed the effects of circNRIP1 knockdown on the sensitivity of 5­FU in the chemotherapy of CRC. The results suggested that circNRIP1 and miR­532­3p may be utilized to improve the diagnosis of CRC and serve as diagnostic markers. In conclusion, overexpression of circNRIP1 promoted the progression of CRC, while circNRIP1 silencing sensitized CRC cells to 5­FU via sponging miR­532­3p.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Fluorouracilo/farmacología , MicroARNs/genética , Proteína de Interacción con Receptores Nucleares 1/genética , ARN Circular/genética , Adulto , Anciano , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Regulación hacia Arriba
19.
Eur J Histochem ; 65(3)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34218653

RESUMEN

Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide. Recently, nucleolar complex protein 14 (NOP14) has been discovered to play a critical role in cancer development and progression, but the mechanisms of action of NOP14 in colorectal cancer remain to be elucidated. In this study, we used collected colorectal cancer tissues and cultured colorectal cancer cell lines (SW480, HT29, HCT116, DLD1, Lovo), and measured the mRNA and protein expression levels of NOP14 in colorectal cancer cells using qPCR and western blotting. GFP-NOP14 was constructed and siRNA fragments against NOP14 were synthesized to investigate the importance of NOP14 for the development of colorectal cells. Transwell migration assays were used to measure cell invasion and migration, CCK-8 kits were used to measure cell activity, and flow cytometry was applied to the observation of apoptosis. We found that both the mRNA and protein levels of NOP14 were significantly upregulated in CRC tissues and cell lines. Overexpression of GFP-NOP14 markedly promoted the growth, migration, and invasion of the CRC cells HT19 and SW480, while genetic knockdown of NOP14 inhibited these behaviors. Overexpression of NOP14 promoted the expression of NRIP1 and phosphorylated inactivation of GSK-3ß, leading to the upregulation of ß-catenin. Genetic knockdown of NOP14 had the opposite effect on NRIP1/GSK-3/ß-catenin signals. NOP14 therefore appears to be overexpressed in clinical samples and cell lines of colorectal cancer, and promotes the proliferation, growth, and metastasis of colorectal cancer cells by modulating the NRIP1/GSK-3ß/ß-catenin signaling pathway.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas Nucleares/metabolismo , Apoptosis/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Neoplasias Colorrectales/fisiopatología , Regulación Neoplásica de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Invasividad Neoplásica/fisiopatología , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
20.
Cell Commun Signal ; 19(1): 69, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193153

RESUMEN

BACKGROUND: Intercellular communications are important for maintaining normal physiological processes. An important intercellular communication is mediated by the exchange of membrane-enclosed extracellular vesicles. Among various vesicles, exosomes can be detected in a wide variety of biological systems, but the regulation and biological implication of exosome secretion/uptake remains largely unclear. METHODS: Cellular retinoic acid (RA) binding protein 1 (Crabp1) knockout (CKO) mice were used for in vivo studies. Extracellular exosomes were monitored in CKO mice and relevant cell cultures including embryonic stem cell (CJ7), macrophage (Raw 264.7) and hippocampal cell (HT22) using Western blot and flow cytometry. Receptor Interacting Protein 140 (RIP140) was depleted by Crispr/Cas9-mediated gene editing. Anti-inflammatory maker was analyzed using qRT-PCR. Clinical relevance was accessed by mining multiple clinical datasets. RESULTS: This study uncovers Crabp1 as a negative regulator of exosome secretion from neurons. Specifically, RIP140, a pro-inflammatory regulator, can be transferred from neurons, via Crabp1-regulated exosome secretion, into macrophages to promote their inflammatory polarization. Consistently, CKO mice, defected in the negative control of exosome secretion, have significantly elevated RIP140-containing exosomes in their blood and cerebrospinal fluid, and exhibit an increased vulnerability to systemic inflammation. Clinical relevance of this pathway is supported by patients' data of multiple inflammatory diseases. Further, the action of Crabp1 in regulating exosome secretion involves its ligand and is mediated by its downstream target, the MAPK signaling pathway. CONCLUSIONS: This study presents the first evidence for the regulation of exosome secretion, which mediates intercellular communication, by RA-Crabp1 signaling. This novel mechanism can contribute to the control of systemic inflammation by transferring an inflammatory regulator, RIP140, between cells. This represents a new mechanism of vitamin A action that can modulate the homeostasis of system-wide innate immunity without involving gene regulation. Video Abstract.


Asunto(s)
Exosomas/genética , Inflamación/genética , Neuronas/metabolismo , Proteína de Interacción con Receptores Nucleares 1/genética , Receptores de Ácido Retinoico/genética , Animales , Sistemas CRISPR-Cas , Comunicación Celular/genética , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Homeostasis/genética , Humanos , Inflamación/patología , Ratones , Ratones Noqueados , Neuronas/patología , Células RAW 264.7 , Transducción de Señal/genética , Tretinoina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...