Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(4): 2005-2026, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33476370

RESUMEN

Replication Protein A (RPA) is a critical complex that acts in replication and promotes homologous recombination by allowing recombinase recruitment to processed DSB ends. Most organisms possess three RPA subunits (RPA1, RPA2, RPA3) that form a trimeric complex critical for viability. The Caenorhabditis elegans genome encodes RPA-1, RPA-2 and an RPA-2 paralog RPA-4. In our analysis, we determined that RPA-2 is critical for germline replication and normal repair of meiotic DSBs. Interestingly, RPA-1 but not RPA-2 is essential for somatic replication, in contrast to other organisms that require both subunits. Six different hetero- and homodimeric complexes containing permutations of RPA-1, RPA-2 and RPA-4 can be detected in whole animal extracts. Our in vivo studies indicate that RPA-1/4 dimer is less abundant in the nucleus and its formation is inhibited by RPA-2. While RPA-4 does not participate in replication or recombination, we find that RPA-4 inhibits RAD-51 filament formation and promotes apoptosis of a subset of damaged nuclei. Altogether these findings point to sub-functionalization and antagonistic roles of RPA complexes in C. elegans.


Asunto(s)
Apoptosis , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Replicación del ADN , Meiosis/genética , Recombinación Genética , Proteína de Replicación A/fisiología , Animales , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/metabolismo , Roturas del ADN de Doble Cadena , Mitosis/genética , Recombinasa Rad51/análisis , Proteína de Replicación A/metabolismo
2.
Nat Struct Mol Biol ; 25(6): 446-453, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29807999

RESUMEN

Replication protein A (RPA) and RAD51 are DNA-binding proteins that help maintain genome stability during DNA replication. These proteins regulate nucleases, helicases, DNA translocases, and signaling proteins to control replication, repair, recombination, and the DNA damage response. Their different DNA-binding mechanisms, enzymatic activities, and binding partners provide unique functionalities that cooperate to ensure that the appropriate activities are deployed at the right time to overcome replication challenges. Here we review and discuss the latest discoveries of the mechanisms by which these proteins work to preserve genome stability, with a focus on their actions in fork reversal and fork protection.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Recombinasa Rad51/fisiología , Proteína de Replicación A/fisiología , Roturas del ADN de Doble Cadena , Humanos , Conformación Proteica , Recombinasa Rad51/química , Proteína de Replicación A/química
3.
Sci Rep ; 8(1): 2683, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422626

RESUMEN

The specific function of PP2A, a major serine/threonine phosphatase, is mediated by regulatory targeting subunits, such as members of the B55 family. Although implicated in cell division and other pathways, the specific substrates and functions of B55 targeting subunits are largely undefined. In this study we identified over 100 binding proteins of B55α and B55ß in Xenopus egg extracts that are involved in metabolism, mitochondria function, molecular trafficking, cell division, cytoskeleton, DNA replication, DNA repair, and cell signaling. Among the B55α and B55ß-associated proteins were numerous mitotic regulators, including many substrates of CDK1. Consistently, upregulation of B55α accelerated M-phase exit and inhibited M-phase entry. Moreover, specific substrates of CDK2, including factors of DNA replication and chromatin remodeling were identified within the interactomes of B55α and B55ß, suggesting a role for these phosphatase subunits in DNA replication. In particular, we confirmed in human cells that B55α binds RPA and mediates the dephosphorylation of RPA2. The B55-RPA association is disrupted after replication stress, consistent with the induction of RPA2 phosphorylation. Thus, we report here a new mechanism that accounts for both how RPA phosphorylation is modulated by PP2A and how the phosphorylation of RPA2 is abruptly induced after replication stress.


Asunto(s)
Proteína Fosfatasa 2/metabolismo , Proteína de Replicación A/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/fisiología , Estructuras Cromosómicas , Mitosis/fisiología , Fosforilación , Mapas de Interacción de Proteínas , Subunidades de Proteína/metabolismo , Proteolisis , Proteína de Replicación A/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
4.
PLoS One ; 12(5): e0177147, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467467

RESUMEN

Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Replicación del ADN/fisiología , ADN de Hongos/fisiología , Proteína de Replicación A/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , Inmunoprecipitación , Saccharomyces cerevisiae/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 48(7): 671-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27217471

RESUMEN

Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms. All processes related to DNA, such as replication, excision, repair, and recombination, require the participation of SSBs whose oligonucleotide/oligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA). For a long time, the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukaryotes to participate in ssDNA processing, while mitochondrial SSBs that are conserved with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria. In recent years, two new proteins, hSSB1 and hSSB2 (human SSBs 1/2), were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA. This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage, as well as their relationships with cancer.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Inestabilidad Genómica/fisiología , Daño del ADN , Reparación del ADN , Humanos , Proteína de Replicación A/fisiología
6.
Nucleic Acids Res ; 43(18): 8790-800, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26227969

RESUMEN

The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5' strand to generate 3' ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5'->3' directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN's 3'->5' helicase activity and DNA2's 5'->3' ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Exodesoxirribonucleasas/metabolismo , Humanos , Óvulo/metabolismo , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteína de Replicación A/química , Proteína de Replicación A/fisiología , Helicasa del Síndrome de Werner , Xenopus , Proteínas de Xenopus/química
7.
Plant Physiol ; 167(1): 153-63, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25424309

RESUMEN

Agrobacterium tumefaciens delivers its single-stranded transferred DNA (T-strand) into the host cell nucleus, where it can be converted into double-stranded molecules. Various studies have revealed that double-stranded transfer DNA (T-DNA) intermediates can serve as substrates by as yet uncharacterized integration machinery. Nevertheless, the possibility that T-strands are themselves substrates for integration cannot be ruled out. We attempted to block the conversion of T-strands into double-stranded intermediates prior to integration in order to further investigate the route taken by T-DNA molecules on their way to integration. Transgenic tobacco (Nicotiana benthamiana) plants that overexpress three yeast (Saccharomyces cerevisiae) protein subunits of DNA REPLICATION FACTOR A (RFA) were produced. In yeast, these subunits (RFA1-RFA3) function as a complex that can bind single-stranded DNA molecules, promoting the repair of genomic double strand breaks. Overexpression of the RFA complex in tobacco resulted in decreased T-DNA expression, as determined by infection with A. tumefaciens cells carrying the ß-glucuronidase intron reporter gene. Gene expression was not blocked when the reporter gene was delivered by microbombardment. Enhanced green fluorescent protein-assisted localization studies indicated that the three-protein complex was predominantly nuclear, thus indicating its function within the plant cell nucleus, possibly by binding naked T-strands and blocking their conversion into double-stranded intermediates. This notion was further supported by the inhibitory effect of RFA expression on the cell-to-cell movement of Bean dwarf mosaic virus, a single-stranded DNA virus. The observation that RFA complex plants dramatically inhibited the transient expression level of T-DNA and only reduced T-DNA integration by 50% suggests that double-stranded T-DNA intermediates, as well as single-stranded T-DNA, play significant roles in the integration process.


Asunto(s)
Agrobacterium tumefaciens/fisiología , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Nicotiana/microbiología , Proteína de Replicación A/genética , Proteínas de Saccharomyces cerevisiae/genética , Agrobacterium tumefaciens/genética , Expresión Génica , Plantas Modificadas Genéticamente/metabolismo , ARN Polimerasa I/metabolismo , ARN Polimerasa I/fisiología , Recombinación Genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Nicotiana/genética , Nicotiana/metabolismo , Técnicas del Sistema de Dos Híbridos
8.
Bioessays ; 37(3): 305-13, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25400143

RESUMEN

Replication protein A (RPA) is the main eukaryotic single-stranded DNA (ssDNA) binding protein, having essential roles in all DNA metabolic reactions involving ssDNA. RPA binds ssDNA with high affinity, thereby preventing the formation of secondary structures and protecting ssDNA from the action of nucleases, and directly interacts with other DNA processing proteins. Here, we discuss recent results supporting the idea that one function of RPA is to prevent annealing between short repeats that can lead to chromosome rearrangements by microhomology-mediated end joining or the formation of hairpin structures that are substrates for structure-selective nucleases. We suggest that replication fork catastrophe caused by depletion of RPA could result from cleavage of secondary structures by nucleases, and that failure to cleave hairpin structures formed at DNA ends could lead to gene amplification. These studies highlight the important role RPA plays in maintaining genome integrity.


Asunto(s)
Proteína de Replicación A/fisiología , Animales , Emparejamiento Base , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Conformación de Ácido Nucleico , Homología de Secuencia de Ácido Nucleico
10.
Nat Struct Mol Biol ; 21(4): 405-12, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24608368

RESUMEN

Microhomology-mediated end joining (MMEJ) is a Ku- and ligase IV-independent mechanism for the repair of DNA double-strand breaks that contributes to chromosome rearrangements. Here we used a chromosomal end-joining assay to determine the genetic requirements for MMEJ in Saccharomyces cerevisiae. We found that end resection influences the ability to expose microhomologies; however, it is not rate limiting for MMEJ in wild-type cells. The frequency of MMEJ increased by up to 350-fold in rfa1 hypomorphic mutants, suggesting that replication protein A (RPA) bound to the single-stranded DNA (ssDNA) overhangs formed by resection prevents spontaneous annealing between microhomologies. In vitro, the mutant RPA complexes were unable to fully extend ssDNA and were compromised in their ability to prevent spontaneous annealing. We propose that the helix-destabilizing activity of RPA channels ssDNA intermediates from mutagenic MMEJ to error-free homologous recombination, thus preserving genome integrity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteína de Replicación A/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , ADN de Cadena Simple/metabolismo , Recombinación Homóloga , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa I/fisiología , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nucleic Acids Res ; 42(5): 3104-18, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24335281

RESUMEN

Replication Protein A (RPA) is a heterotrimeric protein complex that binds single-stranded DNA. In plants, multiple genes encode the three RPA subunits (RPA1, RPA2 and RPA3), including five RPA1-like genes in Arabidopsis. Phylogenetic analysis suggests two distinct groups composed of RPA1A, RPA1C, RPA1E (ACE group) and RPA1B, RPA1D (BD group). ACE-group members are transcriptionally induced by ionizing radiation, while BD-group members show higher basal transcription and are not induced by ionizing radiation. Analysis of rpa1 T-DNA insertion mutants demonstrates that although each mutant line is likely null, all mutant lines are viable and display normal vegetative growth. The rpa1c and rpa1e single mutants however display hypersensitivity to ionizing radiation, and combination of rpa1c and rpa1e results in additive hypersensitivity to a variety of DNA damaging agents. Combination of the partially sterile rpa1a with rpa1c results in complete sterility, incomplete synapsis and meiotic chromosome fragmentation, suggesting an early role for RPA1C in promoting homologous recombination. Combination of either rpa1c and/or rpa1e with atr revealed additive hypersensitivity phenotypes consistent with each functioning in unique repair pathways. In contrast, rpa1b rpa1d double mutant plants display slow growth and developmental defects under non-damaging conditions. We show these defects in the rpa1b rpa1d mutant are likely the result of defective DNA replication leading to reduction in cell division.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Reparación del ADN , Replicación del ADN , Meiosis , Familia de Multigenes , Proteína de Replicación A/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Puntos de Control del Ciclo Celular , Roturas del ADN de Doble Cadena , Replicación del ADN/efectos de los fármacos , Mutación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Subunidades de Proteína/clasificación , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Proteína de Replicación A/clasificación , Proteína de Replicación A/genética
12.
Mol Cell ; 53(2): 235-246, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24332808

RESUMEN

PRP19 is a ubiquitin ligase involved in pre-mRNA splicing and the DNA damage response (DDR). Although the role for PRP19 in splicing is well characterized, its role in the DDR remains elusive. Through a proteomic screen for proteins that interact with RPA-coated single-stranded DNA (RPA-ssDNA), we identified PRP19 as a sensor of DNA damage. PRP19 directly binds RPA and localizes to DNA damage sites via RPA, promoting RPA ubiquitylation in a DNA-damage-induced manner. PRP19 facilitates the accumulation of ATRIP, the regulatory partner of the ataxia telangiectasia mutated and Rad3-related (ATR) kinase, at DNA damage sites. Depletion of PRP19 compromised the phosphorylation of ATR substrates, recovery of stalled replication forks, and progression of replication forks on damaged DNA. Importantly, PRP19 mutants that cannot bind RPA or function as an E3 ligase failed to support the ATR response, revealing that PRP19 drives ATR activation by acting as an RPA-ssDNA-sensing ubiquitin ligase during the DDR.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas Nucleares/fisiología , Proteína de Replicación A/metabolismo , Ubiquitina/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Fosforilación , Proteínas Quinasas/metabolismo , Factores de Empalme de ARN , Proteína de Replicación A/fisiología , Transducción de Señal , Ubiquitina/metabolismo
13.
J Neurosci ; 33(7): 2873-88, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407946

RESUMEN

Stem cell self-renewal and differentiation must be carefully controlled during development and tissue homeostasis. In the Drosophila optic lobe, neuroepithelial cells first divide symmetrically to expand the stem cell population and then transform into asymmetrically dividing neuroblasts, which generate medulla neurons. The mechanisms underlying this cell fate transition are not well understood. Here, we show a crucial role of some cell cycle regulators in this transition. We find that loss of function in replication protein A (RPA), which consists of three highly conserved protein subunits and functions in DNA replication, leads to disintegration of the optic lobe neuroepithelium and premature differentiation of neuroepithelial cells into medulla neuroblasts. Clonal analyses of RPA loss-of-function alleles indicate that RPA is required to prevent neuroepithelial cells from differentiating into medulla neuroblasts. Inactivation of the core cell cycle regulators, including the G1/S regulators E2F1, Cyclin E, Cdk2, and PCNA, and the G2/M regulators Cyclin A, Cyclin B, and Cdk1, mimic RPA loss-of-function phenotypes, suggesting that cell cycle progression is required for both maintaining neuroepithelial cell identity and suppressing neuroblast formation. We further find that RPA or E2F1 inactivation in the neuroepithelial cells correlates with downregulation of Notch signaling activity, which appears to result from Numb mislocalization. Thus, we have shown that the transition from neuroepithelial cells to neuroblasts is directly regulated by cell cycle regulators and propose a model in which the inhibition of neuroepithelial cell cycle progression downregulates Notch signaling activity through Numb, which leads to the onset of neurogenesis.


Asunto(s)
Ciclo Celular/fisiología , Neurogénesis/fisiología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Proteína de Replicación A/fisiología , Animales , Anticuerpos/inmunología , Antimetabolitos/uso terapéutico , Bromodesoxiuridina , Moléculas de Adhesión Celular/fisiología , División Celular , Células Cultivadas , Clonación Molecular , Drosophila , Proteínas de Drosophila/fisiología , Factor de Transcripción E2F1/genética , Epitelio/metabolismo , Receptores ErbB/fisiología , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/fisiología , Células Neuroepiteliales/fisiología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Receptores Notch/fisiología , Proteína de Replicación A/inmunología , Transducción de Señal/fisiología
14.
DNA Repair (Amst) ; 12(3): 212-26, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23312805

RESUMEN

Replication Protein A (RPA) is an evolutionary conserved essential complex with single-stranded DNA binding properties that has been implicated in numerous DNA transactions. At damaged telomeres, Saccharomyces cerevisiae RPA recruits the Mec1-Ddc2 module of the DNA damage checkpoint network, its only known function in DNA damage signaling. Here, we describe rfa1 mutants (rfa1-1, rfa1-9, rfa1-10, rfa1-11 and rfa1-12) that are proficient in this checkpoint but nevertheless exhibit deregulation of cell cycle control upon telomere uncapping induced by the cdc13-1 mutation. Overriding of this damage-induced checkpoint-independent cell cycle block in the rfa1 mutants was suppressed following genetic inactivation of either TEL1 or EST2/telomerase. Altogether, our results suggest that a previously non-suspected function of RPA is to block cell cycle progression upon telomere uncapping using a yet unidentified pathway that functions in a Mec1-Ddc2-independent manner. We propose that in the rfa1 mutants, ill-masking of uncapped telomeres provokes inappropriate access of Tel1 and inappropriate functioning of telomerase, which, by yet unknown mechanisms, allows cell division to take place in spite of the block established by the DNA damage checkpoint. In the present study, we also observed that upon telomere uncapping, rfa1-12, but not the other studied rfa1 mutants, triggered telomeric recombination in the presence of functional telomerase. In conclusion, the present study identifies a novel pathway of telomere end protection that utilizes a previously unsuspected function of RPA at the telomeres.


Asunto(s)
Puntos de Control del Ciclo Celular , Recombinación Genética , Proteína de Replicación A/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Telómero/genética , ADN de Hongos/genética , ADN de Cadena Simple/genética , Viabilidad Microbiana/genética , Mutación Missense , Proteína de Replicación A/metabolismo , Proteína de Replicación A/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
15.
J Cell Biol ; 200(2): 141-9, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23319600

RESUMEN

Proper resolution of stalled replication forks is essential for genome stability. Purification of FBH1, a UvrD DNA helicase, identified a physical interaction with replication protein A (RPA), the major cellular single-stranded DNA (ssDNA)-binding protein complex. Compared with control cells, FBH1-depleted cells responded to replication stress with considerably fewer double-strand breaks (DSBs), a dramatic reduction in the activation of ATM and DNA-PK and phosphorylation of RPA2 and p53, and a significantly increased rate of survival. A minor decrease in ssDNA levels was also observed. All these phenotypes were rescued by wild-type FBH1, but not a FBH1 mutant lacking helicase activity. FBH1 depletion had no effect on other forms of genotoxic stress in which DSBs form by means that do not require ssDNA intermediates. In response to catastrophic genotoxic stress, apoptosis prevents the persistence and propagation of DNA lesions. Our findings show that FBH1 helicase activity is required for the efficient induction of DSBs and apoptosis specifically in response to DNA replication stress.


Asunto(s)
Apoptosis , Roturas del ADN de Doble Cadena , ADN Helicasas/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Estrés Fisiológico , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Células HEK293 , Células HeLa , Humanos , Hidroxiurea/farmacología , Fosforilación , Estructura Terciaria de Proteína , Proteína de Replicación A/metabolismo , Proteína de Replicación A/fisiología , Fase S , Rayos Ultravioleta
16.
EMBO J ; 32(2): 290-302, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23211746

RESUMEN

Lesion-specific enzymes repair different forms of DNA damage, yet all lesions elicit the same checkpoint response. The common intermediate required to mount a checkpoint response is thought to be single-stranded DNA (ssDNA), coated by replication protein A (RPA) and containing a primer-template junction. To identify factors important for initiating the checkpoint response, we screened for genes that, when overexpressed, could amplify a checkpoint signal to a weak allele of chk1 in fission yeast. We identified Ast1, a novel member of the XPG-related family of endo/exonucleases. Ast1 promotes checkpoint activation caused by the absence of the other XPG-related nucleases, Exo1 and Rad2, the homologue of Fen1. Each nuclease is recruited to DSBs, and promotes the formation of ssDNA for checkpoint activation and recombinational repair. For Rad2 and Exo1, this is independent of their S-phase role in Okazaki fragment processing. This XPG-related pathway is distinct from MRN-dependent responses, and each enzyme is critical for damage resistance in MRN mutants. Thus, multiple nucleases collaborate to initiate DNA damage responses, highlighting the importance of these responses to cellular fitness.


Asunto(s)
Reparación del ADN/genética , Desoxirribonucleasas/fisiología , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN/genética , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/fisiología , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Organismos Modificados Genéticamente , Proteínas Quinasas/metabolismo , Recombinación Genética/genética , Recombinación Genética/fisiología , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Homología de Secuencia , Transfección
17.
Nucleic Acids Res ; 40(8): 3431-42, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22187152

RESUMEN

Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint response independently of its role in DNA synthesis. Using Xenopus egg extracts to investigate the role of RPA recruitment at uncoupled forks in checkpoint activation we have surprisingly found that in conditions in which DNA synthesis occurs, RPA accumulation at forks stalled by either replication stress or UV irradiation is dispensable for Chk1 phosphorylation. In contrast, when both replication fork uncoupling and RPA hyperloading are suppressed, Chk1 phosphorylation is inhibited. Moreover, we show that extracts containing reduced levels of RPA accumulate ssDNA and induce spontaneous, caffeine-sensitive, Chk1 phosphorylation in S-phase. These results strongly suggest that disturbance of enzymatic activities of replication forks, rather than RPA hyperloading at stalled forks, is a critical determinant of ATR activation.


Asunto(s)
Proteína de Replicación A/fisiología , Puntos de Control de la Fase S del Ciclo Celular , Animales , Cafeína/farmacología , Extractos Celulares , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN , Óvulo/enzimología , Óvulo/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteína de Replicación A/metabolismo , Estrés Fisiológico/genética , Xenopus , Proteínas de Xenopus
18.
Genes Dev ; 25(4): 350-62, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325134

RESUMEN

Repair of dsDNA breaks requires processing to produce 3'-terminated ssDNA. We biochemically reconstituted DNA end resection using purified human proteins: Bloom helicase (BLM); DNA2 helicase/nuclease; Exonuclease 1 (EXO1); the complex comprising MRE11, RAD50, and NBS1 (MRN); and Replication protein A (RPA). Resection occurs via two routes. In one, BLM and DNA2 physically and specifically interact to resect DNA in a process that is ATP-dependent and requires BLM helicase and DNA2 nuclease functions. RPA is essential for both DNA unwinding by BLM and enforcing 5' → 3' resection polarity by DNA2. MRN accelerates processing by recruiting BLM to the end. In the other, EXO1 resects the DNA and is stimulated by BLM, MRN, and RPA. BLM increases the affinity of EXO1 for ends, and MRN recruits and enhances the processivity of EXO1. Our results establish two of the core machineries that initiate recombinational DNA repair in human cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Roturas del ADN de Cadena Simple , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/fisiología , Humanos , Técnicas In Vitro , Proteína Homóloga de MRE11 , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Unión Proteica/fisiología , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/fisiología , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/fisiología
19.
J Cell Biol ; 192(3): 401-15, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21282463

RESUMEN

Single-stranded DNA gaps that might arise by futile repair processes can lead to mutagenic events and challenge genome integrity. Nucleotide excision repair (NER) is an evolutionarily conserved repair mechanism, essential for removal of helix-distorting DNA lesions. In the currently prevailing model, NER operates through coordinated assembly of repair factors into pre- and post-incision complexes; however, its regulation in vivo is poorly understood. Notably, the transition from dual incision to repair synthesis should be rigidly synchronized as it might lead to accumulation of unprocessed repair intermediates. We monitored NER regulatory events in vivo using sequential UV irradiations. Under conditions that allow incision yet prevent completion of repair synthesis or ligation, preincision factors can reassociate with new damage sites. In contrast, replication protein A remains at the incomplete NER sites and regulates a feedback loop from completion of DNA repair synthesis to subsequent damage recognition, independently of ATR signaling. Our data reveal an important function for replication protein A in averting further generation of DNA strand breaks that could lead to mutagenic and recombinogenic events.


Asunto(s)
Reparación del ADN , Proteína de Replicación A/fisiología , Células Cultivadas , Replicación del ADN , ADN de Cadena Simple/metabolismo , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Genoma Humano , Humanos , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Rayos Ultravioleta/efectos adversos
20.
J Biol Chem ; 286(5): 3497-508, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21107010

RESUMEN

The premature aging and cancer-prone disease Werner syndrome is caused by loss of function of the RecQ helicase family member Werner syndrome protein (WRN). At the cellular level, loss of WRN results in replication abnormalities and chromosomal aberrations, indicating that WRN plays a role in maintenance of genome stability. Consistent with this notion, WRN possesses annealing, exonuclease, and ATPase-dependent helicase activity on DNA substrates, with particularly high affinity for and activity on replication and recombination structures. After certain DNA-damaging treatments, WRN is recruited to sites of blocked replication and co-localizes with the human single-stranded DNA-binding protein replication protein A (RPA). In this study we examined the physical and functional interaction between WRN and RPA specifically in relation to replication fork blockage. Co-immunoprecipitation experiments demonstrated that damaging treatments that block DNA replication substantially increased association between WRN and RPA in vivo, and a direct interaction between purified WRN and RPA was confirmed. Furthermore, we examined the combined action of RPA (unmodified and hyperphosphorylation mimetic) and WRN on model replication fork and gapped duplex substrates designed to bind RPA. Even with RPA bound stoichiometrically to this gap, WRN efficiently catalyzed regression of the fork substrate. Further analysis showed that RPA could be displaced from both substrates by WRN. RPA displacement by WRN was independent of its ATPase- and helicase-dependent remodeling of the fork. Taken together, our results suggest that, upon replication blockage, WRN and RPA functionally interact and cooperate to help properly resolve replication forks and maintain genome stability.


Asunto(s)
Replicación del ADN , Exodesoxirribonucleasas/fisiología , RecQ Helicasas/fisiología , Proteína de Replicación A/fisiología , Adenosina Trifosfatasas , Daño del ADN , ADN Helicasas , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Humanos , Unión Proteica , RecQ Helicasas/metabolismo , Proteína de Replicación A/metabolismo , Helicasa del Síndrome de Werner
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...