Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 812
Filtrar
1.
Sci Rep ; 14(1): 9550, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664461

RESUMEN

DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.


Asunto(s)
Roturas del ADN de Doble Cadena , Meiosis , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Recombinación Genética , Recombinación Homóloga , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 1/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
2.
BMC Biol ; 22(1): 101, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685010

RESUMEN

BACKGROUND: CRISPR-Cas9 genome editing often induces unintended, large genomic rearrangements, posing potential safety risks. However, there are no methods for mitigating these risks. RESULTS: Using long-read individual-molecule sequencing (IDMseq), we found the microhomology-mediated end joining (MMEJ) DNA repair pathway plays a predominant role in Cas9-induced large deletions (LDs). We targeted MMEJ-associated genes genetically and/or pharmacologically and analyzed Cas9-induced LDs at multiple gene loci using flow cytometry and long-read sequencing. Reducing POLQ levels or activity significantly decreases LDs, while depleting or overexpressing RPA increases or reduces LD frequency, respectively. Interestingly, small-molecule inhibition of POLQ and delivery of recombinant RPA proteins also dramatically promote homology-directed repair (HDR) at multiple disease-relevant gene loci in human pluripotent stem cells and hematopoietic progenitor cells. CONCLUSIONS: Our findings reveal the contrasting roles of RPA and POLQ in Cas9-induced LD and HDR, suggesting new strategies for safer and more precise genome editing.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN por Unión de Extremidades , Edición Génica , Humanos , Edición Génica/métodos , Roturas del ADN , Reparación del ADN por Recombinación , Eliminación de Secuencia , ADN Polimerasa theta , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética
3.
Nat Commun ; 15(1): 2210, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472229

RESUMEN

The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.


Asunto(s)
Proteínas Quinasas , Transducción de Señal , Proteínas Quinasas/metabolismo , Fosforilación , Proteína de Replicación A/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Unión al ADN/metabolismo , Replicación del ADN , Daño del ADN , ADN de Cadena Simple , Reparación del ADN
4.
PLoS Biol ; 22(3): e3002552, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38502677

RESUMEN

Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.


Asunto(s)
Replicación del ADN , ADN de Cadena Simple , Humanos , ADN de Cadena Simple/genética , Replicación del ADN/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Unión Proteica , Ubiquitinación , Daño del ADN , Inestabilidad Genómica , ADN Helicasas/genética , ADN Helicasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Nucleic Acids Res ; 52(7): 3794-3809, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38340339

RESUMEN

Meiotic recombination is initiated by programmed double-strand breaks (DSBs). Studies in Saccharomyces cerevisiae have shown that, following rapid resection to generate 3' single-stranded DNA (ssDNA) tails, one DSB end engages a homolog partner chromatid and is extended by DNA synthesis, whereas the other end remains associated with its sister. Then, after regulated differentiation into crossover- and noncrossover-fated types, the second DSB end participates in the reaction by strand annealing with the extended first end, along both pathways. This second-end capture is dependent on Rad52, presumably via its known capacity to anneal two ssDNAs. Here, using physical analysis of DNA recombination, we demonstrate that this process is dependent on direct interaction of Rad52 with the ssDNA binding protein, replication protein A (RPA). Furthermore, the absence of this Rad52-RPA joint activity results in a cytologically-prominent RPA spike, which emerges from the homolog axes at sites of crossovers during the pachytene stage of the meiotic prophase. Our findings suggest that this spike represents the DSB end of a broken chromatid caused by either the displaced leading DSB end or the second DSB end, which has been unable to engage with the partner homolog-associated ssDNA. These and other results imply a close correspondence between Rad52-RPA roles in meiotic recombination and mitotic DSB repair.


Asunto(s)
Intercambio Genético , Roturas del ADN de Doble Cadena , Meiosis , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Recombinación Genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Recombinación Homóloga/genética
6.
Genes (Basel) ; 15(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38397158

RESUMEN

Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN , Proteína de Replicación A , Humanos , ADN/metabolismo , Reparación del ADN/genética , ADN de Cadena Simple , Fosforilación , Proteína de Replicación A/metabolismo
7.
J Mol Biol ; 436(6): 168491, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360091

RESUMEN

Replication Protein A (RPA) is asingle strandedDNA(ssDNA)binding protein that coordinates diverse DNA metabolic processes including DNA replication, repair, and recombination. RPA is a heterotrimeric protein with six functional oligosaccharide/oligonucleotide (OB) domains and flexible linkers. Flexibility enables RPA to adopt multiple configurations andis thought to modulate its function. Here, usingsingle moleculeconfocal fluorescencemicroscopy combinedwith optical tweezers and coarse-grained molecular dynamics simulations, we investigated the diffusional migration of single RPA molecules on ssDNA undertension.The diffusioncoefficientDis the highest (20,000nucleotides2/s) at 3pNtension and in 100 mMKCl and markedly decreases whentensionor salt concentrationincreases. We attribute the tension effect to intersegmental transfer which is hindered by DNA stretching and the salt effect to an increase in binding site size and interaction energy of RPA-ssDNA. Our integrative study allowed us to estimate the size and frequency of intersegmental transfer events that occur through transient bridging of distant sites on DNA by multiple binding sites on RPA. Interestingly, deletion of RPA trimeric core still allowed significant ssDNA binding although the reduced contact area made RPA 15-fold more mobile. Finally, we characterized the effect of RPA crowding on RPA migration. These findings reveal how the high affinity RPA-ssDNA interactions are remodeled to yield access, a key step in several DNA metabolic processes.


Asunto(s)
ADN de Cadena Simple , Proteína de Replicación A , Replicación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Unión Proteica/genética , Proteína de Replicación A/química , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
8.
Nat Commun ; 15(1): 978, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302450

RESUMEN

Besides the well-characterized protein network involved in the replication stress response, several regulatory RNAs have been shown to play a role in this critical process. However, it has remained elusive whether they act locally at the stressed forks. Here, by investigating the RNAs localizing on chromatin upon replication stress induced by hydroxyurea, we identified a set of lncRNAs upregulated in S-phase and controlled by stress transcription factors. Among them, we demonstrate that the previously uncharacterized lncRNA lncREST (long non-coding RNA REplication STress) is transcriptionally controlled by p53 and localizes at stressed replication forks. LncREST-depleted cells experience sustained replication fork progression and accumulate un-signaled DNA damage. Under replication stress, lncREST interacts with the protein NCL and assists in engaging its interaction with RPA. The loss of lncREST is associated with a reduced NCL-RPA interaction and decreased RPA on chromatin, leading to defective replication stress signaling and accumulation of mitotic defects, resulting in apoptosis and a reduction in tumorigenic potential of cancer cells. These findings uncover the function of a lncRNA in favoring the recruitment of replication proteins to sites of DNA replication.


Asunto(s)
Cromatina , ARN Largo no Codificante , Cromatina/genética , Replicación del ADN/genética , ARN Largo no Codificante/genética , Proteína de Replicación A/metabolismo , Fase S/genética , Daño del ADN
9.
Nucleic Acids Res ; 52(2): 784-800, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38000394

RESUMEN

Activation-induced cytidine deaminase (AID) interacts with replication protein A (RPA), the major ssDNA-binding protein, to promote deamination of cytosine to uracil in transcribed immunoglobulin (Ig) genes. Uracil-DNA glycosylase (UNG) acts in concert with AID during Ig diversification. In addition, UNG preserves genome integrity by base-excision repair (BER) in the overall genome. How UNG is regulated to support both mutagenic processing and error-free repair remains unknown. UNG is expressed as two isoforms, UNG1 and UNG2, which both contain an RPA-binding helix that facilitates uracil excision from RPA-coated ssDNA. However, the impact of this interaction in antibody diversification and genome maintenance has not been investigated. Here, we generated B-cell clones with targeted mutations in the UNG RPA-binding motif, and analysed class switch recombination (CSR), mutation frequency (5' Ig Sµ), and genomic uracil in clones representing seven Ung genotypes. We show that the UNG:RPA interaction plays a crucial role in both CSR and repair of AID-induced uracil at the Ig loci. By contrast, the interaction had no significant impact on total genomic uracil levels. Thus, RPA coordinates UNG during CSR and pre-replicative repair of mutagenic uracil in ssDNA but is not essential in post-replicative and canonical BER of uracil in dsDNA.


Asunto(s)
Proteína de Replicación A , Uracil-ADN Glicosidasa , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Reparación del ADN/genética , ADN de Cadena Simple/genética , Cambio de Clase de Inmunoglobulina/genética , Isotipos de Inmunoglobulinas/genética , Inmunoglobulinas/genética , Mutágenos , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Uracilo/metabolismo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo , Humanos , Animales , Ratones
10.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38081641

RESUMEN

Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.


Asunto(s)
Recombinasa Rad51 , Proteína de Replicación A , Humanos , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Recombinasa Rad51/genética , ADN de Cadena Simple/genética , Reparación del ADN/genética , Recombinación Homóloga/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo
11.
Nucleic Acids Res ; 52(3): 1450-1470, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153196

RESUMEN

The regulator of telomere elongation helicase 1 (RTEL1) plays roles in telomere DNA maintenance, DNA repair, and genome stability by dismantling D-loops and unwinding G-quadruplex structures. RTEL1 comprises a helicase domain, two tandem harmonin homology domains 1&2 (HHD1 and HHD2), and a Zn2+-binding RING domain. In vitro D-loop disassembly by RTEL1 is enhanced in the presence of replication protein A (RPA). However, the mechanism of RTEL1 recruitment at non-telomeric D-loops remains unknown. In this study, we have unravelled a direct physical interaction between RTEL1 and RPA. Under DNA damage conditions, we showed that RTEL1 and RPA colocalise in the cell. Coimmunoprecipitation showed that RTEL1 and RPA interact, and the deletion of HHDs of RTEL1 significantly reduced this interaction. NMR chemical shift perturbations (CSPs) showed that RPA uses its 32C domain to interact with the HHD2 of RTEL1. Interestingly, HHD2 also interacted with DNA in the in vitro experiments. HHD2 structure was determined using X-ray crystallography, and NMR CSPs mapping revealed that both RPA 32C and DNA competitively bind to HHD2 on an overlapping surface. These results establish novel roles of accessory HHDs in RTEL1's functions and provide mechanistic insights into the RPA-mediated recruitment of RTEL1 to DNA repair sites.


Asunto(s)
ADN Helicasas , Proteína de Replicación A , Telómero , ADN/genética , Reparación del ADN , Replicación del ADN , Proteína de Replicación A/metabolismo , Telómero/metabolismo , Humanos , ADN Helicasas/química , ADN Helicasas/metabolismo
12.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834389

RESUMEN

Replication protein A (RPA) is the major single-stranded DNA (ssDNA) binding protein that is essential for DNA replication and processing of DNA double-strand breaks (DSBs) by homology-directed repair pathways. Recently, small molecule inhibitors have been developed targeting the RPA70 subunit and preventing RPA interactions with ssDNA and various DNA repair proteins. The rationale of this development is the potential utility of such compounds as cancer therapeutics, owing to their ability to inhibit DNA replication that sustains tumor growth. Among these compounds, (1Z)-1-[(2-hydroxyanilino) methylidene] naphthalen-2-one (HAMNO) has been more extensively studied and its efficacy against tumor growth was shown to arise from the associated DNA replication stress. Here, we study the effects of HAMNO on cells exposed to ionizing radiation (IR), focusing on the effects on the DNA damage response and the processing of DSBs and explore its potential as a radiosensitizer. We show that HAMNO by itself slows down the progression of cells through the cell cycle by dramatically decreasing DNA synthesis. Notably, HAMNO also attenuates the progression of G2-phase cells into mitosis by a mechanism that remains to be elucidated. Furthermore, HAMNO increases the fraction of chromatin-bound RPA in S-phase but not in G2-phase cells and suppresses DSB repair by homologous recombination. Despite these marked effects on the cell cycle and the DNA damage response, radiosensitization could neither be detected in exponentially growing cultures, nor in cultures enriched in G2-phase cells. Our results complement existing data on RPA inhibitors, specifically HAMNO, and suggest that their antitumor activity by replication stress induction may not extend to radiosensitization. However, it may render cells more vulnerable to other forms of DNA damaging agents through synthetically lethal interactions, which requires further investigation.


Asunto(s)
Neoplasias , Proteína de Replicación A , Humanos , Proteína de Replicación A/metabolismo , Ciclo Celular/genética , Proteínas de Unión al ADN/metabolismo , Replicación del ADN , Reparación del ADN , Daño del ADN , ADN , Mitosis , ADN de Cadena Simple
13.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37827155

RESUMEN

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Asunto(s)
Proteína de Replicación A , Expansión de Repetición de Trinucleótido , Animales , Humanos , Ratones , ADN/genética , Reparación de la Incompatibilidad de ADN , Enfermedad de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelosas/genética , Proteína de Replicación A/metabolismo
14.
J Assist Reprod Genet ; 40(11): 2739-2750, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37831348

RESUMEN

PURPOSE: To investigate the expression and underlying mechanism of RPA2 in endometrium of patients with repeated implantation failure (RIF). METHODS: In this study, we retrieved the expression profiles from GEO databases and filtered the differentially expressed genes between RIF and the fertile control group. Ultimately, RPA2 was confirmed as a target gene. RPA2 expression in endometrial tissues of RIF patients, the control group, and different phases was detected by RT-qPCR, immunohistochemistry, and Western blotting. The role of RPA2 in endometrial decidualization was performed by in vitro decidualization inducing by 8-Br-cAMP and MPA. Furthermore, RT-qPCR was used to detect changes in the decidual biomarkers after transfection of RPA2 overexpression vector in human endometrium stromal cell (HESC). RESULTS: RPA2 was significantly upregulated in the mid-secretory endometrium of patients with RIF. As a proliferation-related gene, RPA2 was obviously higher expressed at proliferative phase during the normal menstrual cycles. Moreover, the downregulation of RPA2 was discovered during decidualization of HESC. Furthermore, RPA2 overexpression impaired decidualization by inhibiting the expression of prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1). CONCLUSIONS: Our finding indicated that aberrant upregulation of RPA2 attenuated decidualization of HESC in RIF women and provided new potential therapeutic targets.


Asunto(s)
Decidua , Endometrio , Humanos , Femenino , Decidua/metabolismo , Endometrio/metabolismo , Fertilidad , Biomarcadores/metabolismo , Inmunohistoquímica , Células del Estroma/metabolismo , Implantación del Embrión/genética , Proteína de Replicación A/metabolismo
15.
Nucleic Acids Res ; 51(19): 10506-10518, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37739410

RESUMEN

Replication protein A (RPA) binds single-stranded DNA (ssDNA) and serves critical functions in eukaryotic DNA replication, the DNA damage response, and DNA repair. During DNA replication, RPA is required for extended origin DNA unwinding and DNA synthesis. To determine the requirements for RPA during these processes, we tested ssDNA-binding proteins (SSBs) from different domains of life in reconstituted Saccharomyces cerevisiae origin unwinding and DNA replication reactions. Interestingly, Escherichia coli SSB, but not T4 bacteriophage Gp32, fully substitutes for RPA in promoting origin DNA unwinding. Using RPA mutants, we demonstrated that specific ssDNA-binding properties of RPA are required for origin unwinding but that its protein-interaction domains are dispensable. In contrast, we found that each of these auxiliary RPA domains have distinct functions at the eukaryotic replication fork. The Rfa1 OB-F domain negatively regulates lagging-strand synthesis, while the Rfa2 winged-helix domain stimulates nascent strand initiation. Together, our findings reveal a requirement for specific modes of ssDNA binding in the transition to extensive origin DNA unwinding and identify RPA domains that differentially impact replication fork function.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Proteína de Replicación A , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Unión Proteica , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Bacteriófago T4/metabolismo
16.
Nucleic Acids Res ; 51(17): 9227-9247, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37560909

RESUMEN

Malignant cancers must activate telomere maintenance mechanisms to achieve replicative immortality. Mutations in the human Protection of Telomeres 1 (POT1) gene are frequently detected in cancers with abnormally long telomeres, suggesting that the loss of POT1 function disrupts the regulation of telomere length homeostasis to promote telomere elongation. However, our understanding of the mechanisms leading to elongated telomeres remains incomplete. The mouse genome encodes two POT1 proteins, POT1a and POT1b possessing separation of hPOT1 functions. We performed serial transplantation of Pot1b-/- sarcomas to better understand the role of POT1b in regulating telomere length maintenance. While early-generation Pot1b-/- sarcomas initially possessed shortened telomeres, late-generation Pot1b-/- cells display markedly hyper-elongated telomeres that were recognized as damaged DNA by the Replication Protein A (RPA) complex. The RPA-ATR-dependent DNA damage response at telomeres promotes telomerase recruitment to facilitate telomere hyper-elongation. POT1b, but not POT1a, was able to unfold G-quadruplex present in hyper-elongated telomeres to repress the DNA damage response. Our findings demonstrate that the repression of the RPA-ATR DDR is conserved between POT1b and human POT1, suggesting that similar mechanisms may underly the phenotypes observed in human cancers harboring human POT1 mutations.


Asunto(s)
Sarcoma , Complejo Shelterina , Ratones , Humanos , Animales , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Telómero/metabolismo , Daño del ADN , Proteína de Replicación A/metabolismo , Proteínas de Unión al ADN/genética
17.
Nat Commun ; 14(1): 4390, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474515

RESUMEN

Replication Protein A (RPA) is a broadly conserved complex comprised of the RPA1, 2 and 3 subunits. RPA protects the exposed single-stranded DNA (ssDNA) during DNA replication and repair. Using structural modeling, we discover an inhibitor, JC-229, that targets RPA1 in Trypanosoma brucei, the causative parasite of African trypanosomiasis. The inhibitor is highly toxic to T. brucei cells, while mildly toxic to human cells. JC-229 treatment mimics the effects of TbRPA1 depletion, including DNA replication inhibition and DNA damage accumulation. In-vitro ssDNA-binding assays demonstrate that JC-229 inhibits the activity of TbRPA1, but not the human ortholog. Indeed, despite the high sequence identity with T. cruzi and Leishmania RPA1, JC-229 only impacts the ssDNA-binding activity of TbRPA1. Site-directed mutagenesis confirms that the DNA-Binding Domain A (DBD-A) in TbRPA1 contains a JC-229 binding pocket. Residue Serine 105 determines specific binding and inhibition of TbRPA1 but not T. cruzi and Leishmania RPA1. Our data suggest a path toward developing and testing highly specific inhibitors for the treatment of African trypanosomiasis.


Asunto(s)
Enfermedad de Chagas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Trypanosoma brucei brucei/genética , Proteína de Replicación A/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , Unión Proteica
18.
Nucleic Acids Res ; 51(13): 6738-6753, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37264933

RESUMEN

Many types of damage, including abasic sites, block replicative DNA polymerases causing replication fork uncoupling and generating ssDNA. AP-Endonuclease 1 (APE1) has been shown to cleave abasic sites in ssDNA. Importantly, APE1 cleavage of ssDNA at a replication fork has significant biological implications by generating double strand breaks that could collapse the replication fork. Despite this, the molecular basis and efficiency of APE1 processing abasic sites at replication forks remain elusive. Here, we investigate APE1 cleavage of abasic substrates that mimic APE1 interactions at stalled replication forks or gaps. We determine that APE1 has robust activity on these substrates, like dsDNA, and report rates for cleavage and product release. X-ray structures visualize the APE1 active site, highlighting an analogous mechanism is used to process ssDNA substrates as canonical APE1 activity on dsDNA. However, mutational analysis reveals R177 to be uniquely critical for the APE1 ssDNA cleavage mechanism. Additionally, we investigate the interplay between APE1 and Replication Protein A (RPA), the major ssDNA-binding protein at replication forks, revealing that APE1 can cleave an abasic site while RPA is still bound to the DNA. Together, this work provides molecular level insights into abasic ssDNA processing by APE1, including the presence of RPA.


Asunto(s)
Replicación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , ADN/química , Daño del ADN , Reparación del ADN , ADN de Cadena Simple/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Proteína de Replicación A/metabolismo
19.
Nucleic Acids Res ; 51(15): 7936-7950, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37378431

RESUMEN

Replication protein A (RPA), a eukaryotic single-stranded DNA (ssDNA) binding protein, dynamically interacts with ssDNA in different binding modes and plays essential roles in DNA metabolism such as replication, repair, and recombination. RPA accumulation on ssDNA due to replication stress triggers the DNA damage response (DDR) by activating the ataxia telangiectasia and RAD3-related (ATR) kinase, which phosphorylates itself and downstream DDR factors, including RPA. We recently reported that the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF), a neuronal protein associated with Kallmann syndrome, promotes RPA32 phosphorylation via ATR upon replication stress. However, how NSMF enhances ATR-mediated RPA32 phosphorylation remains elusive. Here, we demonstrate that NSMF colocalizes and physically interacts with RPA at DNA damage sites in vivo and in vitro. Using purified RPA and NSMF in biochemical and single-molecule assays, we find that NSMF selectively displaces RPA in the more weakly bound 8- and 20-nucleotide binding modes from ssDNA, allowing the retention of more stable RPA molecules in the 30-nt binding mode. The 30-nt binding mode of RPA enhances RPA32 phosphorylation by ATR, and phosphorylated RPA becomes stabilized on ssDNA. Our findings provide new mechanistic insight into how NSMF facilitates the role of RPA in the ATR pathway.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteína de Replicación A , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN/genética , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/metabolismo , Humanos
20.
Proc Natl Acad Sci U S A ; 120(20): e2303479120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155876

RESUMEN

The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.


Asunto(s)
Reparación del ADN por Recombinación , Proteína de Replicación A , Humanos , Cromatina , Segregación Cromosómica , Reparación del ADN , Inestabilidad Genómica , Histonas/genética , Histonas/metabolismo , Recombinación Homóloga , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA