Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8012): 697-703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658755

RESUMEN

RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.


Asunto(s)
Microscopía por Crioelectrón , ADN de Cadena Simple , Complejos Multiproteicos , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Humanos , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Modelos Moleculares , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/ultraestructura , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo , Proteína de Replicación A/ultraestructura , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Dominios Proteicos , Sitios de Unión
2.
Prog Biophys Mol Biol ; 117(2-3): 206-211, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25542993

RESUMEN

DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA).


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , ADN/química , ADN/ultraestructura , Proteína de Replicación A/química , Animales , Sitios de Unión , ADN/genética , Humanos , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Proteína de Replicación A/genética , Proteína de Replicación A/ultraestructura
3.
Nucleic Acids Res ; 42(20): 12912-27, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25348395

RESUMEN

The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , ADN de Cadena Simple/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Nucleares/química , Proteína de Replicación A/química , Animales , Sitios de Unión , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Proteínas de Unión al ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Modelos Moleculares , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteína de Replicación A/metabolismo , Proteína de Replicación A/ultraestructura
4.
J Mol Biol ; 426(19): 3246-3261, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25058683

RESUMEN

Replication protein A (RPA) is a eukaryotic single-stranded DNA (ssDNA) binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA-DNA interactions, we combined ensemble and single-molecule fluorescence approaches to examine human RPA (hRPA) diffusion along ssDNA and find that an hRPA heterotrimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1~5000nt(2) s(-1) at 37°C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA.


Asunto(s)
ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteína de Replicación A/química , Proteína de Replicación A/ultraestructura , Carbocianinas/química , Reparación del ADN/genética , Replicación del ADN/genética , Colorantes Fluorescentes/química , Reordenamiento Génico/genética , Humanos , Desnaturalización de Ácido Nucleico/genética , Unión Proteica/genética , Recombinación Genética
5.
Biochemistry ; 48(28): 6633-43, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19530647

RESUMEN

The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential in DNA metabolism and is phosphorylated in response to DNA-damaging agents. Rad52 and RPA participate in the repair of double-stranded DNA breaks (DSBs). It is known that human RPA and Rad52 form a complex, but the molecular mass, stoichiometry, and exact role of this complex in DSB repair are unclear. In this study, absolute molecular masses of individual proteins and complexes were measured in solution using analytical size-exclusion chromatography coupled with multiangle light scattering, the protein species present in each purified fraction were verified via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/Western analyses, and the presence of biotinylated ssDNA in the complexes was verified by chemiluminescence detection. Then, employing UV cross-linking, the protein partner holding the ssDNA was identified. These data show that phosphorylated RPA promoted formation of a complex with monomeric Rad52 and caused the transfer of ssDNA from RPA to Rad52. This suggests that RPA phosphorylation may regulate the first steps of DSB repair and is necessary for the mediator function of Rad52.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína de Replicación A/metabolismo , Cromatografía en Gel , ADN de Cadena Simple/ultraestructura , Humanos , Luz , Modelos Biológicos , Fosforilación , Proteína Recombinante y Reparadora de ADN Rad52/ultraestructura , Proteína de Replicación A/ultraestructura , Dispersión de Radiación
6.
J Biol Chem ; 283(18): 12166-74, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18310075

RESUMEN

A helical filament of Rad51 on single-strand DNA (ssDNA), called the presynaptic filament, catalyzes DNA joint formation during homologous recombination. Rad52 facilitates presynaptic filament assembly, and this recombination mediator activity is thought to rely on the interactions of Rad52 with Rad51, the ssDNA-binding protein RPA, and ssDNA. The N-terminal region of Rad52, which has DNA binding activity and an oligomeric structure, is thought to be crucial for mediator activity and recombination. Unexpectedly, we find that the C-terminal region of Rad52 also harbors a DNA binding function. Importantly, the Rad52 C-terminal portion alone can promote Rad51 presynaptic filament assembly. The middle portion of Rad52 associates with DNA-bound RPA and contributes to the recombination mediator activity. Accordingly, expression of a protein species that harbors the middle and C-terminal regions of Rad52 in the rad52 Delta327 background enhances the association of Rad51 protein with a HO-made DNA double-strand break and partially complements the methylmethane sulfonate sensitivity of the mutant cells. Our results provide a mechanistic framework for rationalizing the multi-faceted role of Rad52 in recombination and DNA repair.


Asunto(s)
Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , Prueba de Complementación Genética , Microscopía Electrónica , Proteínas Mutantes/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Recombinasa Rad51/metabolismo , Recombinasa Rad51/ultraestructura , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína Recombinante y Reparadora de ADN Rad52/aislamiento & purificación , Proteína de Replicación A/metabolismo , Proteína de Replicación A/ultraestructura , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA