Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Iran Biomed J ; 28(2&3): 82-9, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770885

RESUMEN

Background: Osteogenic, antioxidant and anti-inflammatory effects of Whey protein and M. oleifera gel prompted us to evaluate their role alone or in combination on osseointegration in rabbits. Methods: In this study, 24 titanium implants were inserted in the femurs of six rabbits. One implant was placed without treatment, and another one was coated with a mixture of whey protein and M. oleifera gel for each side. The animals were divided into two groups of 2- and 6-week intervals and evaluated using histopathological and immunohistochemical techniques. Results: Histological evaluation revealed a significant difference between the experimental and the control groups after two weeks in osteoblast and osteocyte counts. The experimental group had mature bone development after six weeks of implantation, while the control group had a woven bone. Immunohistochemical results showed that the experimental group, compared to the control group, exhibited early positive expression of osteoblast cells at two weeks after the experiment. Based on histopathological observations, the experimental group showed a tiny area of collagenous fiber in 6th week after the implantation. Conclusion: A mixture of whey protein and M. oleifera could accelerate osseointegration and healing processes.


Asunto(s)
Moringa oleifera , Oseointegración , Extractos Vegetales , Hojas de la Planta , Proteína de Suero de Leche , Animales , Proteína de Suero de Leche/farmacología , Conejos , Oseointegración/efectos de los fármacos , Moringa oleifera/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Masculino , Osteoblastos/efectos de los fármacos , Fémur/efectos de los fármacos , Osteogénesis/efectos de los fármacos
2.
Food Funct ; 15(10): 5496-5509, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38690869

RESUMEN

Postbiotics have been proposed as clinically viable alternatives to probiotics, addressing limitations and safety concerns associated with probiotic use. However, direct comparisons between the functional differences and health benefits of probiotics and postbiotics remain scarce. This study compared directly the desensitization effect of probiotics and postbiotics derived from Lactiplantibacillus plantarum strain DPUL-F232 in the whey protein-induced allergic rat model. The results demonstrate that administering both live and heat killed F232 significantly alleviated allergy symptoms, reduced intestinal inflammation, and decreased serum antibody and histamine levels in rats. Both forms of F232 were effective in regulating the Th1/Th2 balance, promoting the secretion of the regulatory cytokine IL-10, inhibiting mast cell degranulation and restoring the integrity of the intestinal barrier through the upregulation of tight junction proteins. Considering the enhanced stability and reduced safety concerns of postbiotics compared to probiotics, alongside their ability to regulate allergic reactions, we suggest that postbiotics may serve as viable substitutes for probiotics in managing food allergies and potentially other diseases.


Asunto(s)
Hipersensibilidad a los Alimentos , Probióticos , Proteína de Suero de Leche , Animales , Proteína de Suero de Leche/farmacología , Ratas , Probióticos/farmacología , Lactobacillus plantarum , Ratas Sprague-Dawley , Mucosa Intestinal/inmunología , Masculino , Femenino , Calor , Humanos
3.
Food Funct ; 15(10): 5539-5553, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38712538

RESUMEN

A novel processing method combining short-time ozone pretreatment with hydrolysis has been developed to reduce whey protein allergenicity. The results showed that ozone treatment altered the whey protein spatial structure, initially increasing the surface hydrophobicity index, and then decreasing due to polymer formation as the time increased. Under the optimized conditions of alkaline protease-mediated hydrolysis, a 10-second pre-exposure to ozone significantly promoted the reduction in the IgE binding capacity of whey protein without compromising the hydrolysis efficiency. Compared with whey protein, the degranulation of KU812 cells stimulated by this hydrolysate decreased by 20.54%, 17.99%, and 22.80% for IL-6, ß-hexosaminidase, and histamine, respectively. In vitro simulated gastrointestinal digestion confirmed increased digestibility and reduced allergenicity. Peptidomics identification revealed that short-time ozonation exposed allergen epitopes, allowing alkaline protease to target these epitopes more effectively, particularly those associated with α-lactalbumin. These findings suggest the promising application of this processing method in mitigating the allergenicity of whey protein.


Asunto(s)
Alérgenos , Epítopos , Ozono , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Proteína de Suero de Leche/farmacología , Ozono/química , Ozono/farmacología , Alérgenos/química , Alérgenos/inmunología , Humanos , Epítopos/química , Epítopos/inmunología , Inmunoglobulina E/inmunología , Hidrólisis , Endopeptidasas/metabolismo , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología
4.
PLoS One ; 19(4): e0301012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573884

RESUMEN

Different functional foods with bioactive nutrients are being explored for the management of NAFLD. Whey proteins are rich in bioactive peptides and are suggested to show antioxidant and anti-inflammatory effects. We aim to test the hypothesis that the whey protein supplementation following a high fat-high fructose (HFHF) diet would protect against liver damage, inflammation, endotoxemia and steatosis in male Wistar rats. 36 rats were randomized into four groups for 8 weeks as the HFHF diet group, HFHF diet and whey protein isolate (WPI-200mg/kg/day) group (HFHF+WPI), control (C) group, and C+WPI (200mg/kg/day) group. Rats fed with a HFHF diet had higher final body weight compared to C and C+WPI groups (p = 0.002). Thus, WPI showed no significant effects for the body weight of rats with a HFHF diet. On the other hand, the HFHF+WPI group had significantly lower abdominal circumference when compared with the HFHF group (p<0,001). Higher serum CRP levels were observed in the groups with a HFHF diet (p<0,001) and WPI supplementation showed no effects on CRP levels. Whey protein supplementation resulted with lower total liver damage score in HFHF+WPI group compared with the HFHF diet group (p<0,001). Conversely, higher liver damage scores were observed with the C+WPI group compared to C group (p<0,001). HFHF diet resulted with higher expression of TLR-4 in the liver meanwhile WPI supplementation showed no effects on liver TLR-4 expression. We observed higher colon Occludin expression in HFHF+WPI and C+WPI groups compared with HFHF and C groups (p<0,001). Our results showed that, whey protein supplementation might help improve liver damage associated with a high fat-high fructose diet and increase the expression of Occludin in the small intestine and colon.


Asunto(s)
Fructosa , Receptor Toll-Like 4 , Ratas , Masculino , Animales , Proteína de Suero de Leche/farmacología , Ratas Wistar , Fructosa/efectos adversos , Ocludina , Dieta Alta en Grasa/efectos adversos , Hígado , Peso Corporal , Suplementos Dietéticos
5.
Nutrients ; 16(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474721

RESUMEN

Bovine milk contains bioactive proteins, carbohydrates, and phospholipids with immunomodulatory properties impacting human immunity, potentially contributing to resistance to infections and allergies through diverse mechanisms. One such mechanism is the enhancing of the innate immune response to secondary pathogen-related stimuli, termed innate immune training. Although in vitro studies demonstrate that milk immunoglobulin G (IgG) can train human monocytes, evidence for in vivo immune training is limited. To explore the potential of bovine IgG for inducing innate immune training in vivo, this human study utilized an IgG-rich whey protein concentrate (WPC). Healthy male volunteers were assigned to a high dose WPC, low dose WPC, or placebo group. Blood was collected pre- and post-two weeks of WPC consumption. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with TLR ligands, evaluating IL-6 and TNF-α production by monocytes, myeloid DCs, and plasmacytoid DCs. Additionally, RNA was isolated for differential gene expression (DGE) analysis. Results indicated that the two-week WPC intervention did not influence the ex vivo response of studied cells to TLR agonists. Furthermore, PBMC gene expression patterns showed no significant differences between the placebo and high dose WPC groups. The data suggests that oral WPC ingestion did not enhance immune responses in young, healthy male participants.


Asunto(s)
Leucocitos Mononucleares , Receptores Toll-Like , Humanos , Masculino , Proteína de Suero de Leche/farmacología , Voluntarios Sanos , Inmunoglobulina G , Expresión Génica
6.
Int J Biol Macromol ; 263(Pt 1): 130655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453117

RESUMEN

Chronic wounds represent silent epidemic affecting a large portion of the world population, especially the elders; in this context, the development of advanced bioactive dressings is imperative to accelerate wound healing process, while contrasting or preventing infections. The aim of the present work was to provide a deep characterization of the functional and biopharmaceutical properties of a sustainable thin and flexible films, composed of whey proteins alone (WPI) and added with nanostructured zinc oxide (WPZ) and intended for the management of chronic wounds. The potential of whey proteins-based films as wound dressings has been confirmed by their wettability, hydration properties, elastic behavior upon hydration, biodegradation propensity and, when added with nanostructured zinc oxide, antibacterial efficacy against both Gram-positive and Gram-negative pathogens, i.e. Staphylococcus aureus and Escherichia coli. In-vitro experiments, performed on normal human dermal fibroblasts, confirmed film cytocompatibility, also revealing the possible role of Zn2+ ions in promoting fibroblast proliferation. Finally, in-vivo studies on rat model confirmed film suitability to act as wound dressing, since able to ensure a regular healing process while providing effective protection from infections. In particular, both films WPI and WPZ are responsible for the formation in the wound bed of a continuous collagen layer similar to that of healthy skin.


Asunto(s)
Productos Biológicos , Óxido de Zinc , Humanos , Ratas , Animales , Anciano , Óxido de Zinc/farmacología , Proteína de Suero de Leche/farmacología , Antibacterianos/farmacología , Colágeno
7.
Nutrients ; 16(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38337742

RESUMEN

Different protein sources can impact gut microbiota composition and abundance, and also participate in health regulation. In this study, mice were gavaged with yeast protein (YP), soybean protein isolate (SPI), and whey protein isolate (WPI) for 28 days. Body weights showed similar patterns across different protein administration groups. The ileum in YP-supplemented mice exhibited good morphology, and tight-junction (TJ) proteins were slightly upregulated. Immunoglobulin (Ig)A, IgM, and IgG levels in the ileum of different protein groups were significantly increased (p < 0.05). Interleukin (IL)-10 levels were significantly increased, whereas IL-6 levels were significantly reduced in the YP group when compared with the control (C) (p < 0.05). Glutathione peroxidase (GSH-Px) levels in the ileum were significantly increased in the YP group (p < 0.05). These results indicate that YP potentially improved intestinal immunity and inflammatory profiles. The relative abundances of Parabacteroides, Prevotella, and Pseudobutyrivibrio in the YP group were more enriched when compared with the C and SPI groups, and Parabacteroides was significantly upregulated when compared with the WPI group (p < 0.05). Overall, the results indicate that YP upregulates the beneficial bacteria and improves ileal immunity and anti-inflammatory capabilities.


Asunto(s)
Microbioma Gastrointestinal , Animales , Ratones , Proteína de Suero de Leche/farmacología , Proteínas de Soja/farmacología , Intestinos , Proteínas Fúngicas/farmacología
8.
Food Funct ; 15(4): 2265-2281, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38319687

RESUMEN

Nowadays, rotaviruses remain a major health burden, especially in developing countries, and strategies complementary to vaccination are needed. In this view, dairy fractions have attracted great scientific interest, due to their high content of bioactive compounds. The objective of this study was to evaluate the antiviral activity of whey and buttermilk enriched in proteins from hyperimmune bovine colostrum (HBC) against rotavirus. The enriched fractions were spray-dried and subsequently tested for their neutralizing activity against the bovine rotavirus WC3 strain in vitro, using differentiated Caco-2/TC7 cells. The highest antirotaviral activity was observed when whey and buttermilk were enriched in purified immunoglobulin G (IgG), showing complete rotavirus neutralization at concentrations of 3 and 6 mg mL-1 for whey and buttermilk, respectively. Additionally, the use of a crude immunoglobulin fraction also gave satisfactory results. The inhibitory activities of all samples significantly decreased after the application of heat, except for the IgG-enriched buttermilk which showed a slight increase of activity following the application of short-time treatments (75 or 85 °C for 20 s). This sample also showed a significant increase of activity (13%) after the application of low-intensity high hydrostatic pressure treatment (400 MPa for 5 min). The maximum loss of bioactivity was observed at 600 MPa for 10 min (31 and 20% for whey- and buttermilk-based formulas, respectively). This study provides relevant information on the potential of whey, buttermilk, and HBC to be part of functional products as complementary strategies to combat rotavirus infections.


Asunto(s)
Calostro , Rotavirus , Embarazo , Femenino , Animales , Bovinos , Humanos , Presión Hidrostática , Células CACO-2 , Proteína de Suero de Leche/farmacología , Inmunoglobulina G
9.
Biol Trace Elem Res ; 202(3): 1031-1040, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37341874

RESUMEN

This study aimed to examine the impact of varying doses of whey protein (WP) and amylopectin/chromium complex (ACr) supplementation on muscle protein synthesis (MPS), amino acid and insulin levels, and the rapamycin (mTOR) signaling pathways in exercised rats. A total of 72 rats were randomly divided into nine groups: (1) Exercise (Ex), (2) Ex + WPI to (5) Ex + WPIV with various oral doses of whey protein (0.465, 1.55, 2.33, and 3.1 g/kg) and (6) Ex + WPI + ACr to (9) Ex + WPIV + ACr with various doses of whey protein combined with 0.155 g/kg ACr. On the day of single-dose administration, the products were given by oral gavage after exercise. To measure the protein fractional synthesis rate (FSR), a bolus dose of deuterium-labeled phenylalanine was given, and its effects were evaluated 1 h after supplementation. Rats that received 3.1 g/kg of whey protein (WP) combined with ACr exhibited the most significant increase in muscle protein synthesis (MPS) compared to the Ex group (115.7%, p < 0.0001). In comparison to rats that received the same dose of WP alone, those given the combination of WP and ACr at the same dosage showed a 14.3% increase in MPS (p < 0.0001). Furthermore, the WP (3.1 g/kg) + ACr group exhibited the highest elevation in serum insulin levels when compared to the Ex group (111.9%, p < 0.0001). Among the different groups, the WP (2.33 g/kg) + ACr group demonstrated the greatest increase in mTOR levels (224.2%, p < 0.0001). Additionally, the combination of WP (2.33 g/kg) and ACr resulted in a 169.8% increase in 4E-BP1 levels (p < 0.0001), while S6K1 levels rose by 141.2% in the WP (2.33 g/kg) + ACr group (p < 0.0001). Overall, supplementation with various doses of WP combined with ACr increased MPS and enhanced the mTOR signaling pathway compared to WP alone and the Ex group.


Asunto(s)
Amilopectina , Insulinas , Ratas , Animales , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/metabolismo , Amilopectina/farmacología , Proteínas Musculares/metabolismo , Fosforilación , Músculo Esquelético/metabolismo , Cromo/farmacología , Cromo/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Insulinas/metabolismo , Insulinas/farmacología
10.
J Dairy Sci ; 107(1): 9-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37678791

RESUMEN

Milk fat globule epidermal growth factor 8 (MFG-E8) and whey protein have emerged as promising bionutrient supplements for enhancing skeletal muscle mass and function. In the present study, aging-related sarcopenia rat model was employed to elucidate the effects of the combined administration of MFG-E8 and whey protein on the catabolism and anabolism of gastrocnemius protein. Combined intervention led to notable enhancements in the antioxidative stress status and mitochondrial biogenesis capacity of gastrocnemius muscle fibers in the aging rats, concomitant with a significant inhibition of lipid accumulation. Moreover, the synergistic effect of MFG-E8 and whey protein was found to exert modulatory effects on key signaling pathways, including PI3K/Akt/PGC-1α pathway and MAPK/ERK signaling pathways in the gastrocnemius muscle of the aging rats. Specifically, this combined intervention was observed to promote mitochondrial biogenesis and regulate the expression of protein anabolism and catabolism-related regulators, thereby facilitating the alleviation of mitochondrial oxidative stress and enhancing biogenesis in gastrocnemius tissues. The findings of our study provide compelling evidence for the potential of MFG-E8 as a promising dietary supplement with antisarcopenic properties to ameliorate muscle protein metabolism disorders and mitigate mitochondrial-mediated myoblast apoptosis induced by oxidative stress.


Asunto(s)
Glucolípidos , Glicoproteínas , Gotas Lipídicas , Sarcopenia , Animales , Ratas , Factor VIII/farmacología , Galactosa/farmacología , Proteínas de la Leche/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sarcopenia/prevención & control , Sarcopenia/veterinaria , Transducción de Señal , Proteína de Suero de Leche/farmacología
11.
Int J Sport Nutr Exerc Metab ; 34(2): 69-78, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922892

RESUMEN

Previous studies showed that collagen peptide supplementation along with resistance exercise enhance muscular recovery and function. Yet, the efficacy of collagen peptide supplementation in addition to standard nutritional practices in athletes remains unclear. Therefore, the objective of the study was to compare the effects of combined collagen peptide (20 g) and whey protein (25 g) supplementation with a similar daily protein dose (45 g) of whey protein alone on indices of muscle damage and recovery of muscular performance during eccentric exercise training. Young fit males participated in a 3-week training period involving unilateral eccentric exercises for the knee extensors. According to a double-blind, randomized, parallel-group design, before and after training, they received either whey protein (n = 11) or whey protein + collagen peptides (n = 11). Forty-eight hours after the first training session, maximal voluntary isometric and dynamic contraction of the knee extensors were transiently impaired by ∼10% (Ptime < .001) in whey protein and whey protein + collagen peptides, while creatine kinase levels were doubled in both groups (Ptime < .01). Furthermore, the training intervention improved countermovement jump performance and maximal voluntary dynamic contraction by respectively 8% and 10% (Ptime < .01) and increased serum procollagen type 1N-terminal peptide concentration by 10% (Ptime < .01). However, no differences were found for any of the outcomes between whey and whey protein + collagen peptides. In conclusion, substituting a portion of whey protein for collagen peptide, within a similar total protein dose, improved neither indices of eccentric muscle damage nor functional outcomes during eccentric training.


Asunto(s)
Entrenamiento de Fuerza , Suero Lácteo , Masculino , Humanos , Proteína de Suero de Leche/farmacología , Músculo Esquelético/metabolismo , Suplementos Dietéticos , Ejercicio Físico/fisiología , Péptidos/metabolismo , Péptidos/farmacología , Colágeno/metabolismo , Método Doble Ciego
12.
J Diet Suppl ; 21(3): 344-373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37981793

RESUMEN

Eccentric muscle contractions can cause structural damage to muscle cells resulting in temporarily decreased muscle force production and soreness. Prior work indicates pasture-raised dairy products from grass-fed cows have greater anti-inflammatory and antioxidant properties compared to grain-fed counterparts. However, limited research has evaluated the utility of whey protein from pasture-raised, grass-fed cows to enhance recovery compared to whey protein from non-grass-fed cows. Therefore, using a randomized, placebo-controlled design, we compared the effect of whey protein from pasture-raised, grass-fed cows (PRWP) to conventional whey protein (CWP) supplementation on indirect markers of muscle damage in response to eccentric exercise-induced muscle damage (EIMD) in resistance-trained individuals. Thirty-nine subjects (PRWP, n = 14; CWP, n = 12) completed an eccentric squat protocol to induce EIMD with measurements performed at 24, 48, and 72 h of recovery. Dependent variables included: delayed onset muscle soreness (DOMS), urinary titin, maximal isometric voluntary contraction (MIVC), potentiated quadriceps twitch force, countermovement jump (CMJ), and barbell back squat velocity (BBSV). Between-condition comparisons did not reveal any significant differences (p ≤ 0.05) in markers of EIMD via DOMS, urinary titin, MIVC, potentiated quadriceps twitch force, CMJ, or BBSV. In conclusion, neither PRWP nor CWP attenuate indirect markers of muscle damage and soreness following eccentric exercise in resistance-trained individuals.


Asunto(s)
Músculo Esquelético , Suero Lácteo , Animales , Bovinos , Humanos , Conectina/farmacología , Contracción Muscular/fisiología , Mialgia/prevención & control , Proteína de Suero de Leche/farmacología
13.
Nutrients ; 15(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38068800

RESUMEN

Whey protein isolate (WPI) consists of an array of proteins and peptides obtained as a byproduct of the cheesemaking process. Research suggests that WPI, along with its peptides such as glycomacropeptide (GMP), possesses immunomodulatory properties. These properties hold potential for alleviating the adverse effects of inflammatory conditions such as inflammatory bowel disease. Although promising, the immunoregulatory properties of the digested forms of WPI and GMP-those most likely to interact with the gut immune system-remain under-investigated. To address this knowledge gap, the current study examined the effects of in vitro-digested WPI and GMP, in vivo-digested WPI, and undigested WPI and GMP on the secretion of pro-inflammatory cytokines (TNF-α and IL-1ß) in lipopolysaccharide-stimulated macrophage-like cells. Our results indicate that digested WPI and GMP reduced the expression of TNF-α and IL-1ß, two pro-inflammatory cytokines. Whole WPI had no effect on TNF-α but reduced IL-1ß levels. In contrast, in vivo-digested WPI reduced TNF-α but increased IL-1ß. Undigested GMP, on the other hand, increased the secretion of both cytokines. These results demonstrate that digestion greatly modifies the effects of WPI and GMP on macrophages and suggest that digested WPI and GMP could help mitigate gastrointestinal inflammation. Further clinical studies are necessary to determine the biological relevance of WPI and GMP digestion products within the gut and their capacity to influence gut inflammation.


Asunto(s)
Macrófagos , Factor de Necrosis Tumoral alfa , Animales , Bovinos , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/metabolismo , Macrófagos/metabolismo , Inflamación , Suero Lácteo/metabolismo
14.
Nutrients ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960275

RESUMEN

Modifying the food structure allows a nutrient to be delivered differently, which can modify not only its digestion process but also its subsequent metabolism. In this study, rats received 3 g of omelette daily containing docosahexaenoic acid (DHA) as crude oil or previously encapsulated with whey proteins, whereas a control group received a DHA-free omelette. The results showed that DHA encapsulation markedly induced a different feeding behaviour so animals ate more and grew faster. Then, after four weeks, endocannabinoids and other N-acyl ethanolamides were quantified in plasma, brain, and heart. DHA supplementation strongly reduced endocannabinoid derivatives from omega-6 fatty acids. However, DHA encapsulation had no particular effect, other than a great increase in the content of DHA-derived docosahexaenoyl ethanolamide in the heart. While DHA supplementation has indeed shown an effect on cannabinoid profiles, its physiological effect appears to be mediated more through more efficient digestion of DHA oil droplets in the case of DHA encapsulation. Thus, the greater release of DHA and other dietary cannabinoids present may have activated the cannabinoid system differently, possibly more locally along the gastrointestinal tract. However, further studies are needed to evaluate the synergy between DHA encapsulation, fasting, hormones regulating food intake, and animal growth.


Asunto(s)
Cannabinoides , Ácidos Grasos Omega-3 , Ratas , Animales , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Endocannabinoides/metabolismo , Proteína de Suero de Leche/farmacología , Dieta , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo
15.
Metabolomics ; 19(12): 98, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999866

RESUMEN

INTRODUCTION: Separately, both exercise and protein ingestion have been shown to alter the blood and urine metabolome. This study goes a step further and examines changes in the metabolome derived from blood, urine and muscle tissue extracts in response to resistance exercise combined with ingestion of three different protein sources. METHODS: In an acute parallel study, 52 young males performed one-legged resistance exercise (leg extension, 4 × 10 repetitions at 10 repetition maximum) followed by ingestion of either cricket (insect), pea or whey protein (0.25 g protein/kg fat free mass). Blood and muscle tissue were collected at baseline and three hours after protein ingestion. Urine was collected at baseline and four hours after protein ingestion. Mixed-effects analyses were applied to examine the effect of the time (baseline vs. post), protein (cricket, pea, whey), and time x protein interaction. RESULTS: Nuclear magnetic resonance (NMR)-based metabolomics resulted in the annotation and quantification of 25 metabolites in blood, 35 in urine and 21 in muscle tissue. Changes in the muscle metabolome after combined exercise and protein intake indicated effects related to the protein source ingested. Muscle concentrations of leucine, methionine, glutamate and myo-inositol were higher after intake of whey protein compared to both cricket and pea protein. The blood metabolome revealed changes in a more ketogenic direction three hours after exercise reflecting that the trial was conducted after overnight fasting. Urinary concentration of trimethylamine N-oxide was significantly higher after ingestion of cricket than pea and whey protein. CONCLUSION: The blood, urine and muscle metabolome showed different and supplementary responses to exercise and ingestion of the different protein sources, and in synergy the summarized results provided a more complete picture of the metabolic state of the body.


Asunto(s)
Críquet , Entrenamiento de Fuerza , Masculino , Humanos , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/farmacología , Suero Lácteo/metabolismo , Pisum sativum/metabolismo , Proteínas de la Leche/metabolismo , Metabolómica , Músculo Esquelético/metabolismo , Metaboloma
16.
Mol Biol Rep ; 50(12): 9805-9824, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37840065

RESUMEN

BACKGROUND: Aflatoxin B (AFB) induces toxicological effects on the liver and immune organs. The whey proteins can modulate the immune response during aflatoxicosis. Our work evaluates the novel polylactic acid-glycolic acid-chitosan-encapsulated bovine and camel whey proteins against AFB-induced thymic and splenic atrophy in rats. METHODS AND RESULTS: Seventy adult male Wister albino rats were divided into a control healthy group (G1) and six AFB1-intoxicated groups (G2-G7). One of the following supplements: distilled water, camel whey proteins (CWP), bovine whey proteins, poly (D, L-lactide-co-glycolide) (PLGA)- chitosan-loaded with camel whey protein microparticles (CMP), PLGA-chitosan loaded with bovine whey protein microparticles (BMP), and PLGA-chitosan nanoparticles were administered as prophylactic supplements to AFB1-intoxicated groups. The AFB-treated group showed significantly higher hepatic levels of oxidative stress and lower levels of antioxidants. In the aflatoxicated group, atrophy of the splenic lymphatic nodules and disfigurement in the organisation with an apparent decrease in the thickness of the cortex in the thymus were observed, as well as a decrease in splenic and thymic CD4+T and CD8+T lymphocytes. Moreover, CXCL12 levels were downregulated, whereas tumour necrosis factor-alpha, nuclear factor kappa B, and cleaved caspase-3 levels were upregulated. CWP, BMP, and CMP supplements markedly decreased oxidative stress, inflammation, and apoptosis, as well as significantly raised CXCL12, CD4+T, and CD8+T cells. CONCLUSIONS: The CWP, BMP, and CMP supplements rescue the liver and immune tissues from the toxic effects of AFB through their antioxidant, antiapoptotic, anti-inflammatory, and chemotaxis-enhancing roles.


Asunto(s)
Quitosano , Ratas , Masculino , Animales , Bovinos , Proteína de Suero de Leche/farmacología , Quitosano/farmacología , Quimiotaxis , Camelus , Ratas Wistar , Antioxidantes/farmacología
17.
Molecules ; 28(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894531

RESUMEN

BACKGROUND: Whey protein isolate (WPI) is a by-product from the dairy industry, whose main component is ß-lactoglobulin. Upon heating, WPI forms a hydrogel which can both support controlled drug delivery and enhance the proliferation and osteogenic differentiation of bone-forming cells. This study makes a novel contribution by evaluating the ability of WPI hydrogels to support the growth of endothelial cells, which are essential for vascularization, which in turn is a pre-requisite for bone regeneration. METHODS: In this study, the proliferation and antioxidant levels in human umbilical vascular endothelial cells (HUVECs) cultured with WPI supplementation were evaluated using real-time cell analysis and flow cytometry. Further, the attachment and growth of HUVECs seeded on WPI-based hydrogels with different concentrations of WPI (15%, 20%, 30%, 40%) were investigated. RESULTS: Supplementation with WPI did not affect the viability or proliferation of HUVECs monitored with real-time cell analysis. At the highest used concentration of WPI (500 µg/mL), a slight induction of ROS production in HUVECs was detected as compared with control samples, but it was not accompanied by alterations in cellular thiol levels. Regarding WPI-based hydrogels, HUVEC adhered and spread on all samples, showing good metabolic activity. Notably, cell number was highest on samples containing 20% and 30% WPI. CONCLUSIONS: The demonstration of the good compatibility of WPI hydrogels with endothelial cells in these experiments is an important step towards promoting the vascularization of hydrogels upon implantation in vivo, which is expected to improve implant outcomes in the future.


Asunto(s)
Células Endoteliales , Osteogénesis , Humanos , Proteína de Suero de Leche/farmacología , Hidrogeles/farmacología , Diferenciación Celular , Andamios del Tejido
18.
Am J Physiol Endocrinol Metab ; 325(6): E688-E699, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37877796

RESUMEN

Protein ingestion concurrently stimulates euglycemic glucagon and insulin secretion, a response that is particularly robust with rapidly absorbing proteins. Previously, we have shown that ingestion of repeated doses of rapidly absorbing whey protein equally stimulated endogenous glucose production (EGP) and glucose disposal (Rd), thus explaining the preservation of euglycemia. Here, we aimed to determine if a smaller single dose of whey could elicit a large enough glucagon and insulin response to stimulate glucose flux. Therefore, in normoglycemic young adult males (n = 10; age ∼26; BMI ∼25), using [6,6-2H2] glucose tracing and quantitative targeted metabolite profiling, we determined the metabolic response to a single 25 g "standard" dose of whey protein. Whey protein ingestion did not alter glycemia, but increased circulating glucagon (peak 4-fold basal), insulin (peak 6-fold basal), amino acids, and urea while also reducing free fatty acid (FFA) and glycerol concentrations. Interestingly, the postprandial insulin response was driven by both a stimulation of insulin secretion and marked reduction in hepatic insulin clearance. Whey protein ingestion resulted in a modest stimulation of EGP and Rd, both peaking at ∼20% above baseline 1 h after protein ingestion. These findings demonstrate that the ingestion of a single standard serving of whey protein can induce a euglycemic glucagon and insulin response that stimulates glucose flux. We speculate on a theory that could potentially explain how glucagon and insulin synergistically provide hardwired control of nitrogen and glucose homeostasis.NEW & NOTEWORTHY Protein ingestion concurrently stimulates glucagon and insulin secretion. Here we show that in normoglycemic males, ingestion of a single "standard" 25 g serving of rapidly absorbing whey protein drives a sufficiently large glucagon and insulin response, such that it simultaneously increases endogenous glucose production and glucose disposal. We speculate on a novel theory that could potentially explain how the antagonistic/synergistic actions of glucagon and insulin simultaneously provide tight control of glucose and nitrogen homeostasis.


Asunto(s)
Glucagón , Insulina , Humanos , Masculino , Adulto Joven , Insulina/metabolismo , Glucagón/metabolismo , Glucosa , Proteína de Suero de Leche/farmacología , Glucemia/metabolismo , Nitrógeno , Biología
19.
Pak J Biol Sci ; 26(5): 224-240, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37859554

RESUMEN

<b>Background and Objective:</b> Levofloxacin (LFX) is a wide-spectrum antibiotic that is used to treat many types of infections. Camel milk (CM) and camel whey protein (CWP) are natural antioxidants that work as dietary supplements that enhance immune defenses. The goal of this study was to estimate the therapeutic efficacy of camel whey protein and camel milk, in addition to the toxic effects of the antibiotic levofloxacin. <b>Materials and Methods:</b> As 42 male albino rats were divided as follows: G1: Control, G2: CM orally for 15 days, G3: CWP orally for 15 days, G4: LFX orally for 10 days, G5: LFX for 10 days and followed with CM daily for 15 days and G6: LFX for 10 days followed by CWP orally for 15 days. At the end of the study blood sera from all groups were collected for estimation of serum total protein, albumin, globulins and glucose. Sections of the liver and kidney were separated for estimation of GSH, CAT, GSH-PX. All data were statistically analyzed using analysis of variance. <b>Results:</b> The LFX treatment induced a decrease in serum levels of proteinogram, glucose, hepatic and renal values of oxidative stress and raising values of serum kidney and liver functions, hepatic and renal MDA. The treatment of LFX-treated rats with CWP led to a more increase in serum proteinogram, glucose, hepatic and renal (GSH, CAT, GSH-PX) a decline in serum values of (urea, ALAT, ASAT, ALP, BIL, T.P, D. BIL, Ind. BIL creatinine), hepatic and renal MDA than the treatment with CWP did. <b>Conclusion:</b> The use of CWP after LFX-treatment showed greater therapeutic potency than the use of CM.


Asunto(s)
Camelus , Levofloxacino , Ratas , Masculino , Animales , Proteína de Suero de Leche/farmacología , Levofloxacino/farmacología , Leche , Estrés Oxidativo , Glucosa , Antibacterianos/toxicidad
20.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37762289

RESUMEN

Dairy protein hydrolysates possess a broad spectrum of bioactivity and hypoallergenic properties, as well as pronounced bitter taste. The bitterness is reduced by complexing the proteolysis products with cyclodextrins (CDs), and it is also important to study the bioactivity of the peptides in inclusion complexes. Hydrolysates of whey and colostrum proteins with extensive hydrolysis degree and their complexes with ß/γ-CD were obtained in the present study, and comprehensive comparative analysis of the experimental samples was performed. The interaction of CD with peptides was confirmed via different methods. Bioactivity of the initial hydrolysates and their complexes were evaluated. Antioxidant activity (AOA) was determined by fluorescence reduction of fluorescein in the Fenton system. Antigenic properties were studied by competitive enzyme immunoassay. Antimutagenic effect was estimated in the Ames test. According to the experimental data, a 2.17/2.78-fold and 1.45/2.14-fold increase in the AOA was found in the ß/γ-CD interaction with whey and colostrum hydrolysates, respectively. A 5.6/5.3-fold decrease in the antigenicity of whey peptides in complex with ß/γ-CD was detected, while the antimutagenic effect in the host-guest systems was comparable to the initial hydrolysates. Thus, bioactive CD complexes with dairy peptides were obtained. Complexes are applicable as a component of specialized foods (sports, diet).


Asunto(s)
Antimutagênicos , gamma-Ciclodextrinas , Femenino , Embarazo , Humanos , Suero Lácteo , Calostro , Proteína de Suero de Leche/farmacología , Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA