Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125003

RESUMEN

With the global population projected to reach nine billion by 2050, the search for alternative protein sources has become critical. This study evaluated the digestibility of cricket protein powder compared with that of whey protein powder. Cricket protein powder had a slightly lower protein content but higher fat content than whey protein powder. Although both contained all essential amino acids, their quantities varied. The most abundant essential amino acid was leucine in both samples. The essential amino acid index (EAAI) for cricket protein powder reached 79% when utilising crude protein for calculation. When using the amino acid sum calculation method, it increased by nearly 13%. The EAAI for whey protein was then 94% when calculated based on crude protein, with a slight increase observed when using the amino acid sum calculation method. Cricket protein exhibited a gradual increase in digestibility during intestinal digestion, reaching nearly 80%, whereas whey protein digestibility surpassed 97%. Despite the lower digestibility of cricket protein compared with whey protein, it remains sufficiently high for consideration as a valuable protein source. This study highlights the potential of cricket proteins and underscores the importance of assessing their protein content and digestibility in evaluating their nutritional value.


Asunto(s)
Digestión , Polvos , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Animales , Aminoácidos/metabolismo , Aminoácidos/química , Gryllidae/metabolismo , Gryllidae/química , Valor Nutritivo , Aminoácidos Esenciales/metabolismo
2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38995038

RESUMEN

Fermentation of dietary and endogenous protein in the hindgut is generally considered detrimental to the health of pigs. We investigated the in vitro fermentation potential of porcine endogenous protein in ileal digesta and colonic mucus, using a N-free buffer with an excess of fermentable carbohydrates. Urea, whey protein isolate (WPI, positive control), WPI hydrolysate (WPIH), and combinations of the latter two were used to validate the assay. A new biphasic model, including a linear end simulation, fitted to the gas production data over a 48-h period identified the time point when substrate fermentation ended. A higher degree of hydrolysis of WPI resulted in a higher maximum gas production rate (Rmax, P < 0.01). Differences in Rmax and the time required to reach Rmax were observed among ileal digesta samples, with Rmax increasing with the insoluble protein content, and the highest Rmax occurring with colonic mucus samples (P < 0.05). The endogenous proteins entering the large intestine of pigs can ferment more rapidly compared to highly soluble and digestible protein sources, with Rmax positively correlated with decreasing solubility of endogenous nitrogenous components.


Protein fermentation in the hindgut of pigs can impact their health, affecting factors like growth rates and feed efficiency. Besides dietary protein, up to 50% of the protein entering the large intestine of growing pigs may be of endogenous origin. Therefore, we explored the fermentation potential of endogenous proteins compared to a well-known protein source, whey protein isolate (WPI). In developing and validating an in vitro gas production technique, we employed urea, WPI, WPI hydrolysate, and various combinations as substrates. The study introduces a new biphasic model for in vitro gas production, offering a detailed analysis of the fermentation process over a 48-h period. Our results revealed that porcine endogenous proteins can undergo rapid fermentation because the maximum gas production rate was higher compared to WPI. This insight is crucial for understanding the dynamics of protein fermentation in pigs. Additionally, we explored the solubility and molecular size of proteins, providing a comprehensive understanding of their fermentation characteristics. We found that endogenous proteins were less soluble compared to WPI but contained more smaller peptides. Unraveling the complexities of protein fermentation in pigs contributes to improvement of feed formulation for optimal gut health.


Asunto(s)
Proteínas en la Dieta , Fermentación , Animales , Porcinos , Proteínas en la Dieta/metabolismo , Digestión/fisiología , Íleon/metabolismo , Colon/metabolismo , Colon/microbiología , Proteína de Suero de Leche/metabolismo , Contenido Digestivo/química
3.
Food Chem ; 456: 139954, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38852459

RESUMEN

Malondialdehyde (MDA) can induce lipoxidation in whey protein isolate (WPI). The physicochemical changes in this reaction with or without the presence of a phenolic compound epicatechin (EC) were characterized in this study. Results suggested the content of MDA was significantly reduced during co-incubation of MDA and EC. The addition of EC dose-dependently alleviated MDA-induced protein carbonylation, Schiff base formation and loss of tryptophan fluorescence. The interruption of MDA-binding to WPI was directly visualized by immunoblotting analysis. Observation of the surface microstructure of WPI showed that MDA-induced protein aggregation was partially restored by EC. Meanwhile, EC was found to promote loss of both protein sulfhydryls and surface hydrophobicity due to possible phenol-protein interactions. These observations suggested the potential of EC in the relief of MDA-mediated protein lipoxidation.


Asunto(s)
Catequina , Malondialdehído , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Malondialdehído/metabolismo , Malondialdehído/química , Catequina/química , Catequina/farmacología , Oxidación-Reducción , Interacciones Hidrofóbicas e Hidrofílicas , Peroxidación de Lípido/efectos de los fármacos
4.
Food Res Int ; 188: 114433, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823827

RESUMEN

Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.


Asunto(s)
Antiinflamatorios , Antioxidantes , Neuroglía , Proteína de Suero de Leche , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Glutatión/metabolismo , Péptidos/farmacología , Óxido Nítrico/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo
5.
Food Res Int ; 190: 114621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945576

RESUMEN

Ageing leads to changes in the functionality of the digestive tract but the effect of age on digestion and absorption of nutrients remains unclear. The objective of this study was to investigate in vitro the digestion of two high-protein dairy products similar to cream cheese (24 % w/w proteins, 20 % w/w lipids) with opposite casein to whey protein ratios, 80:20 (WP-20), and 20:80 (WP-80). The new static digestion model adapted to the general older adult population (≥65 y.) proposed by INFOGEST was used, as well as the standard version of the protocol. Kinetics of proteolysis and lipolysis were compared between both models for each product, in the gastric and intestinal phases of digestion. In both cream cheeses, the degree of protein hydrolysis (DH-P) was significantly lower for older adults than for young adults at the end of the gastric phase (-19 % for WP-20, and -44 % for WP-80), and at the end of the intestinal phase (-16 % for WP-20, and -20 % for WP-80). The degree of lipid hydrolysis (DH-L) was also significantly lower for older adults than for young adults at the end of the digestion for WP-20 (-30 %), but interestingly it was not the case for WP-80 (similar DH-L were measured). Free fatty acids were also released faster from WP-80 than from WP-20 in both digestion conditions: after 5 min of intestinal digestion DH-L was already ≈32 % for WP-80 against 14 % for WP-20. This was attributed to the opposite casein to whey protein ratios, leading to the formation of different gel structures resulting in different patterns of deconstruction in the gastrointestinal tract. This study highlights the fact that it is essential to carefully consider the composition, structure, and digestibility of foods to develop products adapted to the specific needs of the older adult population.


Asunto(s)
Caseínas , Queso , Digestión , Proteolisis , Proteína de Suero de Leche , Queso/análisis , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/química , Caseínas/metabolismo , Humanos , Anciano , Hidrólisis , Adulto , Lipólisis , Adulto Joven , Factores de Edad , Modelos Biológicos , Cinética
6.
J Agric Food Chem ; 72(27): 15198-15212, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38941263

RESUMEN

Numerous studies have highlighted the potential of Lactic acid bacteria (LAB) fermentation of whey proteins for alleviating allergies. Nonetheless, the impact of LAB-derived metabolites on whey proteins antigenicity during fermentation remains uncertain. Our objective was to elucidate the impact of small molecular metabolites on the antigenicity of α-lactalbumin (α-LA) and ß-lactoglobulin (ß-LG). Through metabolomic analysis, we picked 13 bioactive small molecule metabolites from Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 for coincubation with α-LA and ß-LG, respectively. The outcomes revealed that valine, arginine, benzoic acid, 2-keto butyric acid, and glutaric acid significantly diminished the sensitization potential of α-LA and ß-LG, respectively. Moreover, chromatographic analyses unveiled the varying influence of small molecular metabolites on the structure of α-LA and ß-LG, respectively. Notably, molecular docking underscored that the primary active sites of α-LA and ß-LG involved in protein binding to IgE antibodies aligned with the interaction sites of small molecular metabolites. In essence, LAB-produced metabolites wield a substantial influence on the antigenic properties of whey proteins.


Asunto(s)
Lactobacillus delbrueckii , Simulación del Acoplamiento Molecular , Proteína de Suero de Leche , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/química , Lactobacillus delbrueckii/inmunología , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Fermentación , Lactoglobulinas/química , Lactoglobulinas/inmunología , Lactoglobulinas/metabolismo , Lactalbúmina/química , Lactalbúmina/inmunología , Lactalbúmina/metabolismo , Animales , Bovinos , Antígenos/inmunología , Antígenos/química
7.
Food Res Int ; 187: 114343, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763636

RESUMEN

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Asunto(s)
Filtración , Fórmulas Infantiles , Moco , Animales , Fórmulas Infantiles/química , Moco/metabolismo , Porcinos , Proteína de Suero de Leche/metabolismo , Intestino Delgado/metabolismo , Tripsina/metabolismo , Humanos , Células Caliciformes/metabolismo , Claudina-1/metabolismo , Claudina-1/genética , Lactasa/metabolismo , Lactasa/genética , Mucina 2/metabolismo , Mucina 2/genética , Mucosa Intestinal/metabolismo , Duodeno/metabolismo , Yeyuno/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de la Leche/metabolismo , Proteínas de la Leche/análisis
8.
Appl Microbiol Biotechnol ; 108(1): 354, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819482

RESUMEN

Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.


Asunto(s)
Hidrolisados de Proteína , Proteína de Suero de Leche , Proteína de Suero de Leche/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/química , Prebióticos , Humanos , Suero Lácteo/química , Suero Lácteo/metabolismo , Lactosa/metabolismo , beta-Galactosidasa/metabolismo , beta-Galactosidasa/genética
9.
J Agric Food Chem ; 72(22): 12738-12751, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38788151

RESUMEN

Phytosterol (PS) is a steroid, and its bioavailability can be enhanced by interacting with protein in the C-24 hydroxyl group. The interaction between sterols and amino acid residues in proteins can be enhanced by enzymatic hydrolysis. Phytosterol and whey insulation hydrolysates (WPH1-4) fabricated by the Alcalase enzyme at different enzymatic hydrolysis times were selected as delivery systems to simulate sterol C-24 hydroxyl group interaction with protein. Increasing hydrolysis time can promote the production of ß-Lg, which raises the ratio of ß-turn in the secondary structure and promotes the formation of interaction between WPH and PS. The correlation coefficient between hydrogen bonds and encapsulation efficiency (EE) and bioaccessibility is 0.91 and 0.88 (P < 0.05), respectively, indicating that hydrogen bonds of two components significantly influenced the combination by concealing the hydrophobic amino acids and some residues, which improved PS EE and bioavailability by 3.03 and 2.84 times after PS was combined with the WPI hydrolysate. These findings are expected to enhance the absorption of PS and other macromolecules by protein enzymatic hydrolysis to broaden their applications for food.


Asunto(s)
Digestión , Fitosteroles , Hidrolisados de Proteína , Proteína de Suero de Leche , Fitosteroles/química , Fitosteroles/metabolismo , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Hidrólisis , Disponibilidad Biológica , Enlace de Hidrógeno , Subtilisinas/química , Subtilisinas/metabolismo , Humanos , Animales
10.
Int J Biol Macromol ; 269(Pt 1): 132072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705339

RESUMEN

Chitosan (CTS) and chitosan oligosaccharides (COS) have been widely applied in food industry due to their bioactivities and functions. However, CTS and COS with positive charges could interact with proteins, such as whey protein isolate (WPI), influencing their digestion. Interaction among CTS/COS, FUC, and WPI/enzymes was studied by spectroscopy, chromatography, and chemical methods in order to reveal the role of FUC in relieving the inhibition of protein digestibility by CTS/COS and demonstrate the action mechanisms. As shown by the results, the addition of FUC increased degree of hydrolysis (DH) and free protein in the mixture of CTS and WPI to 3.1-fold and 1.8-fold, respectively, while raise DH value and free protein in the mixture of COS and WPI to 6.7-fold and 1.2-fold, respectively. The interaction between amino, carboxyl, sulfate, and hydroxyl groups from carbohydrates and protein could be observed, and notably, FUC could interact with CTS/COS preferentially to prevent CTS/COS from combining with WPI. In addition, the addition of FUC could also relieve the combination of CTS to trypsin, increasing the fluorescence intensity and concentration of trypsin by 83.3 % and 4.8 %, respectively. Thus, the present study demonstrated that FUC could alleviate the inhibitory effect of CTS/COS on protein digestion.


Asunto(s)
Quitosano , Oligosacáridos , Polisacáridos , Quitosano/química , Quitosano/farmacología , Oligosacáridos/farmacología , Oligosacáridos/química , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/metabolismo , Hidrólisis , Proteína de Suero de Leche/química , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/metabolismo , Tripsina/metabolismo , Tripsina/química , Proteolisis/efectos de los fármacos
11.
Am J Physiol Cell Physiol ; 326(6): C1769-C1775, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682238

RESUMEN

We recently demonstrated that acute oral ketone monoester intake induces a stimulation of postprandial myofibrillar protein synthesis rates comparable to that elicited following the ingestion of 10 g whey protein or their coingestion. The present investigation aimed to determine the acute effects of ingesting a ketone monoester, whey protein, or their coingestion on mechanistic target of rapamycin (mTOR)-related protein-protein colocalization and intracellular trafficking in human skeletal muscle. In a randomized, double-blind, parallel group design, 36 healthy recreationally active young males (age: 24.2 ± 4.1 yr) ingested either: 1) 0.36 g·kg-1 bodyweight of the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET + PRO). Muscle biopsies were obtained in the overnight postabsorptive state (basal conditions), and at 120 and 300 min in the postprandial period for immunofluorescence assessment of protein translocation and colocalization of mTOR-related signaling molecules. All treatments resulted in a significant (Interaction: P < 0.0001) decrease in tuberous sclerosis complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) colocalization at 120 min versus basal; however, the decrease was sustained at 300 min versus basal (P < 0.0001) only in KET + PRO. PRO and KET + PRO increased (Interaction: P < 0.0001) mTOR-Rheb colocalization at 120 min versus basal; however, KET + PRO resulted in a sustained increase in mTOR-Rheb colocalization at 300 min that was greater than KET and PRO. Treatment intake increased mTOR-wheat germ agglutinin (WGA) colocalization at 120 and 300 min (Time: P = 0.0031), suggesting translocation toward the fiber periphery. These findings demonstrate that ketone monoester intake can influence the spatial mechanisms involved in the regulation of mTORC1 in human skeletal muscle.NEW & NOTEWORTHY We explored the effects of a ketone monoester (KET), whey protein (PRO), or their coingestion (KET + PRO) on mTOR-related protein-protein colocalization and intracellular trafficking in human muscle. All treatments decreased TSC2-Rheb colocalization at 120 minutes; however, KET + PRO sustained the decrease at 300 min. Only PRO and KET + PRO increased mTOR-Rheb colocalization; however, the increase at 300 min was greater in KET + PRO. Treatment intake increased mTOR-WGA colocalization, suggesting translocation to the fiber periphery. Ketone bodies influence the spatial regulation of mTOR.


Asunto(s)
Músculo Esquelético , Transporte de Proteínas , Serina-Treonina Quinasas TOR , Proteína de Suero de Leche , Humanos , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/administración & dosificación , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Adulto Joven , Adulto , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Método Doble Ciego , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Periodo Posprandial , Cetonas/metabolismo , Proteínas Musculares/metabolismo
12.
Food Chem ; 450: 139346, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38621311

RESUMEN

This research compared the effects of dry heating on the digestion of goat milk proteins with different casein-to-whey ratios (40% casein, C40 and 80% casein, C80). The glycation markers of heated samples were determined by LC-MS. Heating at 60 °C for 8 h induced early glycation while heating at 60 °C for 72 h induced advanced glycation. Unheated C80 samples showed a higher digestibility than unheated C40 samples, which may be due to their higher protein solubility. After dry heating for 72 h, no significant difference in digestibility was observed between C80 and C40 samples. Heating for 72 h decreased the digestibility of C40 samples compared to unheated samples, probably due to glycation, while protein aggregation was the main reason for the reduced digestibility of heated C80 samples. Overall, this study showed that dry heating for 72 h induced a lower digestibility of C80 and C40 samples, although with different underlying mechanisms.


Asunto(s)
Caseínas , Digestión , Cabras , Calor , Leche , Proteína de Suero de Leche , Animales , Caseínas/química , Caseínas/metabolismo , Leche/química , Glicosilación , Humanos , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Modelos Biológicos
13.
Int J Biol Macromol ; 267(Pt 2): 131613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642686

RESUMEN

As glycosylations are difficult to analyze, their roles and effects are poorly understood. Glycosylations in human milk (HM) differ across lactation. Glycosylations can be involved in antimicrobial activities and may serve as food for beneficial microorganisms. This study aimed to identify and analyze O-linked glycans in HM by high-throughput mass spectrometry. 184 longitudinal HM samples from 66 donors from day 3 and months 1, 2, and 3 postpartum were subjected to a post-translational modification specific enrichment-based strategy using TiO2 and ZrO2 beads for O-linked glycopeptide enrichment. ß-CN was found to be a major O-linked glycoprotein, additionally, αS1-CN, κ-CN, lactotransferrin, and albumin also contained O-linked glycans. As glycosyltransferases and glycosidases are involved in assembling the glycans including O-linked glycosylations, these were further investigated. Some glycosyltransferases and glycosidases were found to be significantly decreasing through lactation, including two O-linked glycan initiator enzymes (GLNT1 and GLNT2). Despite their decrease, the overall level of O-linked glycans remained stable in HM over lactation. Three different motifs for O-linked glycosylation were enriched in HM proteins: Gly-Xxx-Xxx-Gly-Ser/Thr, Arg-Ser/Thr and Lys-Ser/Thr. Further O-linked glycan motifs on ß-CN were observed to differ between intact proteins and endogenous peptides in HM.


Asunto(s)
Caseínas , Lactancia , Leche Humana , Proteína de Suero de Leche , Humanos , Leche Humana/química , Glicosilación , Femenino , Caseínas/metabolismo , Caseínas/química , Lactancia/metabolismo , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Glicopéptidos/metabolismo , Glicopéptidos/química , Procesamiento Proteico-Postraduccional
14.
Food Microbiol ; 121: 104525, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637087

RESUMEN

The lack of vitamin B12 in unprocessed plant-based foods can lead to health problems in strict vegetarians and vegans. The main aim of this study was to investigate the potential synergy of co-culturing Bifidobacterium animalis subsp. lactis and Propionibacterium freudenreichii in improving production of vitamin B12 and short-chain fatty acids in soy whey. Different strategies including mono-, sequential and simultaneous cultures were adopted. Growth, short-chain fatty acids and vitamin B12 were assessed throughout the fermentation while free amino acids, volatiles, and isoflavones were determined on the final day. P. freudenreichii monoculture grew well in soy whey, whereas B. lactis monoculture entered the death phase by day 4. Principal component analysis demonstrates that metabolic changes in both sequential cultures did not show drastic differences to those of P. freudenreichii monoculture. However, simultaneous culturing significantly improved vitamin B12, acetic acid and propionic acid contents (1.3 times, 5 times, 2.5 times, compared to the next highest treatment [sequential cultures]) in fermented soy whey relative to other culturing modes. Hence, co-culturing of P. freudenreichii and B. lactis would provide an alternative method to improve vitamin B12, acetic acid and propionic acid contents in fermented foods.


Asunto(s)
Bifidobacterium animalis , Propionibacterium freudenreichii , Propionatos , Propionibacterium freudenreichii/metabolismo , Bifidobacterium animalis/metabolismo , Suero Lácteo , Vitamina B 12/análisis , Vitamina B 12/metabolismo , Propionibacterium/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fermentación , Ácido Acético/metabolismo , Proteína de Suero de Leche/metabolismo , Vitaminas/metabolismo
15.
Food Chem ; 448: 139119, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547703

RESUMEN

Buffalo colostrum is the initial mammary secretion after parturition, consisting of nutritional and bioactive components. In this study, we conducted a proteomic analysis of buffalo colostrum whey to identify bioactive proteins and peptides. A total of 107 differentially expressed proteins (DEPs) were identified in buffalo colostrum whey compared to those in mature milk. Gene Ontology analysis revealed that DEPs were primarily associated with immune response and tissue development. KEGG pathway enrichment suggested that colostrum actively enhances nascent immunity involved in interleukin and interferon signaling pathways. Furthermore, candidate antimicrobial peptides (AMPs) of whey protein hydrolysates from buffalo colostrum were characterized, which exhibits broad-spectrum activity against gram-positive and gram-negative pathogens. Overall, this study improves our understanding of protein variations in buffalo lactation, and contributes to the development of AMPs from buffalo colostrum.


Asunto(s)
Péptidos Antimicrobianos , Búfalos , Calostro , Leche , Proteómica , Proteína de Suero de Leche , Animales , Calostro/química , Calostro/metabolismo , Femenino , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/análisis , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/metabolismo , Leche/química , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/análisis , Suero Lácteo/química , Suero Lácteo/metabolismo
16.
J Appl Physiol (1985) ; 136(6): 1388-1399, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385186

RESUMEN

Feeding and resistance exercise stimulate myofibrillar protein synthesis (MPS) rates in healthy adults. This anabolic characterization of "healthy adults" has been namely focused on males. Therefore, the purpose of this study was to examine the temporal responses of MPS and anabolic signaling to resistance exercise alone or combined with the ingestion of protein in postmenopausal females and compare postabsorptive rates with young females. Sixteen females [60 ± 7 yr; body mass index (BMI) = 26 ± 12 kg·m-2] completed an acute bout of unilateral resistance exercise before consuming either: a fortified whey protein supplement (WHEY) or water. Participants received primed continuous infusions of L-[ring-13C6]phenylalanine with bilateral muscle biopsies before and after treatment ingestion at 2 h and 4 h in nonexercised and exercised legs. Resistance exercise transiently increased MPS above baseline at 0-2 h in the water condition (P = 0.007). Feeding after resistance exercise resulted in a late phase (2-4 h) increase in MPS in the WHEY condition (P = 0.005). In both conditions, resistance exercise did not enhance the cumulative (0-4 h) MPS response. In the nonexercised leg, MPS did not differ at 0-2 h, 2-4 h, or 0-4 h of the measurement periods (all, P > 0.05). Likewise, there were no changes in the phosphorylation of p70S6K, AMPKα, or total and phosphorylated yes-associated protein on Ser127. Finally, postabsorptive MPS was lower in premenopausal versus postmenopausal females (P = 0.023). Our results demonstrate that resistance exercise-induced changes in MPS are temporally regulated, but do not result in greater cumulative (0-4 h) MPS in postmenopausal women.NEW & NOTEWORTHY An adequate quality and quantity of skeletal muscle is relevant to support physical performance and metabolic health. Muscle protein synthesis (MPS) is an established remodeling marker, which can be hypertrophic or nonhypertrophic. Importantly, protein ingestion and resistance exercise are two strategies that support healthy muscle by stimulating MPS. Our study shows postmenopause modulates baseline MPS that may diminish the MPS response to the fundamental anabolic stimuli of protein ingestion and resistance exercise in older females.


Asunto(s)
Proteínas Musculares , Miofibrillas , Posmenopausia , Periodo Posprandial , Entrenamiento de Fuerza , Proteína de Suero de Leche , Humanos , Femenino , Posmenopausia/fisiología , Posmenopausia/metabolismo , Entrenamiento de Fuerza/métodos , Persona de Mediana Edad , Periodo Posprandial/fisiología , Miofibrillas/metabolismo , Proteínas Musculares/biosíntesis , Proteínas Musculares/metabolismo , Proteína de Suero de Leche/metabolismo , Músculo Esquelético/metabolismo , Descanso/fisiología , Anciano , Fenilalanina/metabolismo , Biosíntesis de Proteínas/fisiología , Suplementos Dietéticos , Adulto , Ejercicio Físico/fisiología , Fosforilación
17.
J Agric Food Chem ; 72(9): 4958-4976, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38381611

RESUMEN

Previously, we found that whey proteins form biomolecular coronas around titanium dioxide (TiO2) nanoparticles. Here, the gastrointestinal fate of whey protein-coated TiO2 nanoparticles and their interactions with gut microbiota were investigated. The antioxidant activity of protein-coated nanoparticles was enhanced after simulated digestion. The structure of the whey proteins was changed after they adsorbed to the surfaces of the TiO2 nanoparticles, which reduced their hydrolysis under simulated gastrointestinal conditions. The presence of protein coronas also regulated the impact of the TiO2 nanoparticles on colonic fermentation, including promoting the production of short-chain fatty acids. Bare TiO2 nanoparticles significantly increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria, but the presence of protein coronas alleviated this effect. In particular, the proportion of beneficial bacteria, such as Bacteroides and Bifidobacterium, was enhanced for the coated nanoparticles. Our results suggest that the formation of a whey protein corona around TiO2 nanoparticles may have beneficial effects on their behavior within the colon. This study provides valuable new insights into the potential impact of protein coronas on the gastrointestinal fate of inorganic nanoparticles.


Asunto(s)
Nanopartículas , Corona de Proteínas , Proteína de Suero de Leche/metabolismo , Suero Lácteo/metabolismo , Corona de Proteínas/metabolismo , Tracto Gastrointestinal/metabolismo , Nanopartículas/química , Bacterias/metabolismo , Titanio/química
18.
Compr Rev Food Sci Food Saf ; 23(1): e13288, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284584

RESUMEN

Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.


Asunto(s)
Neoplasias , Peptidomiméticos , Eliminación de Residuos , Humanos , Proteína de Suero de Leche/metabolismo , Lactalbúmina/metabolismo , Proteínas de la Leche/química , Proteínas de la Leche/metabolismo , Proteínas de la Leche/farmacología , Lactoferrina/metabolismo , Peptonas/metabolismo , Hidrólisis , Emulsiones , Proteómica , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Aminoácidos
19.
Bioresour Technol ; 393: 130145, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042430

RESUMEN

Medium-chain fatty acids (MCFAs) are essential chemical feedstocks. Microbial production of MCFAs offers an attractive alternative to conventional methods, but the costly media and external inducers limit its practical application. To address this issue and make MCFA production more cost-effective, an E.coli platform was developed using soy whey as a medium and galactose as an autoinducer. We first designed an efficient, stringent, homogeneous, and robust galactose-based autoinduction system for the expression of pathway enzymes by rationally engineering the promoter of the galactose-proton symporter (GalP). Subsequently, the intracellular acetyl-CoA availability and NADH regeneration were enhanced to improve the reversal of the ß-oxidation cycle. The resulting strain yielded 8.20 g/L and 16.42 g/L MCFA in pH-controlled batch fermentation and fed-batch fermentation with glucose added using soy whey as medium, respectively. This study provided a cost-effective and promising platform for MCFA production, as well as future strain development for other value-added chemicals production.


Asunto(s)
Escherichia coli , Ácidos Grasos , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Galactosa/metabolismo , Suero Lácteo/metabolismo , Análisis Costo-Beneficio , Ingeniería Metabólica/métodos , Proteína de Suero de Leche/metabolismo , Fermentación
20.
J Food Sci ; 89(1): 540-551, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38051025

RESUMEN

Soy whey, a by-product from the tofu and soy protein isolate industry was evaluated as a substrate for a biofortified beverage using several propionic acid bacteria (PAB). PAB growth and changes in sugars, organic acids, amino acids and isoflavones were investigated. Vitamin B12 and short-chain fatty acid (SCFA) production were measured over time. Acidipropionibacterium acidipropionici (DSM 20272) showed the highest growth, compared to the other three PABs (Propionibacterium freudenreichii [DSM 20271 and DSM 4902], A. jensenii [DSM 20535]). Acidipropionibacterium (DSM 20272 and DSM 20535) showed the best propionic acid and acetic acid production, while P. freudenreichii produced the most succinic acid. Propionibacterium freudenreichii exhibited significant vitamin B12 production at 4.06 ± 0.28 µg/L for DSM 20271, followed by 2.58 ± 0.22 µg/L for DSM 4902. Notably, all PAB displayed strong ß-glycosidase activities evidenced by the conversion of isoflavone glycosides to isoflavone aglycones. The stark differences between Acidipropionibacterium spp. and Propionibacterium spp. indicate that the former PAB is specialized in SCFA production, while the latter PAB is better at vitamin B12 bioenrichment. This study demonstrated the possibility of employing PAB fermentation to improve SCFA and vitamin B12 content. This can open avenues for a beverage or functional ingredient development.


Asunto(s)
Isoflavonas , Alimentos de Soja , Propionatos/metabolismo , Suero Lácteo/metabolismo , Propionibacterium/metabolismo , Proteína de Suero de Leche/metabolismo , Fermentación , Bacterias/metabolismo , Biotransformación , Isoflavonas/metabolismo , Vitaminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...