Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 984
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 68, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730334

RESUMEN

BACKGROUND: Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS: Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS: NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS: NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.


Asunto(s)
Actinas , Meiosis , Oocitos , Proteína de Unión al GTP cdc42 , Animales , Oocitos/metabolismo , Ratones , Femenino , Actinas/metabolismo , Actinas/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP cdc42/genética , Fosforilación , Huso Acromático/metabolismo
2.
J Cell Biol ; 223(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38386112

RESUMEN

The small G-protein CDC42 is an evolutionary conserved polarity protein and a key regulator of polarized cell functions, including directed cell migration. In vertebrates, alternative splicing gives rise to two CDC42 proteins: the ubiquitously expressed isoform (CDC42u) and the brain isoform (CDC42b), which only differ in their carboxy-terminal sequence, including the CAAX motif essential for their association with membranes. We show that these divergent sequences do not directly affect the range of CDC42's potential binding partners but indirectly influence CDC42-driven signaling by controlling the subcellular localization of the two isoforms. In astrocytes and neural precursors, which naturally express both variants, CDC42u associates with the leading-edge plasma membrane of migrating cells, where it recruits the Par6-PKCζ complex to fulfill its polarity function. In contrast, CDC42b mainly localizes to intracellular membrane compartments, where it regulates N-WASP-mediated endocytosis. Both CDC42 isoforms contribute their specific functions to promote the chemotaxis of neural precursors, demonstrating that their expression pattern is decisive for tissue-specific cell behavior.


Asunto(s)
Empalme Alternativo , Astrocitos , Movimiento Celular , Proteína de Unión al GTP cdc42 , Animales , Astrocitos/citología , Isoformas de Proteínas/genética , Ratas , Proteína de Unión al GTP cdc42/genética , Membrana Celular
3.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38180080

RESUMEN

RhoU is an atypical member of the Rho family of small G-proteins, which has N- and C-terminal extensions compared to the classic Rho GTPases RhoA, Rac1 and Cdc42, and associates with membranes through C-terminal palmitoylation rather than prenylation. RhoU mRNA expression is upregulated in prostate cancer and is considered a marker for disease progression. Here, we show that RhoU overexpression in prostate cancer cells increases cell migration and invasion. To identify RhoU targets that contribute to its function, we found that RhoU homodimerizes in cells. We map the region involved in this interaction to the C-terminal extension and show that C-terminal palmitoylation is required for self-association. Expression of the isolated C-terminal extension reduces RhoU-induced activation of p21-activated kinases (PAKs), which are known downstream targets for RhoU, and induces cell morphological changes consistent with inhibiting RhoU function. Our results show for the first time that the activity of a Rho family member is stimulated by self-association, and this is important for its activity.


Asunto(s)
Neoplasias de la Próstata , Proteínas de Unión al GTP rho , Humanos , Masculino , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
4.
J Cell Physiol ; 239(1): 36-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37877586

RESUMEN

Human enterocytes are primary targets of infection by invasive bacterium Salmonella Typhimurium, and studies using nonintestinal epithelial cells established that S. Typhimurium activates Rho family GTPases, primarily CDC42, to modulate the actin cytoskeletal network for invasion. The host intracellular protein network that engages CDC42 and influences the pathogen's invasive capacity are relatively unclear. Here, proteomic analyses of canonical and variant CDC42 interactomes identified a poorly characterized CDC42 interacting protein, CDC42EP1, whose intracellular localization is rapidly redistributed and aggregated around the invading bacteria. CDC42EP1 associates with SEPTIN-7 and Villin, and its relocalization and bacterial engagement depend on host CDC42 and S. Typhimurium's capability of activating CDC42. Unlike CDC42, CDC42EP1 is not required for S. Typhimurium's initial cellular entry but is found to associate with Salmonella-containing vacuoles after long-term infections, indicating a contribution to the pathogen's intracellular growth and replication. These results uncover a new host regulator of enteric Salmonella infections, which may be targeted to restrict bacterial load at the primary site of infection to prevent systemic spread.


Asunto(s)
Proteínas del Citoesqueleto , Salmonella typhimurium , Proteínas de Unión al GTP rho , Humanos , Actinas/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Citoesqueleto/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Salmonella typhimurium/patogenicidad , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo
5.
Nat Commun ; 14(1): 8356, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102112

RESUMEN

Rho GTPases play a key role in the spatio-temporal coordination of cytoskeletal dynamics during cell migration. Here, we directly investigate crosstalk between the major Rho GTPases Rho, Rac and Cdc42 by combining rapid activity perturbation with activity measurements in mammalian cells. These studies reveal that Rac stimulates Rho activity. Direct measurement of spatio-temporal activity patterns show that Rac activity is tightly and precisely coupled to local cell protrusions, followed by Rho activation during retraction. Furthermore, we find that the Rho-activating Lbc-type GEFs Arhgef11 and Arhgef12 are enriched at transient cell protrusions and retractions and recruited to the plasma membrane by active Rac. In addition, their depletion reduces activity crosstalk, cell protrusion-retraction dynamics and migration distance and increases migration directionality. Thus, our study shows that Arhgef11 and Arhgef12 facilitate exploratory cell migration by coordinating cell protrusion and retraction by coupling the activity of the associated regulators Rac and Rho.


Asunto(s)
Tamaño de la Célula , Proteínas de Unión al GTP rho , Animales , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Citoesqueleto/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mamíferos/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
6.
Small GTPases ; 14(1): 1-13, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37114375

RESUMEN

Rho proteins are part of the Ras superfamily, which function to modulate cytoskeletal dynamics including cell adhesion and motility. Recently, an activating mutation in Cdc42, a Rho family GTPase, was found in a patient sample of melanoma. Previously, our work had shown the PI3K was important downstream of mutationally active Cdc42. Our present study sought to determine whether PI3K was a crucial downstream partner for Cdc42 in a melanoma cells line with a BRAF mutation, which is the most common mutation in cutaneous melanoma. In this work we were able to show that Cdc42 contributes to proliferation, anchorage-independent growth, cell motility and invasion. Treatment with a pan-PI3K inhibitor was able to effectively ameliorate all these cancer phenotypes. These data suggest that PI3K may be an important target downstream of Cdc42 in melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/metabolismo , Fosfatidilinositol 3-Quinasas , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Línea Celular , Fenotipo
7.
Front Immunol ; 14: 1118458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936942

RESUMEN

Background: Human papilloma virus (HPV)-related cancers are global health challenge. Insufficient comprehension of these cancers has impeded the development of novel therapeutic interventions. Bioinformatics empowered us to investigate these cancers from new entry points. Methods: DNA methylation data of cervical squamous cell carcinoma (CESC) and anal squamous cell carcinoma (ASCC) were analyzed to identify the significantly altered pathways. Through analyses integrated with RNA sequencing data of genes in these pathways, genes with strongest correlation to the TNM staging of CESC was identified and their correlations with overall survival in patients were assessed. To find a potential promising drug, correlation analysis of gene expression levels and compound sensitivity was performed. In vitro experiments were conducted to validate these findings. We further performed molecular docking experiments to explain our findings. Results: Significantly altered pathways included immune, HPV infection, oxidative stress, ferroptosis and necroptosis. 10 hub genes in these pathways (PSMD11, RB1, SAE1, TAF15, TFDP1, CORO1C, JOSD1, CDC42, KPNA2 and NUP62) were identified, in which only CDC42 high expression was statistically significantly correlated with overall survival (Hazard Ratio: 1.6, P = 0.045). Afatinib was then screened out to be tested. In vitro experiments exhibited that the expression level of CDC42 was upregulated in HaCaT/A431 cells transfected with HPV E6 and E7, and the inhibitory effect of afatinib on proliferation was enhanced after transfection. CDC42-GTPase-effector interface-EGFR-afatinib was found to be a stable complex with a highest ZDOCK score of 1264.017. Conclusion: We identified CDC42 as a pivotal gene in the pathophysiology of HPV-related cancers. The upregulation of CDC42 could be a signal for afatinib treatment and the mechanism in which may be an increased affinity of EGFR to afatinib, inferred from a high stability in the quaternary complex of CDC42-GTPase-effector interface-EGFR-afatinib.


Asunto(s)
Carcinoma de Células Escamosas , Infecciones por Papillomavirus , Proteína de Unión al GTP cdc42 , Femenino , Humanos , Afatinib/farmacología , Afatinib/uso terapéutico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/virología , Receptores ErbB/genética , Receptores ErbB/metabolismo , GTP Fosfohidrolasas , Virus del Papiloma Humano , Simulación del Acoplamiento Molecular , Infecciones por Papillomavirus/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
8.
J Biol Chem ; 299(1): 102749, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436559

RESUMEN

The Par complex polarizes diverse animal cells through the concerted action of multiple regulators. Binding to the multi-PDZ domain containing protein Par-3 couples the complex to cortical flows that construct the Par membrane domain. Once localized properly, the complex is thought to transition from Par-3 to the Rho GTPase Cdc42 to activate the complex. While this transition is a critical step in Par-mediated polarity, little is known about how it occurs. Here, we used a biochemical reconstitution approach with purified, intact Par complex and qualitative binding assays and found that Par-3 and Cdc42 exhibit strong negative cooperativity for the Par complex. The energetic coupling arises from interactions between the second and third PDZ protein interaction domains of Par-3 and the aPKC Kinase-PBM (PDZ binding motif) that mediate the displacement of Cdc42 from the Par complex. Our results indicate that Par-3, Cdc42, Par-6, and aPKC are the minimal components that are sufficient for this transition to occur and that no external factors are required. Our findings provide the mechanistic framework for understanding a critical step in the regulation of Par complex polarization and activity.


Asunto(s)
Proteína de Unión al GTP cdc42 , Proteínas de Unión al GTP rho , Animales , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Polaridad Celular/fisiología , Proteínas de Unión al GTP rho/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo
9.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36571786

RESUMEN

Invadopodia formation is regulated by Rho GTPases. However, the molecular mechanisms that control Rho GTPase signaling at invadopodia remain poorly understood. Here, we have identified ARHGAP17, a Cdc42-specific RhoGAP, as a key regulator of invadopodia in breast cancer cells and characterized a novel ARHGAP17-mediated signaling pathway that controls the spatiotemporal activity of Cdc42 during invadopodia turnover. Our results show that during invadopodia assembly, ARHGAP17 localizes to the invadopodia ring and restricts the activity of Cdc42 to the invadopodia core, where it promotes invadopodia growth. Invadopodia disassembly starts when ARHGAP17 translocates from the invadopodia ring to the core, in a process that is mediated by its interaction with the Cdc42 effector CIP4. Once at the core, ARHGAP17 inactivates Cdc42 to promote invadopodia disassembly. Our results in invadopodia provide new insights into the coordinated transition between the activation and inactivation of Rho GTPases.


Asunto(s)
Neoplasias de la Mama , Proteínas Activadoras de GTPasa , Podosomas , Proteína de Unión al GTP cdc42 , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Podosomas/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Transducción de Señal , Línea Celular Tumoral , Humanos , Proteínas Activadoras de GTPasa/metabolismo
10.
J Cell Biol ; 222(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36355349

RESUMEN

The molecular mechanisms underlying the establishment of the monopolar growth of fission yeast spores have been less characterized. Here, we report that the Cdc42 GTPase-activating protein (GAP) Rga6 is required for promoting monopolar growth during spore germination. The absence of Rga6 increases the number of spores that grow in a bipolar fashion. Rga6 decorates the non-growing cortical region, binds phosphatidylinositol 4,5-bisphosphate, and colocalizes with the phosphatidylinositol 4,5-bisphosphate-binding protein Opy1. Overexpression of Opy1 diminishes the cortical localization of Rga6. The characteristic localization of Rga6 on the cell cortex depends on the C-terminal PBR region of Rga6. Moreover, engineered chimera composed of the Rga6 C-terminal PBR region fused to the GAP domain of Rga3 or Rga4 are sufficient to rescue the spore growth phenotype caused by the absence of Rga6. Hence, our work establishes a paradigm in which the lipid composition of the plasma membrane directs polarized cell growth by specifying the cortical localization of a GAP protein.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Esporas Fúngicas , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Fosfatidilinositol 4,5-Difosfato/metabolismo
11.
Trends Cell Biol ; 33(2): 124-137, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35773059

RESUMEN

General stress responses, which sense environmental or endogenous signals, aim at promoting cell survival and fitness during adverse conditions. In eukaryotes, mitogen-activated protein (MAP) kinase-driven cascades trigger a shift in the cell's gene expression program as a cellular adaptation to stress. Here, we review another aspect of activated MAP kinase cascades reported in fission yeast: the transient inhibition of cell polarity in response to oxidative stress. The phosphorylation by a stress-activated MAP kinase of regulators of the GTPase cell division cycle 42 (Cdc42) causes a transient inhibition of polarized cell growth. The formation of growth sites depends on limiting and essential polarity components. We summarize here some processes in which inhibition of Cdc42 may be a general mechanism to regulate polarized growth also under physiological conditions.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Schizosaccharomyces , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Fosforilación , GTP Fosfohidrolasas/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Polaridad Celular
12.
J Biomol Struct Dyn ; 41(2): 560-580, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34877916

RESUMEN

Rho family GTPases serve as molecular switches in numerous cellular processes, and their overexpression is involved in disease conditions. RhoG is one of the less explored Rho GTPases with significant sequential and structural homology with Rac1. Experimental mutations in RhoG (i.e., RhoGG12V and RhoGQ61L) are shown to dysregulate cell migration. Thus, targeting upstream activators of RhoG, such as guanine nucleotide exchange factors (GEFs), maybe an important strategy for inhibiting RhoG activation. In the current study, we have modelled the 3D structure of RhoG with greater accuracy as confirmed through PROCHECK, ProSA, and Verify3D. Our results indicate that 90.4% of residues are in the Ramachandran plots favoured region, with the Z-score of -6.46, and 87.96% of residues had an averaged 3D-1D score ≥0.2. Further, we have evaluated and binding dynamics of ten Rac1 inhibitors to investigate their potential to inhibit RhoG by targeting GEFs binding grooves. To this end, the binding energy of the docked complexes of the wild-type (WT) RhoG and its mutant proteins with inhibitor molecules was calculated using the MM/PBSA method. Our results from docking studies showed that macrolide1 binds efficiently with the GEF site of WT RhoG and the mutants mentioned above. However, an extensive analysis using MD simulations (200 ns) showed that the Rac1 based inhibitor, EHop-016, and NSC23766 might bind with greater affinity to GEF sites of mutants and WT RhoG. Thus, the results from the study indicate that Rac1 inhibitors have the potential for use as therapeutics in conditions involving dysregulation of RhoG.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteína de Unión al GTP cdc42 , Proteína de Unión al GTP rac1 , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Transducción de Señal , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rho
13.
J Biol Chem ; 298(11): 102564, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36206843

RESUMEN

The small GTPase CDC42 plays essential roles in neurogenesis and brain development. Previously, we showed that a CDC42 splice variant that has a ubiquitous tissue distribution specifically stimulates the formation of neural progenitor cells, whereas a brain-specific CDC42 variant, CDC42b, is essential for promoting the transition of neural progenitor cells to neurons. These specific roles of CDC42 and CDC42b in neurogenesis are ascribed to their opposing effects on mTORC1 activity. Specifically, the ubiquitous form of CDC42 stimulates mTORC1 activity and thereby upregulates tissue-specific transcription factors that are essential for neuroprogenitor formation, whereas CDC42b works together with activated CDC42-associated kinase (ACK) to downregulate mTOR expression. Here, we demonstrate that the EGF receptor (EGFR) is an additional and important target of CDC42b and ACK, which is downregulated by their combined actions in promoting neurogenesis. The activation status of the EGFR determines the timing by which neural progenitor cells derived from P19 embryonal carcinoma terminally differentiate into neurons. By promoting EGFR degradation, we found that CDC42b and ACK stimulate autophagy, which protects emerging neurons from apoptosis and helps trigger neural progenitor cells to differentiate into neurons. Moreover, our results reveal that CDC42b is localized in phosphatidylinositol (3,4,5)-triphosphate-enriched microdomains on the plasma membrane, mediated through its polybasic sequence 185KRK187, which is essential for determining its distinct functions. Overall, these findings now highlight a molecular mechanism by which CDC42b and ACK regulate neuronal differentiation and provide new insights into the functional interplay between EGFR degradation and autophagy that occurs during embryonic neurogenesis.


Asunto(s)
Proteínas Tirosina Quinasas , Proteína de Unión al GTP cdc42 , Proteínas Tirosina Quinasas/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neurogénesis , Encéfalo/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
14.
Cell Commun Signal ; 20(1): 136, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064550

RESUMEN

BACKGROUND: Gastric cancer is a common and lethal human malignancy worldwide and cancer cell metastasis is the leading cause of cancer-related mortality. MICAL2, a flavoprotein monooxygenase, is an important regulator of epithelial-to-mesenchymal transition. The aim of this study was to explore the effects of MICAL2 on gastric cancer cell migration and determine the underlying molecular mechanisms. METHODS: Cell migration was examined by wound healing and transwell assays. Changes in E-cadherin/ß-catenin signaling were determined by qPCR and analysis of cytoplasmic and nuclear protein fractions. E-cadherin/ß-catenin binding was determined by co-immunoprecipitation assays. Cdc42 activity was examined by pulldown assay. RESULTS: MICAL2 was highly expressed in gastric cancer tissues. The knockdown of MICAL2 significantly attenuated migratory ability and ß-catenin nuclear translocation in gastric cancer cells while LiCl treatment, an inhibitor of GSK3ß, reversed these MICAL2 knockdown-induced effects. Meanwhile, E-cadherin expression was markedly enhanced in MICAL2-depleted cells. MICAL2 knockdown led to a significant attenuation of E-cadherin ubiquitination and degradation in a Cdc42-dependent manner, then enhanced E-cadherin/ß-catenin binding, and reduced ß-catenin nuclear translocation. CONCLUSIONS: Together, our results indicated that MICAL2 promotes E-cadherin ubiquitination and degradation, leading to enhanced ß-catenin signaling via the disruption of the E-cadherin/ß-catenin complex and, consequently, the promotion of gastric cell migration. Video Abstract.


Asunto(s)
Antígenos CD , Cadherinas , Proteínas de Microfilamentos , Oxidorreductasas , Neoplasias Gástricas , beta Catenina , Proteína de Unión al GTP cdc42 , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
15.
J Cell Sci ; 135(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36111497

RESUMEN

Attainment of proper cell shape and the regulation of cell migration are essential processes in the development of an organism. The mixed lineage leukemia (MLL or KMT2A) protein, a histone 3 lysine 4 (H3K4) methyltransferase, plays a critical role in cell-fate decisions during skeletal development and haematopoiesis in higher vertebrates. Rho GTPases - RhoA, Rac1 and CDC42 - are small G proteins that regulate various key cellular processes, such as actin cytoskeleton formation, the maintenance of cell shape and cell migration. Here, we report that MLL regulates the homeostasis of these small Rho GTPases. Loss of MLL resulted in an abnormal cell shape and a disrupted actin cytoskeleton, which lead to diminished cell spreading and migration. MLL depletion affected the stability and activity of Rho GTPases in a SET domain-dependent manner, but these Rho GTPases were not direct transcriptional targets of MLL. Instead, MLL regulated the transcript levels of their chaperone protein RhoGDI1 (also known as ARHGDIA). Using MDA-MB-231, a triple-negative breast cancer cell line with high RhoGDI1 expression, we show that MLL depletion or inhibition by small molecules reduces tumour progression in nude mice. Our studies highlight the central regulatory role of MLL in Rho/Rac/CDC42 signalling pathways. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Unión al GTP rho , Inhibidor alfa de Disociación del Nucleótido Guanina rho , Ratones , Animales , Inhibidor alfa de Disociación del Nucleótido Guanina rho/genética , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Ratones Desnudos , Histonas/metabolismo , Lisina , Transducción de Señal/fisiología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Movimiento Celular/fisiología , Citoesqueleto de Actina/metabolismo , Metiltransferasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo
16.
J Clin Lab Anal ; 36(11): e24681, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36164754

RESUMEN

OBJECTIVE: Cell division cycle 42 (CDC42) participates in the pathogenesis of some T-cell-mediated inflammatory diseases via regulating CD4+ T-cell differentiation and inflammation response. This study aimed to evaluate the correlation of CDC42 and T helper (Th)1/Th2 cytokines with disease risk, effusion viscosity, and hearing loss degree of otitis media with effusion (OME). METHODS: CDC42, interleukin (IL)-4, and interferon-gamma (IFN-γ) in effusion and serum of 78 OME patients were determined by enzyme-linked immunosorbent assay. Besides, the effusion (irrigating fluid) and serum samples of 30 controls (adenoid hypertrophy patients without OME) were also obtained for CDC42, IL-4, and IFN-γ determination. RESULTS: Effusion CDC42 and IL-4 were elevated in OME patients compared with controls (both p < 0.001). Effusion CDC42 was positively correlated with effusion IL-4 in OME patients (p = 0.004) and controls (p = 0.012) but was not related to effusion IFN-γ (both p > 0.050). Additionally, effusion CDC42 (p = 0.025) and IL-4 (p = 0.023) were increased in OME patients with mucoid effusion compared to patients with serous effusion, while effusion IFN-γ was of no difference between those patients (p = 0.215). Meanwhile, elevated effusion CDC42 (p = 0.012) and IL-4 (p = 0.033) were linked with increased hearing loss degrees, whereas effusion IFN-γ was not related to hearing loss degrees (p = 0.057). Moreover, the findings of serum CDC42, IL-4, and IFN-γ showed similar trends as effusion ones; nonetheless, their correlation with disease features was generally weaker. CONCLUSION: OME patients present with elevated CDC42 and IL-4 levels; the latter factors are intercorrelated and positively associate with effusion viscosity and hearing loss degree.


Asunto(s)
Sordera , Otitis Media con Derrame , Proteína de Unión al GTP cdc42 , Humanos , Ciclo Celular , Citocinas , Interferón gamma , Interleucina-4 , Otitis Media con Derrame/complicaciones , Viscosidad , Proteína de Unión al GTP cdc42/genética , Células Th2
17.
Int J Biol Macromol ; 220: 33-42, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944756

RESUMEN

Noncoding RNAs, such as long noncoding RNAs (lncRNAs), are abundant in livestock. Many lncRNAs that affect the growth rate of livestock have been identified in muscles. However, some of their physiological functions and regulatory mechanisms remain unclear. In this study, we identified a new lncRNA (lncPRRX1) and investigated its effect on the proliferation of bovine myoblasts. LncPRRX1 was highly expressed in muscle tissue, and interference with lncPRRX1 inhibited the proliferation of bovine myoblasts in vitro. The RNA molecules of lncPRRX1 act on miR-137 as competitive endogenous RNAs (ceRNAs). Overexpression of miR-137 suppressed the proliferation of myoblasts, while inhibition of miR-137 had the opposite effect. In addition, the predicted target genes of miR-137 were significantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, in which Cell Division Cycle 42 (CDC42) was shown to be the direct target gene of miR-137, and interference with CDC42 inhibited myoblast proliferation. Furthermore, interference with lncPRRX1 repaired the defects in CDC42 protein levels and cell proliferation caused by miR-137 inhibitors. Our results suggested that lncPRRX1 promoted bovine myoblast proliferation by regulating the miRNA-137/CDC42 axis.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Bovinos , Diferenciación Celular/genética , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mioblastos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
18.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012107

RESUMEN

The IQ motif-containing GTPase-activating protein (IQGAP) family composes of three highly-related and evolutionarily conserved paralogs (IQGAP1, IQGAP2 and IQGAP3), which fine tune as scaffolding proteins numerous fundamental cellular processes. IQGAP1 is described as an effector of CDC42, although its effector function yet re-mains unclear. Biophysical, biochemical and molecular dynamic simulation studies have proposed that IQGAP RASGAP-related domains (GRDs) bind to the switch regions and the insert helix of CDC42 in a GTP-dependent manner. Our kinetic and equilibrium studies have shown that IQGAP1 GRD binds, in contrast to its C-terminal 794 amino acids (called C794), CDC42 in a nucleotide-independent manner indicating a binding outside the switch regions. To resolve this discrepancy and move beyond the one-sided view of GRD, we carried out affinity measurements and a systematic mutational analysis of the interfacing residues between GRD and CDC42 based on the crystal structure of the IQGAP2 GRD-CDC42Q61L GTP complex. We determined a 100-fold lower affinity of the GRD1 of IQGAP1 and of GRD2 of IQGAP2 for CDC42 mGppNHp in comparison to C794/C795 proteins. Moreover, partial and major mutation of CDC42 switch regions substantially affected C794/C795 binding but only a little GRD1 and remarkably not at all the GRD2 binding. However, we clearly showed that GRD2 contributes to the overall affinity of C795 by using a 11 amino acid mutated GRD variant. Furthermore, the GRD1 binding to the CDC42 was abolished using specific point mutations within the insert helix of CDC42 clearly supporting the notion that CDC42 binding site(s) of IQGAP GRD lies outside the switch regions among others in the insert helix. Collectively, this study provides further evidence for a mechanistic framework model that is based on a multi-step binding process, in which IQGAP GRD might act as a 'scaffolding domain' by binding CDC42 irrespective of its nucleotide-bound forms, followed by other IQGAP domains downstream of GRD that act as an effector domain and is in charge for a GTP-dependent interaction with CDC42.


Asunto(s)
Proteína de Unión al GTP cdc42 , Proteínas Activadoras de ras GTPasa , Sitios de Unión , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/metabolismo , Nucleótidos/metabolismo , Unión Proteica , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
19.
Biochem Genet ; 60(6): 2383-2398, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35412170

RESUMEN

Bladder cancer (BC) is the most common malignant tumour of the urinary system. The current conventional treatments for BC have certain limitations. It is very urgent and necessary to find new treatment strategies for BC. Our study elucidated the underlying regulatory mechanisms of cell division control protein 42 homologue (CDC42) to regulate the development of BC. Quantitative real-time polymerase chain reaction, Western blot, immunofluorescence and immunohistochemistry were used to assess the expression of CDC42 and IQ motif-containing GTPase-activating protein 3 (IQGAP3) in BC tissues and BC cells. We induced the knockdown or overexpression by transfecting sh-CDC42 or oe-IQGAP3 into BC cells. In addition, cell proliferation and apoptosis were evaluated by cell counting kit-8 and flow cytometry assays, respectively. Moreover, proteins involved in the rat sarcoma (Ras)/extracellular regulated protein kinase (ERK) pathway were determined by Western blot. The expression of CDC42 and IQGAP3 was markedly upregulated in both BC tissues and BC cells. CDC42 silencing downregulated the expression of IQGAP3 and suppressed the Ras/ERK pathway. In addition, CDC42 silencing markedly promoted apoptosis and inhibited proliferation in BC cells. Further experiments showed that overexpression of IQGAP3 dramatically abolished the bioeffects mediated by CDC42 silencing on the proliferation and apoptosis of BC cells. All our results suggested that CDC42 promoted the Ras/ERK pathway by regulating IQGAP3, thus enhancing cell proliferation and suppressing cell apoptosis in BC cells and ultimately participating in the pathogenesis of BC.


Asunto(s)
Proteínas Activadoras de GTPasa , Neoplasias de la Vejiga Urinaria , Proteína de Unión al GTP cdc42 , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas , Neoplasias de la Vejiga Urinaria/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
20.
J Allergy Clin Immunol ; 150(1): 223-228, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35157921

RESUMEN

BACKGROUND: Pathogenic missense variants in cell division control protein 42 (CDC42) differentially affect protein function, causing a clinically wide phenotypic spectrum variably affecting neurodevelopment, hematopoiesis, and immune response. More recently, 3 variants at the C-terminus of CDC42 were proposed to similarly impact protein function and cause a novel autoinflammatory disorder. OBJECTIVES: We sought to clinically and functionally classify these variants to improve patient management. METHODS: Comparative analysis of the available clinical data and medical history of patients was performed. In vitro and in vivo studies were carried out to functionally characterize individual variants. RESULTS: Differently from what had previously been observed for the p.R186C change causing neonatal-onset cytopenia, autoinflammation, and recurrent hemophagocytic lymphohistiocytosis, p.C188Y and p.∗192Cext∗24 promoted accelerated protein degradation. Unprenylated CDC42C188Y did not behave as a membrane-bound protein, whereas the residual CDC42∗192Cext∗24 mutant replicated the CDC42R186C behavior, being targeted to the Golgi apparatus in a palmitoylation-dependent manner. Assessment of in vitro polarized migration and development in Caenorhabditis elegans documented a loss-of-function behavior of the p.C188Y and p.∗192Cext∗24 variants. Consistently, the 3 pathogenic variants were associated with different clinical presentations, with dysmorphisms, severity, and age of onset of cytopenia and extent of autoinflammation representing major differences. CONCLUSIONS: Pathogenic variants at the CDC42 C-terminus differently impact protein stability, localization, and function, and cause different diseases, with p.R186C specifically associated with neonatal-onset pancytopenia and severe autoinflammation/hemophagocytic lymphohistiocytosis requiring emapalumab and bone marrow transplantation, and p.C188Y and p.∗192Cext∗24 causing anakinra-sensitive autoinflammation.


Asunto(s)
Enfermedades del Sistema Inmune , Linfohistiocitosis Hemofagocítica , Proteína de Unión al GTP cdc42 , Hematopoyesis , Humanos , Recién Nacido , Linfohistiocitosis Hemofagocítica/genética , Mutación , Proteína de Unión al GTP cdc42/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA