Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
J Phys Chem B ; 128(27): 6518-6528, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38942776

RESUMEN

Protein structure has been well established to play a key role in determining function; however, intrinsically disordered proteins and regions (IDPs and IDRs) defy this paradigm. IDPs and IDRs exist as an ensemble of structures rather than a stable 3D structure yet play essential roles in many cell-signaling processes. Nearly all Ras superfamily GTPases are tethered to membranes by a lipid tail at the end of a flexible IDR. The sequence of the IDR is a key determinant of membrane localization, and interaction between the IDR and the membrane has been shown to affect signaling in RAS proteins through the modulation of dynamic membrane organization. Here, we utilized atomistic molecular dynamics simulations to study the membrane interaction, conformational dynamics, and lipid sorting of three IDRs from small GTPases Rheb, RhoA, and DiRas3 in model membranes representing their physiological target membranes. We found that complementarity between the lipidated IDR sequence and target membrane lipid composition is a determinant of conformational plasticity. We also show that electrostatic interactions between anionic lipids and basic residues on IDRs are correlated with sampling of semistable conformational substates, and lack of these interactions is associated with greater conformational diversity. Finally, we show that small GTPase IDRs with a polybasic domain alter local lipid composition by segregating anionic lipids and, in some cases, excluding other lipids from their immediate vicinity in favor of anionic lipids.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Simulación de Dinámica Molecular , Proteína de Unión al GTP rhoA , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
2.
Cell Mol Life Sci ; 81(1): 216, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740643

RESUMEN

p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the ß5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial ß5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.


Asunto(s)
Proteínas Activadoras de GTPasa , Prolina , Proteínas de Schizosaccharomyces pombe , Humanos , Secuencia de Aminoácidos , Secuencia Conservada , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Modelos Moleculares , Prolina/metabolismo , Prolina/química , Prolina/genética , Unión Proteica , Dominios Proteicos , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Tirosina/metabolismo , Tirosina/química , Tirosina/genética
3.
Nat Commun ; 14(1): 3733, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353478

RESUMEN

Transient receptor potential (TRP) channel TRPV4 is a polymodal cellular sensor that responds to moderate heat, cell swelling, shear stress, and small-molecule ligands. It is involved in thermogenesis, regulation of vascular tone, bone homeostasis, renal and pulmonary functions. TRPV4 is implicated in neuromuscular and skeletal disorders, pulmonary edema, and cancers, and represents an important drug target. The cytoskeletal remodeling GTPase RhoA has been shown to suppress TRPV4 activity. Here, we present a structure of the human TRPV4-RhoA complex that shows RhoA interaction with the membrane-facing surface of the TRPV4 ankyrin repeat domains. The contact interface reveals residues that are mutated in neuropathies, providing an insight into the disease pathogenesis. We also identify the binding sites of the TRPV4 agonist 4α-PDD and the inhibitor HC-067047 at the base of the S1-S4 bundle, and show that agonist binding leads to pore opening, while channel inhibition involves a π-to-α transition in the pore-forming helix S6. Our structures elucidate the interaction interface between hTRPV4 and RhoA, as well as residues at this interface that are involved in TRPV4 disease-causing mutations. They shed light on TRPV4 activation and inhibition and provide a template for the design of future therapeutics for treatment of TRPV4-related diseases.


Asunto(s)
Canales Catiónicos TRPV , Proteína de Unión al GTP rhoA , Humanos , Repetición de Anquirina , Canales Catiónicos TRPV/química , Proteína de Unión al GTP rhoA/química
4.
Nat Commun ; 14(1): 3732, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353484

RESUMEN

Crosstalk between ion channels and small GTPases is critical during homeostasis and disease, but little is known about the structural underpinnings of these interactions. TRPV4 is a polymodal, calcium-permeable cation channel that has emerged as a potential therapeutic target in multiple conditions. Gain-of-function mutations also cause hereditary neuromuscular disease. Here, we present cryo-EM structures of human TRPV4 in complex with RhoA in the ligand-free, antagonist-bound closed, and agonist-bound open states. These structures reveal the mechanism of ligand-dependent TRPV4 gating. Channel activation is associated with rigid-body rotation of the intracellular ankyrin repeat domain, but state-dependent interaction with membrane-anchored RhoA constrains this movement. Notably, many residues at the TRPV4-RhoA interface are mutated in disease and perturbing this interface by introducing mutations into either TRPV4 or RhoA increases TRPV4 channel activity. Together, these results suggest that RhoA serves as an auxiliary subunit for TRPV4, regulating TRPV4-mediated calcium homeostasis and disruption of TRPV4-RhoA interactions can lead to TRPV4-related neuromuscular disease. These insights will help facilitate TRPV4 therapeutics development.


Asunto(s)
Canales Catiónicos TRPV , Proteína de Unión al GTP rhoA , Humanos , Repetición de Anquirina , Calcio/metabolismo , Mutación , Canales Catiónicos TRPV/química , Proteína de Unión al GTP rhoA/química
5.
PLoS Negl Trop Dis ; 15(11): e0009503, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843489

RESUMEN

BACKGROUND: Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential. Protein partners of SmHDAC8 were previously identified by yeast two-hybrid (Y2H) cDNA library screening and by mass spectrometry (MS) analysis. Among these partners we characterized SmRho1, the schistosome orthologue of human RhoA GTPase, which is involved in the regulation of the cytoskeleton. In this work, we validated the interaction between SmHDAC8 and SmRho1 and explored the role of the lysine deacetylase in cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: We characterized two isoforms of SmRho1, SmRho1.1 and SmRho1.2. Co- immunoprecipitation (Co-IP)/Mass Spectrometry (MS) analysis identified SmRho1 partner proteins and we used two heterologous expression systems (Y2H assay and Xenopus laevis oocytes) to study interactions between SmHDAC8 and SmRho1 isoforms. To confirm SmHDAC8 and SmRho1 interaction in adult worms and schistosomula, we performed Co-IP experiments and additionally demonstrated SmRho1 acetylation using a Nano LC-MS/MS approach. A major impact of SmHDAC8 in cytoskeleton organization was documented by treating adult worms and schistosomula with a selective SmHDAC8 inhibitor or using RNAi followed by confocal microscopy. CONCLUSIONS/SIGNIFICANCE: Our results suggest that SmHDAC8 is involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform. The SmRho1.2 isoform failed to interact with SmHDAC8, but did specifically interact with SmDia suggesting the existence of two distinct signaling pathways regulating S. mansoni cytoskeleton organization via the two SmRho1 isoforms. A specific interaction between SmHDAC8 and the C-terminal moiety of SmRho1.1 was demonstrated, and we showed that SmRho1 is acetylated on K136. SmHDAC8 inhibition or knockdown using RNAi caused extensive disruption of schistosomula actin cytoskeleton.


Asunto(s)
GTP Fosfohidrolasas/química , Histona Desacetilasas/química , Schistosoma mansoni/metabolismo , Proteína de Unión al GTP rhoA/química , Acetilación , Animales , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Oocitos , Interferencia de ARN , Schistosoma mansoni/genética , Espectrometría de Masas en Tándem , Xenopus laevis , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
6.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34576292

RESUMEN

The cytotoxic necrotizing factor 1 (CNF1) toxin from uropathogenic Escherichia coli constitutively activates Rho GTPases by catalyzing the deamidation of a critical glutamine residue located in the switch II (SWII). In crystallographic structures of the CNF1 catalytic domain (CNF1CD), surface-exposed P768 and P968 peptidyl-prolyl imide bonds (X-Pro) adopt an unusual cis conformation. Here, we show that mutation of each proline residue into glycine abrogates CNF1CD in vitro deamidase activity, while mutant forms of CNF1 remain functional on RhoA in cells. Using molecular dynamics simulations coupled to protein-peptide docking, we highlight the long-distance impact of peptidyl-prolyl cis-trans isomerization on the network of interactions between the loops bordering the entrance of the catalytic cleft. The energetically favorable isomerization of P768 compared with P968, induces an enlargement of loop L1 that fosters the invasion of CNF1CD catalytic cleft by a peptide encompassing SWII of RhoA. The connection of the P968 cis isomer to the catalytic cysteine C866 via a ladder of stacking interactions is alleviated along the cis-trans isomerization. Finally, the cis-trans conversion of P768 favors a switch of the thiol side chain of C866 from a resting to an active orientation. The long-distance impact of peptidyl-prolyl cis-trans isomerizations is expected to have implications for target modification.


Asunto(s)
Toxinas Bacterianas/química , Dominio Catalítico , Proteínas de Escherichia coli/química , Simulación de Dinámica Molecular , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Isomerismo , Simulación del Acoplamiento Molecular , Unión Proteica , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo
7.
Mol Cell ; 81(22): 4622-4634.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34551282

RESUMEN

AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is unknown. Here, by investigating insulin receptor signaling in human cells and biochemical reconstitution, we found that insulin induces the activation of mTORC2 toward AKT by assembling a supercomplex with KRAS4B and RHOA GTPases, termed KARATE (KRAS4B-RHOA-mTORC2 Ensemble). Insulin-induced KARATE assembly is controlled via phosphorylation of GTP-bound KRAS4B at S181 and GDP-bound RHOA at S188 by protein kinase A. By developing a KARATE inhibitor, we demonstrate that KRAS4B-RHOA interaction drives KARATE formation. In adipocytes, KARATE controls insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane for glucose uptake. Thus, our work reveals a fundamental mechanism that activates mTORC2 toward AKT in insulin-regulated glucose homeostasis.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/química , Glucosa/metabolismo , Insulina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/química , Proteína de Unión al GTP rhoA/química , Células 3T3-L1 , Adipocitos/citología , Animales , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Dictyostelium , Transportador de Glucosa de Tipo 4/metabolismo , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Humanos , Ratones , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
8.
STAR Protoc ; 2(2): 100541, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34036285

RESUMEN

Ras GTPases in complex with Guanosine triphosphate (GTP) or GTP analog exhibit dynamic equilibrium between two interconvertible conformations-an inactive state 1 and an active state 2. Unlike Ras, it remains unclear if the GTP-bound form of Rho GTPases also exhibits multiple conformational states. Here, we describe a protocol for structural and biochemical analyses of RhoA GTPase. This protocol can be adapted for the characterization of other Rho GTPases. For details on the use and execution of this protocol, please refer to Lin et al. (2021).


Asunto(s)
Proteínas de Unión al GTP rho , Escherichia coli , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/aislamiento & purificación , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/aislamiento & purificación , Proteína de Unión al GTP rhoA/metabolismo
9.
Structure ; 29(6): 553-563.e5, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33497604

RESUMEN

By using 31P NMR, we present evidence that the Rho family GTPase RhoA, similar to Ras GTPases, exists in an equilibrium of conformations when bound to GTP. High-resolution crystal structures of RhoA bound to the GTP analog GMPPNP and to GDP show that they display a similar overall inactive conformation. In contrast to the previously reported crystal structures of GTP analog-bound forms of two RhoA dominantly active mutants (G14V and Q63L), GMPPNP-bound RhoA assumes an open conformation in the Switch I loop with a previously unseen interaction between the γ-phosphate and Pro36, instead of the canonical Thr37. Molecular dynamics simulations found that the oncogenic RhoAG14V mutant displays a reduced flexibility in the Switch regions, consistent with a crystal structure of GDP-bound RhoAG14V. Thus, GDP- and GTP-bound RhoA can present similar inactive conformations, and the molecular dynamics in the Switch regions are likely to have a role in RhoA activation.


Asunto(s)
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo , Cristalografía por Rayos X , Guanosina Difosfato/química , Guanosina Trifosfato/química , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Proteína de Unión al GTP rhoA/genética
10.
Curr Stem Cell Res Ther ; 15(7): 607-613, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32223738

RESUMEN

Gastric cancer (GC) is the fourth-most common cancer in the world, with an estimated 1.034 million new cases in 2015, and the third-highest cause of cancer deaths, estimated at 785,558, in 2014. Early diagnosis and treatment greatly affect the survival rate in patients with GC: the 5-year survival rate of early GC reaches 90%-95%, while the mortality rate significantly increases if GC develops to the late stage. Recently, studies for the role of RhoA in the diseases have become a hot topic, especially in the development of tumors. A study found that RhoA can regulate actin polymerization, cell adhesion, motor-myosin, cell transformation, and the ability to participate in the activities of cell movement, proliferation, migration, which are closely related to the invasion and metastasis of tumor cells. However, the specific role of RhoA in tumor cells remains to be studied. Therefore, our current study aimed to briefly review the role of RhoA in GC, especially for its associated signaling pathways involved in the GC progression.


Asunto(s)
Transducción de Señal , Neoplasias Gástricas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Humanos , Integrinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína de Unión al GTP rhoA/química
11.
Pharmacogenomics J ; 20(4): 601-612, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32015453

RESUMEN

Previously, we identified Ras homologous A (RHOA) as a major signaling hub in gastric cancer (GC), the third most common cause of cancer death in the world, prompting us to rationally design an efficacious inhibitor of this oncogenic GTPase. Here, based on that previous work, we extend those computational analyses to further pharmacologically optimize anti-RHOA hydrazide derivatives for greater anti-GC potency. Two of these, JK-136 and JK-139, potently inhibited cell viability and migration/invasion of GC cell lines, and mouse xenografts, diversely expressing RHOA. Moreover, JK-136's binding affinity for RHOA was >140-fold greater than Rhosin, a nonclinical RHOA inhibitor. Network analysis of JK-136/-139 vs. Rhosin treatments indicated downregulation of the sphingosine-1-phosphate, as an emerging cancer metabolic pathway in cell migration and motility. We assert that identifying and targeting oncogenic signaling hubs, such as RHOA, represents an emerging strategy for the design, characterization, and translation of new antineoplastics, against gastric and other cancers.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Diseño de Fármacos , Neoplasias Gástricas/tratamiento farmacológico , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Ratones , Ratones SCID , Simulación del Acoplamiento Molecular/métodos , Estructura Secundaria de Proteína , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(2): 1027-1035, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31888991

RESUMEN

Epithelial cell transforming 2 (Ect2) protein activates Rho GTPases and controls cytokinesis and many other cellular processes. Dysregulation of Ect2 is associated with various cancers. Here, we report the crystal structure of human Ect2 and complementary mechanistic analyses. The data show the C-terminal PH domain of Ect2 folds back and blocks the canonical RhoA-binding site at the catalytic center of the DH domain, providing a mechanism of Ect2 autoinhibition. Ect2 is activated by binding of GTP-bound RhoA to the PH domain, which suggests an allosteric mechanism of Ect2 activation and a positive-feedback loop reinforcing RhoA signaling. This bimodal RhoA binding of Ect2 is unusual and was confirmed with Förster resonance energy transfer (FRET) and hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses. Several recurrent cancer-associated mutations map to the catalytic and regulatory interfaces, and dysregulate Ect2 in vitro and in vivo. Together, our findings provide mechanistic insights into Ect2 regulation in normal cells and under disease conditions.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Sitios de Unión , Citocinesis/fisiología , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Silenciamiento del Gen , Humanos , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Conformación Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo
13.
J Biol Chem ; 295(2): 645-656, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31806702

RESUMEN

Deleted-in-liver cancer 1 (DLC1) exerts its tumor suppressive function mainly through the Rho-GTPase-activating protein (RhoGAP) domain. When activated, the domain promotes the hydrolysis of RhoA-GTP, leading to reduced cell migration. DLC1 is kept in an inactive state by an intramolecular interaction between its RhoGAP domain and the DLC1 sterile α motif (SAM) domain. We have shown previously that this autoinhibited state of DLC1 may be alleviated by tensin-3 (TNS3) or PTEN. We show here that the TNS3/PTEN-DLC1 interactions are mediated by the C2 domains of the former and the SAM domain of the latter. Intriguingly, the DLC1 SAM domain was capable of binding to specific peptide motifs within the C2 domains. Indeed, peptides containing the binding motifs were highly effective in blocking the C2-SAM domain-domain interaction. Importantly, when fused to the tat protein-transduction sequence and subsequently introduced into cells, the C2 peptides potently promoted the RhoGAP function in DLC1, leading to decreased RhoA activation and reduced tumor cell growth in soft agar and migration in response to growth factor stimulation. To facilitate the development of the C2 peptides as potential therapeutic agents, we created a cyclic version of the TNS3 C2 domain-derived peptide and showed that this peptide readily entered the MDA-MB-231 breast cancer cells and effectively inhibited their migration. Our work shows, for the first time, that the SAM domain is a peptide-binding module and establishes the framework on which to explore DLC1 SAM domain-binding peptides as potential therapeutic agents for cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proliferación Celular , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Femenino , Proteínas Activadoras de GTPasa/química , Células HEK293 , Humanos , Modelos Moleculares , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Motivo alfa Estéril , Tensinas/química , Tensinas/metabolismo , Proteínas Supresoras de Tumor/química , Proteína de Unión al GTP rhoA/química
14.
Hum Mutat ; 41(3): 591-599, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31821646

RESUMEN

RHOA is a member of the Rho family of GTPases that are involved in fundamental cellular processes including cell adhesion, migration, and proliferation. RHOA can stimulate the formation of stress fibers and focal adhesions and is a key regulator of actomyosin dynamics in various tissues. In a Genematcher-facilitated collaboration, we were able to identify four unrelated individuals with a specific phenotype characterized by hypopigmented areas of the skin, dental anomalies, body asymmetry, and limb length discrepancy due to hemihypotrophy of one half of the body, as well as brain magnetic resonance imaging (MRI) anomalies. Using whole-exome and ultra-deep amplicon sequencing and comparing genomic data of affected and unaffected areas of the skin, we discovered that all four individuals carried the identical RHOA missense variant, c.139G>A; p.Glu47Lys, in a postzygotic state. Molecular modeling and in silico analysis of the affected p.Glu47Lys residue in RHOA indicated that this exchange is predicted to specifically alter the interaction of RHOA with its downstream effectors containing a PKN-type binding domain and thereby disrupts its ability to activate signaling. Our findings indicate that the recurrent postzygotic RHOA missense variant p.Glu47Lys causes a specific mosaic disorder in humans.


Asunto(s)
Alelos , Codón , Estudios de Asociación Genética , Variación Genética , Placa Neural/metabolismo , Fenotipo , Proteína de Unión al GTP rhoA/genética , Adolescente , Adulto , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Modelos Moleculares , Placa Neural/anomalías , Placa Neural/embriología , Conformación Proteica , Relación Estructura-Actividad , Adulto Joven , Proteína de Unión al GTP rhoA/química
15.
Biosci Rep ; 40(1)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31844879

RESUMEN

C3larvinA is a putative virulence factor produced by Paenibacillus larvae enterobacterial-repetitive-intergenic-consensus (ERIC) III/IV (strain 11-8051). Biochemical, functional and structural analyses of C3larvinA revealed that it belongs to the C3-like mono-ADP-ribosylating toxin subgroup. Mammalian RhoA was the target substrate for its transferase activity suggesting that it may be the biological target of C3larvinA. The kinetic parameters of the NAD+ substrate for the transferase (KM = 75 ± 10 µM) and glycohydrolase (GH) (KM = 107 ± 20 µM) reactions were typical for a C3-like bacterial toxin, including the Plx2A virulence factor from Paenibacillus larvae ERIC I. Upon cytoplasmic expression in yeast, C3larvinA caused a growth-defective phenotype indicating that it is an active C3-like toxin and is cytotoxic to eukaryotic cells. The catalytic variant of the Q187-X-E189 motif in C3larvinA showed no cytotoxicity toward yeast confirming that the cytotoxicity of this factor depends on its enzymatic activity. A homology consensus model of C3larvinA with NAD+ substrate was built on the structure of Plx2A, provided additional confirmation that C3larvinA is a member of the C3-like mono-ADP-ribosylating toxin subgroup. A homology model of C3larvinA with NADH and RhoA was built on the structure of the C3cer-NADH-RhoA complex which provided further evidence that C3larvinA is a C3-like toxin that shares an identical catalytic mechanism with C3cer from Bacillus cereus. C3larvinA induced actin cytoskeleton reorganization in murine macrophages, whereas in insect cells, vacuolization and bi-nucleated cells were observed. These cellular effects are consistent with C3larvinA disrupting RhoA function by covalent modification that is shared among C3-like bacterial toxins.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Toxinas Bacterianas/metabolismo , Abejas/microbiología , Paenibacillus larvae/enzimología , Factores de Virulencia/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , Citoesqueleto de Actina/enzimología , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Interacciones Huésped-Patógeno , Cinética , Macrófagos/enzimología , Mutación , Paenibacillus larvae/genética , Paenibacillus larvae/patogenicidad , Conformación Proteica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Células Sf9 , Spodoptera , Relación Estructura-Actividad , Especificidad por Sustrato , Virulencia , Factores de Virulencia/química , Factores de Virulencia/genética , Proteína de Unión al GTP rhoA/química
16.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842335

RESUMEN

In recent years, hypersensitivity reactions to the Shuanghuanglian injection have attracted broad attention. However, the componential chief culprits inducing the reactions and the underlying mechanisms involved have not been completely defined. In this study, we used a combination of approaches based on the mouse model, human umbilical vein endothelial cell monolayer, real-time cellular monitoring, immunoblot analysis, pharmacological inhibition, and molecular docking. We demonstrated that forsythoside A and forsythoside B contributed to Shuanghuanglian injection-induced pseudoallergic reactions through activation of the RhoA/ROCK signaling pathway. Forsythoside A and forsythoside B could trigger dose-dependent vascular leakage in mice. Moreover, forsythoside A and forsythoside B slightly elicited mast cell degranulation. Correspondingly, treatment with forsythoside A and forsythoside B disrupted the endothelial barrier and augmented the expression of GTP-RhoA, p-MYPT1, and p-MLC2 in a concentration-dependent manner. Additionally, the ROCK inhibitor effectively alleviated forsythoside A/forsythoside B-induced hyperpermeability in both the endothelial cells and mice. Similar responses were not observed in the forsythoside E-treated animals and cells. These differences may be related to the potential of the tested compounds to react with RhoA-GTPγS and form stable interactions. This study innovatively revealed that some forsythosides may cause vascular leakage, and therefore, limiting their contents in injections should be considered.


Asunto(s)
Ácidos Cafeicos/farmacología , Medicamentos Herbarios Chinos/química , Glucósidos/farmacología , Glicósidos/farmacología , Transducción de Señal/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Ácidos Cafeicos/química , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/inmunología , Degranulación de la Célula , Medicamentos Herbarios Chinos/administración & dosificación , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glucósidos/química , Glicósidos/química , Humanos , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Relación Estructura-Actividad , Quinasas Asociadas a rho/química , Proteína de Unión al GTP rhoA/química
17.
Cell Death Dis ; 10(10): 770, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601793

RESUMEN

Ovarian cancer remains the most lethal gynecologic malignancy with late detection and acquired chemoresistance. Advanced understanding of the pathophysiology and novel treatment strategies are urgently required. A growing body of proteomic investigations suggest that phosphorylation has a pivotal role in the regulation of ovarian cancer associated signaling pathways. Matrine has been extensively studied for its potent anti-tumor activities. However, its effect on ovarian cancer cells and underlying molecular mechanisms remain unclear. Herein we showed that matrine treatment inhibited the development and progression of ovarian cancer cells by regulating proliferation, apoptosis, autophagy, invasion and angiogenesis. Matrine treatment retarded the cancer associated signaling transduction by decreasing the phosphorylation levels of ERK1/2, MEK1/2, PI3K, Akt, mTOR, FAK, RhoA, VEGFR2, and Tie2 in vitro and in vivo. Moreover, matrine showed excellent antitumor effect on chemoresistant ovarian cancer cells. No obvious toxic side effects were observed in matrine-administrated mice. As the natural agent, matrine has the potential to be the targeting drug against ovarian cancer cells with the advantages of overcoming the chemotherapy resistance and decreasing the toxic side effects.


Asunto(s)
Alcaloides/uso terapéutico , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Quinolizinas/uso terapéutico , Alcaloides/efectos adversos , Alcaloides/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/química , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolizinas/efectos adversos , Quinolizinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo , Trasplante Heterólogo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo , Matrinas
18.
Cell Death Dis ; 10(6): 450, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171774

RESUMEN

Non-obstructive azoospermia (NOA) severely affects male infertility, however, the deep mechanisms of this disease are rarely interpreted. In this study, we find that undifferentiated spermatogonial stem cells (SSCs) still exist in the basal compartment of the seminiferous tubules and the blood-testis barrier (BTB) formed by the interaction of neighbor Sertoli cells (SCs) is incomplete in NOA patients with spermatogenic maturation arrest. The adhesions between SCs and germ cells (GCs) are also broken in NOA patients. Meanwhile, the expression level of geranylgeranyl diphosphate synthase (Ggpps), a key enzyme in mevalonate metabolic pathway, is lower in NOA patients than that in obstructive azoospermia (OA) patients. After Ggpps deletion specifically in SCs, the mice are infertile and the phenotype of the SC-Ggpps-/- mice is similar to the NOA patients, where the BTB and the SC-GC adhesions are severely destroyed. Although SSCs are still found in the basal compartment of the seminiferous tubules, fewer mature spermatocyte and spermatid are found in SC-Ggpps-/- mice. Further examination suggests that the defect is mediated by the aberrant protein isoprenylation of RhoA and Ras family after Ggpps deletion. The exciting finding is that when the knockout mice are injected with berberine, the abnormal cell adhesions are ameliorated and spermatogenesis is partially restored. Our data suggest that the reconstruction of disrupted BTB is an effective treatment strategy for NOA patients with spermatogenic maturation arrest and hypospermatogenesis.


Asunto(s)
Azoospermia/metabolismo , Barrera Hematotesticular/metabolismo , Farnesiltransferasa/metabolismo , Complejos Multienzimáticos/metabolismo , Prenilación de Proteína , Espermatogénesis/genética , Proteínas ras/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Azoospermia/enzimología , Berberina/farmacología , Barrera Hematotesticular/efectos de los fármacos , Células Cultivadas , Farnesiltransferasa/genética , Células Germinativas/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Complejos Multienzimáticos/genética , Células de Sertoli/enzimología , Células de Sertoli/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/efectos de los fármacos , Testículo/metabolismo , Uniones Estrechas/genética , Proteínas ras/química , Proteínas ras/genética , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genética
19.
Sci Signal ; 12(569)2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30783010

RESUMEN

The C-terminal guanine nucleotide exchange factor (GEF) module of Trio (TrioC) transfers signals from the Gαq/11 subfamily of heterotrimeric G proteins to the small guanosine triphosphatase (GTPase) RhoA, enabling Gαq/11-coupled G protein-coupled receptors (GPCRs) to control downstream events, such as cell motility and gene transcription. This conserved signal transduction axis is crucial for tumor growth in uveal melanoma. Previous studies indicate that the GEF activity of the TrioC module is autoinhibited, with release of autoinhibition upon Gαq/11 binding. Here, we determined the crystal structure of TrioC in its basal state and found that the pleckstrin homology (PH) domain interacts with the Dbl homology (DH) domain in a manner that occludes the Rho GTPase binding site, thereby suggesting the molecular basis of TrioC autoinhibition. Biochemical and biophysical assays revealed that disruption of the autoinhibited conformation destabilized and activated the TrioC module in vitro. Last, mutations in the DH-PH interface found in patients with cancer activated TrioC and, in the context of full-length Trio, led to increased abundance of guanosine triphosphate-bound RhoA (RhoA·GTP) in human cells. These mutations increase mitogenic signaling through the RhoA axis and, therefore, may represent cancer drivers operating in a Gαq/11-independent manner.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Dominios Proteicos , Factores de Intercambio de Guanina Nucleótido Rho/química , Proteína de Unión al GTP rhoA/química , Sitios de Unión/genética , Carcinogénesis/genética , Línea Celular Tumoral , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Melanoma/genética , Melanoma/patología , Modelos Moleculares , Mutación , Unión Proteica , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/genética , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
20.
Proc Natl Acad Sci U S A ; 116(9): 3594-3603, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808751

RESUMEN

The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA- /E-/H- and racE- mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.


Asunto(s)
Citoesqueleto de Actina/genética , Proteínas Portadoras/genética , Proteínas Contráctiles/genética , Melanoma Experimental/genética , Citoesqueleto de Actina/química , Actinas/genética , Animales , Sistemas CRISPR-Cas , Movimiento Celular/genética , Polaridad Celular/genética , Proteínas Contráctiles/química , Dictyostelium/genética , Modelos Animales de Enfermedad , Forminas , Humanos , Melanoma Experimental/patología , Ratones , Microscopía Electrónica , Contracción Muscular/genética , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...