Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 856
Filtrar
1.
Cell Stem Cell ; 31(5): 754-771.e6, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701759

RESUMEN

Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.


Asunto(s)
Empalme Alternativo , Diferenciación Celular , Cromatina , Ribonucleoproteínas Nucleares Heterogéneas , Neuronas , Proteína de Unión al Tracto de Polipirimidina , Factores de Transcripción , Empalme Alternativo/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Transcripción Genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Exones/genética , Humanos , Autorrenovación de las Células/genética
2.
Folia Histochem Cytobiol ; 62(1): 25-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563050

RESUMEN

INTRODUCTION: Endometriosis (EMs), manifested by pain and infertility, is a chronic inflammatory disease. The precise pathophysiology of this disease remains uncertain. Insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) and polypyrimidine tract-binding protein 1 (PTBP1) have both been found to regulate proliferation, apoptosis, and invasion. This study aimed to investigate the effects of IGF2BP1/PTBP1 in treating EMs. MATERIALS AND METHODS: qRT-PCR and western blotting were employed to quantify IGF2BP1 and PTBP1 expression in six patients with EMs (mean age 33.83 years). The correlation analysis, STRING database prediction, and RNA immunoprecipitation were utilized to identify the relationship between IGF2BP1 and PTBP1. Ectopic endometrial volume, weight, HE staining, and IGF2BP1 silencing were utilized to estimate the effects of IGF2BP1 in EMs model rats. qRT-PCR, CCK-8, 5-ethynyl-2'-deoxyuridine (EDU) labeling, Transwell assay, and flow cytometry were utilized to assess the effects of IGF2BP1/PTBP1 on the proliferation, migration, invasion, and apoptosis of ectopic endometrial stromal cells (eESCs). Furthermore, western blotting was employed to evaluate expressions of PCNA, VEGF, and E-cadherin in EMs rats and eESCs. RESULTS: The mRNA and protein levels of IGF2BP1 and PTBP1 in the ectopic and eutopic endometrium of EMs patients were significantly increased. RNA immunoprecipitation revealed a close interaction of IGF2BP1 with PTBP1. Additionally, the endometrial volume, weight, and histopathologic scores in rats were significantly reduced after IGF2BP1 silencing. IGF2BP1 silencing also decreased the expression of PCNA and VEGF, and increased E-cadherin expression in endometrial tissues of EMs rats. Moreover, IGF2BP1 silencing inhibited proliferation, migration, and invasion and promoted apoptosis through PTBP1 in eESCs. CONCLUSIONS: IGF2BP1 exhibits potential beneficial properties in the management of EMs by interacting with PTBP1, thereby highlighting IGF2BP1 as a promising therapeutic target for EMs.


Asunto(s)
Endometriosis , Adulto , Animales , Femenino , Humanos , Ratas , Cadherinas/metabolismo , Proliferación Celular , Endometriosis/patología , Endometrio/patología , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Elife ; 132024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597390

RESUMEN

Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.


Asunto(s)
Empalme Alternativo , Exones , Neuronas , Proteína de Unión al Tracto de Polipirimidina , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Exones/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Fosforilación , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
4.
Nucleic Acids Res ; 52(7): 3971-3988, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38300787

RESUMEN

The RAVER1 protein serves as a co-factor in guiding the polypyrimidine tract-binding protein (PTBP)-dependent control of alternative splicing (AS). Whether RAVER1 solely acts in concert with PTBPs and how it affects cancer cell fate remained elusive. Here, we provide the first comprehensive investigation of RAVER1-controlled AS in cancer cell models. This reveals a pro-oncogenic role of RAVER1 in modulating tumor growth and epithelial-mesenchymal-transition (EMT). Splicing analyses and protein-association studies indicate that RAVER1 guides AS in association with other splicing regulators, including PTBPs and SRSFs. In cancer cells, one major function of RAVER1 is the stimulation of proliferation and restriction of apoptosis. This involves the modulation of AS events within the miR/RISC pathway. Disturbance of RAVER1 impairs miR/RISC activity resulting in severely deregulated gene expression, which promotes lethal TGFB-driven EMT. Among others, RAVER1-modulated splicing events affect the insertion of protein interaction modules in factors guiding miR/RISC-dependent gene silencing. Most prominently, in all three human TNRC6 proteins, RAVER1 controls AS of GW-enriched motifs, which are essential for AGO2-binding and the formation of active miR/RISC complexes. We propose, that RAVER1 is a key modulator of AS events in the miR/RISC pathway ensuring proper abundance and composition of miR/RISC effectors. This ensures balanced expression of TGFB signaling effectors and limits TGFB induced lethal EMT.


Asunto(s)
Empalme Alternativo , Transición Epitelial-Mesenquimal , MicroARNs , Transición Epitelial-Mesenquimal/genética , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Línea Celular Tumoral , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Apoptosis/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales
5.
J Neuropathol Exp Neurol ; 83(4): 276-288, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38324733

RESUMEN

Cerebral infarction (CI) is one of the leading causes of disability and death. LncRNAs are key factors in CI progression. Herein, we studied the function of long noncoding RNA KCNQ1OT1 in CI patient plasma samples and in CI models. Quantitative real-time PCR and Western blotting tested gene and protein expressions. The interactions of KCNQ1OT1/PTBP1 and miR-16-5p were analyzed using dual-luciferase reporter and RNA immunoprecipitation assays; MTT assays measured cell viability. Cell migration and angiogenesis were tested by wound healing and tube formation assays. Pathological changes were analyzed by triphenyltetrazolium chloride and routine staining. We found that KCNQ1OT1 and PTBP1 were overexpressed and miR-16-5p was downregulated in CI patient plasma and in oxygen-glucose deprived (OGD) induced mouse brain microvascular endothelial (bEnd.3) cells. KCNQ1OT1 knockdown suppressed pro-inflammatory cytokine production and stimulated angiogenic responses in OGD-bEnd.3 cells. KCNQ1OT1 upregulated PTBP1 by sponging miR-16-5p. PTBP1 overexpression or miR-16-5p inhibition attenuated the effects of KCNQ1OT1 knockdown. PTBP1 silencing protected against OGD-bEnd.3 cell injury by enhancing SIRT1. KCNQ1OT1 silencing or miR-16-5p overexpression also alleviated ischemic injury in a mice middle cerebral artery occlusion model. Thus, KCNQ1OT1 silencing alleviates CI by regulating the miR-16-5p/PTBP1/SIRT1 pathway, providing a theoretical basis for novel therapeutic strategies targeting CI.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Humanos , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Endoteliales/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Apoptosis/genética , MicroARNs/genética , MicroARNs/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Oxígeno , Ribonucleoproteínas Nucleares Heterogéneas , Proteína de Unión al Tracto de Polipirimidina/genética
6.
J Biol Chem ; 300(3): 105733, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336291

RESUMEN

RNA Binding Proteins regulate, in part, alternative pre-mRNA splicing and, in turn, gene expression patterns. Polypyrimidine tract binding proteins PTBP1 and PTBP2 are paralogous RNA binding proteins sharing 74% amino acid sequence identity. Both proteins contain four structured RNA-recognition motifs (RRMs) connected by linker regions and an N-terminal region. Despite their similarities, the paralogs have distinct tissue-specific expression patterns and can regulate discrete sets of target exons. How two highly structurally similar proteins can exert different splicing outcomes is not well understood. Previous studies revealed that PTBP2 is post-translationally phosphorylated in the unstructured N-terminal, Linker 1, and Linker 2 regions that share less sequence identity with PTBP1 signifying a role for these regions in dictating the paralog's distinct splicing activities. To this end, we conducted bioinformatics analysis to determine the evolutionary conservation of RRMs versus linker regions in PTBP1 and PTBP2 across species. To determine the role of PTBP2 unstructured regions in splicing activity, we created hybrid PTBP1-PTBP2 constructs that had counterpart PTBP1 regions swapped to an otherwise PTBP2 protein and assayed on differentially regulated exons. We also conducted molecular dynamics studies to investigate how negative charges introduced by phosphorylation in PTBP2 unstructured regions can alter their physical properties. Collectively, results from our studies reveal an important role for PTBP2 unstructured regions and suggest a role for phosphorylation in the differential splicing activities of the paralogs on certain regulated exons.


Asunto(s)
Empalme Alternativo , Proteína de Unión al Tracto de Polipirimidina , Vertebrados , Animales , Humanos , Ratones , Ratas , Exones/genética , Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Fosforilación , Proteína de Unión al Tracto de Polipirimidina/química , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Especificidad de la Especie , Vertebrados/genética , Pollos/genética
7.
Thorac Cancer ; 15(10): 808-819, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409914

RESUMEN

BACKGROUND: Breast cancer (BC) is a common malignancy which threatens the health of women. Circular RNAs (circRNAs) are critical factors in multiple cancers, including BC. The aim of this experiment was to investigate the molecular mechanisms of circRNA Septin 9 (circSEPT9) in the progression of BC. METHODS: CircSEPT9, microRNA-625-5p (miR-625-5p) and polypyrimidine tract-binding protein 3 (PTBP3) levels were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was performed to detect the protein levels of PTBP3, E-cadherin and vimentin. Cell counting kit-8 assay (CCK8) and thymidine analog 5-ethynyl-2'-deoxyuridine (EDU) was utilized for proliferation examination. Flow cytometry was conducted to measure apoptosis. Transwell assay and wound healing assay to investigate the migration of BC cells. Glucose uptake and lactate production were determined by specific kits. Additionally, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were utilized to verify the interaction. A murine xenograft model was established to investigate the function of circSEPT9 in BC in vivo. RESULTS: Overexpression of circSEPT9 was found in BC tissues and cells. Silencing circSEPT9 impeded BC cell proliferation, migration, epithelial-mesenchymal transition (EMT) and glycolytic metabolism but facilitated cell apoptosis in vitro. Meanwhile, circSEPT9 knockdown constrained tumor growth in vivo. MiR-625-5p was targeted by circSEPT9. The influence of silencing circSEPT9 on BC cell function was regained by miR-625-5p inhibitor. Furthermore, miR-625-5p regulated BC cell malignant phenotypes via downregulating PTBP3. CONCLUSION: circSEPT9 contributed to the malignant progression of BC by up-regulating PTBP3 via sponging miR-625-5p.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Animales , Ratones , Neoplasias de la Mama/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Mama , Apoptosis , MicroARNs/genética , Proliferación Celular , Línea Celular Tumoral
8.
Mol Cancer ; 23(1): 4, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184608

RESUMEN

BACKGROUND: Renal cell carcinoma (RCC) is one of the most common malignant tumor worldwide. Metastasis is a leading case of cancer-related deaths of RCC. Circular RNAs (circRNAs), a class of noncoding RNAs, have emerged as important regulators in cancer metastasis. However, the functional effects and regulatory mechanisms of circRNAs on RCC metastasis remain largely unknown. METHODS: High-throughput RNA sequencing techniques were performed to analyze the expression profiles of circRNAs and mRNAs in highly and poorly invasive clear cell renal cell carcinoma (ccRCC) cell lines. Functional experiments were performed to unveil the regulatory role of circPPAP2B in the proliferation and metastatic capabilities of ccRCC cells. RNA pulldown, Mass spectrometry analysis, RNA methylation immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), co-immunoprecipitation (CoIP), next-generation RNA-sequencing and double luciferase experiments were employed to clarify the molecular mechanisms by which circPPAP2B promotes ccRCC metastasis. RESULTS: In this study, we describe a newly identified circular RNA called circPPAP2B, which is overexpressed in highly invasive ccRCC cells, as determined through advanced high-throughput RNA sequencing techniques. Furthermore, we observed elevated circPPAP2B in ccRCC tissues, particularly in metastatic ccRCC tissues, and found it to be associated with poor prognosis. Functional experiments unveiled that circPPAP2B actively stimulates the proliferation and metastatic capabilities of ccRCC cells. Mechanistically, circPPAP2B interacts with HNRNPC in a m6A-dependent manner to facilitate HNRNPC nuclear translocation. Subcellular relocalization was dependent upon nondegradable ubiquitination of HNRNPC and stabilization of an HNRNPC/Vimentin/Importin α7 ternary complex. Moreover, we found that circPPAP2B modulates the interaction between HNRNPC and splicing factors, PTBP1 and HNPNPK, and regulates pre-mRNA alternative splicing. Finally, our studies demonstrate that circPPAP2B functions as a miRNA sponge to directly bind to miR-182-5p and increase CYP1B1 expression in ccRCC. CONCLUSIONS: Collectively, our study provides comprehensive evidence that circPPAP2B promotes proliferation and metastasis of ccRCC via HNRNPC-dependent alternative splicing and miR-182-5p/CYP1B1 axis and highlights circPPAP2B as a potential therapeutic target for ccRCC intervention.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Humanos , Carcinoma de Células Renales/genética , Empalme Alternativo , ARN Circular/genética , MicroARNs/genética , Neoplasias Renales/genética , Ribonucleoproteínas Nucleares Heterogéneas , Proteína de Unión al Tracto de Polipirimidina , Citocromo P-450 CYP1B1 , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética
9.
Virology ; 592: 109986, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38290414

RESUMEN

The large amount of viral RNA produced during infections has the potential to interact with and effectively sequester cellular RNA binding proteins, thereby influencing aspects of post-transcriptional gene regulation in the infected cell. Here we demonstrate that the abundant 5' leader RNA region of SARS-CoV-2 viral RNAs can interact with the cellular polypyrimidine tract binding protein (PTBP1). Interestingly, the effect of a knockdown of PTBP1 protein on cellular gene expression is also mimicked during SARS-CoV-2 infection, suggesting that this protein may be functionally sequestered by viral RNAs. Consistent with this model, the alternative splicing of mRNAs that is normally controlled by PTBP1 is dysregulated during SARS-CoV-2 infection. Collectively, these data suggest that the SARS-CoV-2 leader RNA sequesters the cellular PTBP1 protein during infection, resulting in significant impacts on the RNA biology of the host cell. These alterations in post-transcriptional gene regulation may play a role in SARS-CoV-2 mediated molecular pathogenesis.


Asunto(s)
COVID-19 , Ribonucleoproteínas Nucleares Heterogéneas , Proteína de Unión al Tracto de Polipirimidina , SARS-CoV-2 , Humanos , Empalme Alternativo , COVID-19/metabolismo , COVID-19/virología , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , SARS-CoV-2/fisiología
10.
Yi Chuan ; 46(1): 46-62, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38230456

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer accounting for 90% of cases. It is a highly invasive and deadly cancer with a gradual onset. Polypyrimidine tract-binding protein 1 (PTBP1) is an important RNA-binding protein involved in RNA metabolism and has been linked to oncogenic splicing events. While the oncogenic role of PTBP1 in HCC cells has been established, the exact mechanism of action remains unclear. This study aimed to investigate the functional connection between PTBP1 and dysregulated splicing events in HCC. Through immunoprecipitation-mass spectrometry analyses, we discovered that the proteins bound to PTBP1 were significantly enriched in the complex responsible for the alternative splicing of FGFR2 (fibroblast growth factor receptor 2). Further RNA immunoprecipitation and quantitative PCR assays confirmed that PTBP1 down-regulated the FGFR2-IIIb isoform levels and up-regulated the FGFR2-IIIc isoform levels in HCC cells, leading to a switch from FGFR2-IIIb to FGFR2-IIIc isoforms. Subsequent functional evaluations using CCK-8, transwell, and plate clone formation assays in HCC cell lines HepG2 and Huh7 demonstrated that FGFR2-IIIb exhibited tumor-suppressive effects, while FGFR2-IIIc displayed tumor-promoting effects. In conclusion, this study provides insights into the PTBP1-mediated alternative splicing mechanism in HCC progression, offering a new theoretical basis for the prevention and treatment of this malignancy. Mechanistically, the isoform switch from FGFR2-IIIb to FGFR2-IIIc promoted epithelial-mesenchymal transformation (EMT) of HCC cells and activated the FGFR cascades ERK and AKT pathways.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Isoformas de Proteínas/genética , Empalme Alternativo , ARN/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
11.
Cells ; 13(2)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38247832

RESUMEN

Gastric cancer (GC) is the most common type of malignant tumor within the gastrointestinal tract, and GC metastasis is associated with poor prognosis. Polypyrimidine tract binding protein 1 (PTBP1) is an RNA-binding protein implicated in various types of tumor development and metastasis. However, the role of PTBP1 in GC metastasis remains elusive. In this study, we verified that PTBP1 was upregulated in GC tissues and cell lines, and higher PTBP1 level was associated with poorer prognosis. It was shown that PTBP1 knockdown in vitro inhibited GC cell migration, whereas PTBP1 overexpression promoted the migration of GC cells. In vivo, the knockdown of PTBP1 notably reduced both the size and occurrence of metastatic nodules in a nude mice liver metastasis model. We identified phosphoglycerate kinase 1 (PGK1) as a downstream target of PTBP1 and found that PTBP1 increased the stability of PGK1 by directly binding to its mRNA. Furthermore, the PGK1/SNAIL axis could be required for PTBP1's function in the promotion of GC cell migration. These discoveries suggest that PTBP1 could be a promising therapeutic target for GC.


Asunto(s)
Fosfoglicerato Quinasa , Proteína de Unión al Tracto de Polipirimidina , Neoplasias Gástricas , Animales , Ratones , Ratones Desnudos , ARN Mensajero/genética , Proteínas de Unión al ARN , Neoplasias Gástricas/genética , Humanos , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Fosfoglicerato Quinasa/genética
12.
Commun Biol ; 7(1): 130, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273088

RESUMEN

Colorectal cancer is a grievous health concern, we have proved long non-coding RNA LINC00689 is considered as a potential diagnosis biomarker for colorectal cancer, and it is necessary to further investigate its upstream and downstream mechanisms. Here, we show that KLF15, a transcription factor, exhibits the reduced expression in colorectal cancer. KLF15 suppresses the proliferative and metastatic capacities of colorectal cancer cells both in vitro and in vivo by transcriptionally activating LINC00689. Subsequently, LINC00689 recruits PTBP1 protein to enhance the stability of LATS2 mRNA in the cytoplasm. This stabilization causes the suppression of the YAP1/ß-catenin pathway and its target downstream genes. Our findings highlight a regulatory network involving KLF15, LINC00689, PTBP1, LATS2, and the YAP1/ß-catenin pathway in colorectal cancer, shedding light on potential therapeutic targets for colorectal cancer therapy.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Humanos , beta Catenina/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Colorrectales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167011, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38176460

RESUMEN

Tamoxifen (TAM) is the primary drug for treating estrogen receptor alpha-positive (ER+) breast cancer (BC). However, resistance to TAM can develop in some patients, limiting its therapeutic efficacy. The ubiquitin-specific protease (USP) family has been associated with the development, progression, and drug resistance of various cancers. To explore the role of USPs in TAM resistance in BC, we used qRT-PCR to compare USP expression between TAM-sensitive (MCF-7 and T47D) and TAM-resistant cells (MCF-7R and T47DR). We then modulated USP46 expression and examined its impact on cell proliferation, drug resistance (via CCK-8 and EdU experiments), glycolysis levels (using a glycolysis detection assay), protein interactions (confirmed by co-IP), and protein changes (analyzed through Western blotting). Our findings revealed that USP46 was significantly overexpressed in TAM-resistant BC cells, leading to the inhibition of the ubiquitin degradation of polypyrimidine tract-binding protein 1 (PTBP1). Overexpression of PTBP1 increased the PKM2/PKM1 ratio, promoted glycolysis, and intensified TAM resistance in BC cells. Knockdown of USP46 induced downregulation of PTBP1 protein by promoting its K48-linked ubiquitination, resulting in a decreased PKM2/PKM1 ratio, reduced glycolysis, and heightened TAM sensitivity in BC cells. In conclusion, this study highlights the critical role of the USP46/PTBP1/PKM2 axis in TAM resistance in BC. Targeted therapy against USP46 may represent a promising strategy to improve the prognosis of TAM-resistant patients.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Células MCF-7 , Resistencia a Antineoplásicos/genética , Glucólisis , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
14.
Nat Cancer ; 5(1): 30-46, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37845485

RESUMEN

In vitro-transcribed (IVT) mRNA has arisen as a rapid method for the production of nucleic acid drugs. Here, we have constructed an oncolytic IVT mRNA that utilizes human rhinovirus type 2 (HRV2) internal ribosomal entry sites (IRESs) to selectively trigger translation in cancer cells with high expression of EIF4G2 and PTBP1. The oncolytic effect was provided by a long hGSDMDc .825 T>A/c.884 A>G-F1LCT mutant mRNA sequence with mitochondrial inner membrane cardiolipin targeting toxicity that triggers mitophagy. Utilizing the permuted intron-exon (PIE) splicing circularization strategy and lipid nanoparticle (LNP) encapsulation reduced immunogenicity of the mRNA and enabled delivery to eukaryotic cells in vivo. Engineered HRV2 IRESs-GSDMDp.D275E/E295G-F1LCT circRNA-LNPs (GSDMDENG circRNA) successfully inhibited EIF4G2+/PTBP1+ pan-adenocarcinoma xenografts growth. Importantly, in a spontaneous tumor model with abnormal EIF4G2 and PTBP1 caused by KRAS G12D mutation, GSDMDENG circRNA significantly prevented the occurrence of pancreatic, lung and colon adenocarcinoma, improved the survival rate and induced persistent KRAS G12D tumor antigen-specific cytotoxic T lymphocyte responses.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , ARN Circular , Cardiolipinas , Proteínas Proto-Oncogénicas p21(ras) , ARN Mensajero/genética , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
15.
Genes Chromosomes Cancer ; 63(1): e23198, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658696

RESUMEN

Composite hemangioendothelioma is a rare, locally aggressive, and rarely metastasizing vascular neoplasm which affects both children and adults. Recently, a number of gene fusions including YAP1::MAML2, PTBP1::MAML2, and EPC1::PHC2 have been detected in a small subset of cases with or without neuroendocrine expression. Herein, we present four additional cases with novel in-frame fusions. The cohort comprises two females and two males with a wide age range at diagnosis (24-80 years). Two tumors were deep involving the right brachial plexus and mediastinum, while the remaining were superficial (right plantar foot and abdominal wall). The size ranged from 1.5 to 4.8 cm in greatest dimension. Morphologically, all tumors had an admixture of at least two architectural patterns including retiform hemangioendothelioma, hemangioma, epithelioid hemangioendothelioma, or angiosarcoma. The tumors were positive for endothelial markers CD31 (3/3), ERG (4/4), and D2-40 (1/4, focal), while SMA was expressed in 2/3 highlighting the surrounding pericytes. Synaptophysin showed immunoreactivity in 2/3 cases. One patient had a local recurrence after 40 months, while two patients had no evidence of disease 4 months post-resection. Targeted RNA sequencing detected novel in-frame fusions in each of the cases: HSPG2::FGFR1, YAP1::FOXR1, ACTB::MAML2, and ARID1B::MAML2. The two cases with neuroendocrine expression occurred as superficial lesions and harbored YAP1::FOXR1 and ARID1B::MAML2 fusions. Our study expands on the molecular spectrum of this enigmatic tumor, further enhancing our current understanding of the disease.


Asunto(s)
Hemangioendotelioma Epitelioide , Hemangioendotelioma , Hemangioma , Adulto , Masculino , Niño , Femenino , Humanos , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Hemangioendotelioma/patología , Hemangioendotelioma Epitelioide/genética , Secuencia de Bases , Diagnóstico Diferencial , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas , Proteína de Unión al Tracto de Polipirimidina
16.
Chem Biol Drug Des ; 103(1): e14380, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890873

RESUMEN

Labeled with pluripotent potential, the transplantation of bone marrow mesenchymal stem cells (BMSCs) is considered as a promising strategy for treating osteoporosis (OP). Melatonin (MEL) has been investigated to be an essential regulator involved in bone metabolism, as well as BMSCs differentiation. Circular RNAs (circRNAs) are a unique kind of non-coding RNA and play an important regulatory role in OP. However, whether circRNAs are implicated in the effects of MEL on BMSCs osteogenic differentiation remains largely indeterminate. Expression of circ_0005753 in human BMSCs with MEL treatment, clinical specimens diagnosed with OP, either with ovariectomy (OVX)-induced mice, was measured by RT-qPCR. Western blot was conducted to analyze protein levels of osteogenesis-related molecules (Opg, RUNX2, ALP, BMP4) and TXNIP. RNA immunoprecipitation (RIP) and RNA pull-down assays were performed to validate the binding relationship among circ_0005753, PTBP1, and TXNIP. Alkaline phosphatase (ALP) and alizarin red staining (ARS) were performed to evaluate osteogenic capacity of BMSCs. OP mouse model was established by ovariectomy, as evaluated pathologic changes via hematoxylin-eosin (HE), Masson, and Immunohistochemistry (IHC) staining. Expression of circ_0005753 was remarkably decreased during MEL-induced osteogenic differentiation of BMSCs. Interestingly, not only circ_0005753 knockdown significantly promoted osteogenic differentiation of BMSCs, but circ_0005753 overexpression also weakened osteogenic differentiation induced by MEL treatment. Mechanistically, circ_0005753 maintained the stabilization of TXNIP mRNA via recruiting PTBP1. Additionally, reinforced circ_0005753 abrogated MEL-mediated protective effects on OP pathogenesis in a mouse model. This work shows that MEL facilitates osteogenic differentiation of BMSCs via the circ_0005753/PTBP1/TXNIP axis, which may shed light on the development of a novel therapeutic strategy to prevent OP.


Asunto(s)
Melatonina , Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Femenino , Ratones , Humanos , Animales , Osteogénesis , Melatonina/farmacología , ARN Circular/genética , ARN Circular/análisis , ARN Circular/metabolismo , Células Cultivadas , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Modelos Animales de Enfermedad , MicroARNs/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/análisis , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/análisis , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/farmacología , Proteínas Portadoras/metabolismo
17.
Clin Chim Acta ; 553: 117697, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38145644

RESUMEN

BACKGROUND: Existing diagnostic approaches for paucibacillary tuberculosis (TB) are limited by the low sensitivity of testing methods and difficulty in obtaining suitable samples. METHODS: An ultrasensitive TB diagnostic strategy was established, integrating efficient and specific TB targeted next-generation sequencing and machine learning models, and validated in clinical cohorts to test plasma cfDNA, cerebrospinal fluid (CSF) DNA collected from tuberculous meningitis (TBM) and pediatric pulmonary TB (PPTB) patients. RESULTS: In the detection of 227 samples, application of the specific thresholds of CSF DNA (AUC = 0.974) and plasma cfDNA (AUC = 0.908) yielded sensitivity of 97.01 % and the specificity of 95.65 % in CSF samples and sensitivity of 82.61 % and specificity of 86.36 % in plasma samples, respectively. In the analysis of 44 paired samples from TBM patients, our strategy had a high concordance of 90.91 % (40/44) in plasma cfDNA and CSF DNA with both sensitivity of 95.45 % (42/44). In the PPTB patient, the sensitivity of the TB diagnostic strategy yielded higher sensitivity on plasma specimen than Xpert assay on gastric lavage (28.57 % VS. 15.38 %). CONCLUSIONS: Our TB diagnostic strategy provides greater detection sensitivity for paucibacillary TB, while plasma cfDNA as an easily collected specimen, could be an appropriate sample type for PTB and TBM diagnosis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Mycobacterium tuberculosis , Tuberculosis Meníngea , Tuberculosis Pulmonar , Humanos , Niño , Tuberculosis Meníngea/diagnóstico , Mycobacterium tuberculosis/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Sensibilidad y Especificidad , Tuberculosis Pulmonar/diagnóstico , ADN , Secuenciación de Nucleótidos de Alto Rendimiento
18.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38090817

RESUMEN

Antisense transcription, a prevalent occurrence in mammalian genomes, gives rise to natural antisense transcripts (NATs) as RNA molecules. These NATs serve as agents of diverse transcriptional and post-transcriptional regulatory mechanisms, playing crucial roles in various biological processes vital for cell function and immune response. However, when their normal functions are disrupted, they can contribute to human diseases. This comprehensive review aims to establish the molecular foundation linking NATs to the development of disorders like cancer, neurodegenerative conditions, and cardiovascular ailments. Additionally, we evaluate the potential of oligonucleotide-based therapies targeting NATs, presenting both their advantages and limitations, while also highlighting the latest advancements in this promising realm of clinical investigation.Abbreviations: NATs- Natural antisense transcripts, PRC1- Polycomb Repressive Complex 1, PRC2- Polycomb Repressive Complex 2, ADARs- Adenosine deaminases acting on RNA, BDNF-AS- Brain-derived neurotrophic factor antisense transcript, ASOs- Antisense oligonucleotides, SINEUPs- Inverted SINEB2 sequence-mediated upregulating molecules, PTBP1- Polypyrimidine tract binding protein-1, HNRNPK- heterogeneous nuclear ribonucleoprotein K, MAPT-AS1- microtubule-associated protein tau antisense 1, KCNQ1OT- (KCNQ1 opposite strand/antisense transcript 1, ERK- extracellular signal-regulated kinase 1, USP14- ubiquitin-specific protease 14, EGF- Epidermal growth factor, LSD1- Lysine Specific Demethylase 1, ANRIL- Antisense Noncoding RNA in the INK4 Locus, BWS- Beckwith-Wiedemann syndrome, VEGFA- Vascular Endothelial Growth component A.


Asunto(s)
Enfermedades Neurodegenerativas , Transcripción Genética , Animales , Humanos , Regulación de la Expresión Génica , ARN sin Sentido/genética , Núcleo Celular , Mamíferos/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Ubiquitina Tiolesterasa/genética
19.
Discov Med ; 35(179): 1093-1103, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058075

RESUMEN

BACKGROUND: Autophagy plays critical adaptive and nonadaptive roles in the pathogenesis of Sepsis-associated acute kidney injury (Sepsis-AKI). However, it remains unknown whether myocardial infarction associated transcript (MIAT) is involved in the process of autophagy in Sepsis-AKI. This study aimed to explore the exact association between MIAT1 and Beclin 1 (BECN1)-mediated autophagy in Sepsis-AKI in vitro. METHODS: HK-2 (human renal tubular epithelial cell line) cells were stimulated by lipopolysaccharide (LPS) to construct a septic kidney injury cell model in vitro. The relative expression changes of genes or proteins in clinical samples and cells were examined by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot. Cell survival was detected by cell counting kit-8 (CCK-8) and flow cytometry analysis. The production of inflammatory mediators was determined using Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR assays. The interlinked relationship between polypyrimidine tract-binding protein 1 (PTBP1) and MIAT or BECN1 was validated by RNA immunoprecipitation (RIP) and RNA pull-down detections. RESULTS: The expression of MIAT was up-regulated in Sepsis-AKI patients and LPS-stimulated HK-2 cells. Down-regulation of MIAT strikingly lightened LPS-induced cell apoptosis and inflammation, but enhanced cell viability. Evidenced by mechanistic experiments, MIAT silencing was confirmed to activate BECN1-mediated cell autophagy by interacting with PTBP1. Furthermore, the elimination of BECN1 remarkably reversed the antiapoptotic and anti-inflammatory roles mediated by MIAT silencing. CONCLUSIONS: In summary, the experimental data reinforced that MIAT downregulation attenuated LPS-stimulated renal cell inflammatory injury by promoting BECN1-mediated autophagy activation through binding to PTBP1, providing some new insights into the function and mechanism of MIAT in Sepsis-associated acute kidney injury (Sepsis-AKI).


Asunto(s)
Lesión Renal Aguda , MicroARNs , ARN Largo no Codificante , Sepsis , Humanos , Lesión Renal Aguda/genética , Apoptosis/genética , Autofagia/genética , Beclina-1/genética , Beclina-1/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/efectos adversos , Lipopolisacáridos/toxicidad , MicroARNs/genética , Proteína de Unión al Tracto de Polipirimidina/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
20.
PLoS Biol ; 21(12): e3002417, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048343

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder that is often modeled in Fmr1 knockout mice where the RNA-binding protein FMRP is absent. Here, we show that in Fmr1-deficient mice, RNA mis-splicing occurs in several brain regions and peripheral tissues. To assess molecular mechanisms of splicing mis-regulation, we employed N2A cells depleted of Fmr1. In the absence of FMRP, RNA-specific exon skipping events are linked to the splicing factors hnRNPF, PTBP1, and MBNL1. FMRP regulates the translation of Mbnl1 mRNA as well as Mbnl1 RNA auto-splicing. Elevated Mbnl1 auto-splicing in FMRP-deficient cells results in the loss of a nuclear localization signal (NLS)-containing exon. This in turn alters the nucleus-to-cytoplasm ratio of MBNL1. This redistribution of MBNL1 isoforms in Fmr1-deficient cells could result in downstream splicing changes in other RNAs. Indeed, further investigation revealed that splicing disruptions resulting from Fmr1 depletion could be rescued by overexpression of nuclear MBNL1. Altered Mbnl1 auto-splicing also occurs in human FXS postmortem brain. These data suggest that FMRP-controlled translation and RNA processing may cascade into a general dys-regulation of splicing in Fmr1-deficient cells.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Empalme del ARN , Animales , Humanos , Ratones , Citoplasma/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Isoformas de Proteínas/metabolismo , ARN/metabolismo , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA