RESUMEN
BACKGROUND: Parturition is an inflammation process. Exaggerated inflammatory reactions in infection lead to preterm birth. Although nuclear factor kappa B (NF-κB) has been recognized as a classical transcription factor mediating inflammatory reactions, those mediated by NF-κB per se are relatively short-lived. Therefore, there may be other transcription factors involved to sustain NF-κB-initiated inflammatory reactions in gestational tissues in infection-induced preterm birth. METHODS: Cebpd-deficient mice were generated to investigate the role of CCAAT enhancer-binding protein δ (C/EBPδ) in lipopolysaccharide (LPS)-induced preterm birth, and the contribution of fetal and maternal C/EBPδ was further dissected by transferring Cebpd-/- or WT embryos to Cebpd-/- or WT dams. The effects of C/EBPδ pertinent to parturition were investigated in mouse and human myometrial and amnion cells. The interplay between C/EBPδ and NF-κB was examined in cultured human amnion fibroblasts. RESULTS: The mouse study showed that LPS-induced preterm birth was delayed by Cebpd deficiency in either the fetus or the dam, with further delay being observed in conceptions where both the dam and the fetus were deficient in Cebpd. Mouse and human studies showed that the abundance of C/EBPδ was significantly increased in the myometrium and fetal membranes in infection-induced preterm birth. Furthermore, C/EBPδ participated in LPS-induced upregulation of pro-inflammatory cytokines as well as genes pertinent to myometrial contractility and fetal membrane activation in the myometrium and amnion respectively. A mechanistic study in human amnion fibroblasts showed that C/EBPδ, upon induction by NF-κB, could serve as a supplementary transcription factor to NF-κB to sustain the expression of genes pertinent to parturition. CONCLUSIONS: C/EBPδ is a transcription factor to sustain the expression of gene initiated by NF-κB in the myometrium and fetal membranes in infection-induced preterm birth. Targeting C/EBPδ may be of therapeutic value in the treatment of infection-induced preterm birth.
Asunto(s)
Proteína delta de Unión al Potenciador CCAAT , Lipopolisacáridos , FN-kappa B , Nacimiento Prematuro , Animales , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Femenino , Humanos , Embarazo , Ratones , FN-kappa B/metabolismo , Ratones Noqueados , Células Cultivadas , Fibroblastos/metabolismoRESUMEN
Postprandial IL-1ß surges are predominant in the white adipose tissue (WAT), but its consequences are unknown. Here, we investigate the role of IL-1ß in WAT energy storage and show that adipocyte-specific deletion of IL-1 receptor 1 (IL1R1) has no metabolic consequences, whereas ubiquitous lack of IL1R1 reduces body weight, WAT mass, and adipocyte formation in mice. Among all major WAT-resident cell types, progenitors express the highest IL1R1 levels. In vitro, IL-1ß potently promotes adipogenesis in murine and human adipose-derived stem cells. This effect is exclusive to early-differentiation-stage cells, in which the adipogenic transcription factors C/EBPδ and C/EBPß are rapidly upregulated by IL-1ß and enriched near important adipogenic genes. The pro-adipogenic, but not pro-inflammatory effect of IL-1ß is potentiated by acute treatment and blocked by chronic exposure. Thus, we propose that transient postprandial IL-1ß surges regulate WAT remodeling by promoting adipogenesis, whereas chronically elevated IL-1ß levels in obesity blunts this physiological function.
Asunto(s)
Adipocitos , Adipogénesis , Tejido Adiposo Blanco , Proteína beta Potenciadora de Unión a CCAAT , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Animales , Interleucina-1beta/metabolismo , Humanos , Adipocitos/metabolismo , Adipocitos/citología , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Ratones , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/citología , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Masculino , Ratones Noqueados , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Ratones Endogámicos C57BL , Diferenciación Celular/efectos de los fármacosRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a low 5-year survival rate of only 13%. Despite intense research efforts, PDAC remains insufficiently understood. In part, this is attributed to opposing effects of key players being unraveled, including the stroma but also molecules that act in a context-dependent manner. One such molecule is the transcription factor C/EBPδ, where we recently showed that C/EBPδ exerts tumor-suppressive effects in PDAC cells in vitro. To better understand the role of C/EBPδ in different contexts and the development of PDAC, we here build on these findings and assess the effect of C/EBPδ in a PDAC model in mice. We establish that the lack of oxygen in vivo-hypoxia-counteracts the tumor-suppressive effects of C/EBPδ, and identify a reciprocal feedback loop between C/EBPδ and HIF-1α. RNA sequencing of C/EBPδ-induced cells under hypoxia also suggests that the growth-limiting effects of C/EBPδ decrease with oxygen tension. Consequently, in vitro proliferation assays reveal that the tumor-suppressive activities of C/EBPδ are abrogated due to hypoxia. This study demonstrates the importance of considering major physiological parameters in preclinical approaches.
Asunto(s)
Proteína delta de Unión al Potenciador CCAAT , Carcinoma Ductal Pancreático , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Pancreáticas , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Ratones , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Humanos , Línea Celular Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proliferación Celular , Hipoxia/metabolismo , Hipoxia de la Célula , Regulación Neoplásica de la Expresión GénicaRESUMEN
Glioblastoma (GBM) is an aggressive brain cancer with limited therapeutic options. Natural killer (NK) cells are innate immune cells with strong anti-tumor activity and may offer a promising treatment strategy for GBM. We compared the anti-GBM activity of NK cells engineered to express interleukin (IL)-15 or IL-21. Using multiple in vivo models, IL-21 NK cells were superior to IL-15 NK cells both in terms of safety and long-term anti-tumor activity, with locoregionally administered IL-15 NK cells proving toxic and ineffective at tumor control. IL-21 NK cells displayed a unique chromatin accessibility signature, with CCAAT/enhancer-binding proteins (C/EBP), especially CEBPD, serving as key transcription factors regulating their enhanced function. Deletion of CEBPD resulted in loss of IL-21 NK cell potency while its overexpression increased NK cell long-term cytotoxicity and metabolic fitness. These results suggest that IL-21, through C/EBP transcription factors, drives epigenetic reprogramming of NK cells, enhancing their anti-tumor efficacy against GBM.
Asunto(s)
Neoplasias Encefálicas , Proteína delta de Unión al Potenciador CCAAT , Glioblastoma , Interleucinas , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Glioblastoma/inmunología , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/terapia , Interleucinas/genética , Interleucinas/metabolismo , Interleucinas/inmunología , Humanos , Animales , Ratones , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/inmunología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Autoantibody-mediated glomerulonephritis (AGN) arises from dysregulated renal inflammation, with urgent need for improved treatments. IL-17 is implicated in AGN and drives pathology in a kidney-intrinsic manner via renal tubular epithelial cells (RTECs). Nonetheless, downstream signaling mechanisms provoking kidney pathology are poorly understood. A noncanonical RNA binding protein (RBP), Arid5a, was upregulated in human and mouse AGN. Arid5a-/- mice were refractory to AGN, with attenuated myeloid infiltration and impaired expression of IL-17-dependent cytokines and transcription factors (C/EBPß, C/EBPδ). Transcriptome-wide RIP-Seq revealed that Arid5a inducibly interacts with conventional IL-17 target mRNAs, including CEBPB and CEBPD. Unexpectedly, many Arid5a RNA targets corresponded to translational regulation and RNA processing pathways, including rRNAs. Indeed, global protein synthesis was repressed in Arid5a-deficient cells, and C/EBPs were controlled at the level of protein rather than RNA accumulation. IL-17 prompted Arid5a nuclear export and association with 18S rRNA, a 40S ribosome constituent. Accordingly, IL-17-dependent renal autoimmunity is driven by Arid5a at the level of ribosome interactions and translation.
Asunto(s)
Autoanticuerpos , Proteínas de Unión al ADN , Glomerulonefritis , Interleucina-17 , Ratones Noqueados , Factores de Transcripción , Animales , Interleucina-17/metabolismo , Glomerulonefritis/inmunología , Glomerulonefritis/genética , Glomerulonefritis/metabolismo , Glomerulonefritis/patología , Humanos , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Autoanticuerpos/inmunología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
CCAAT enhancer binding protein delta (CEBPD) is a transcription factor and plays an important role in apoptosis and oxidative stress, which are the main pathogenesis of ischemic stroke. However, whether CEBPD regulates ischemic stroke through targeting apoptosis and oxidative stress is unclear. Therefore, to answer this question, rat middle cerebral artery occlusion (MCAO) reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) primary cortical neuron were established to mimic ischemic reperfusion injury. We found that CEBPD was upregulated and accompanied with increased neurological deficit scores and infarct size, and decreased neuron in MCAO rats. The siRNA targeted CEBPD inhibited CEBPD expression in rats, and meanwhile lentivirus system was used to blocked CEBPD expression in primary neuron. CEBPD degeneration decreased neurological deficit scores, infarct size and brain water content of MCAO rats. Knockdown of CEBPD enhanced cell viability and reduced apoptosis as well as oxidative stress in vivo and in vitro. CEBPD silencing promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the expression of heme oxygenase 1 (HO-1). Newly, CEBPD facilitated the transcription of cullin 3 (CUL3), which intensified ischemic stroke through Nrf2/HO-1 pathway that was proposed by our team in the past. In conclusion, targeting CEBPD-CUL3-Nrf2/HO-1 axis may be contributed to cerebral ischemia therapy.
Asunto(s)
Apoptosis , Hemo-Oxigenasa 1 , Accidente Cerebrovascular Isquémico , Factor 2 Relacionado con NF-E2 , Neuronas , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Hemo Oxigenasa (Desciclizante) , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Neuronas/metabolismo , Neuronas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Transducción de SeñalRESUMEN
The commitment of stem cells to differentiate into osteoblasts is a highly regulated and complex process that involves the coordination of extrinsic signals and intrinsic transcriptional machinery. While rodent osteoblastic differentiation has been extensively studied, research on human osteogenesis has been limited by cell sources and existing models. Here, we systematically dissect human pluripotent stem cell-derived osteoblasts to identify functional membrane proteins and their downstream transcriptional networks involved in human osteogenesis. Our results reveal an enrichment of type II transmembrane serine protease CORIN in humans but not rodent osteoblasts. Functional analyses demonstrated that CORIN depletion significantly impairs osteogenesis. Genome-wide chromatin immunoprecipitation enrichment and mechanistic studies show that p38 MAPK-mediated CCAAT enhancer binding protein delta (CEBPD) upregulation is required for CORIN-modulated osteogenesis. Contrastingly, the type I transmembrane heparan sulfate proteoglycan SDC1 enriched in mesenchymal stem cells exerts a negative regulatory effect on osteogenesis through a similar mechanism. Chromatin immunoprecipitation-seq, bulk and single-cell transcriptomes, and functional validations indicated that CEBPD plays a critical role in controlling osteogenesis. In summary, our findings uncover previously unrecognized CORIN-mediated CEBPD transcriptomic networks in driving human osteoblast lineage commitment.
Asunto(s)
Proteína delta de Unión al Potenciador CCAAT , Osteoblastos , Osteogénesis , Serina Endopeptidasas , Humanos , Osteoblastos/metabolismo , Osteoblastos/citología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Perfilación de la Expresión Génica , Diferenciación Celular , Animales , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Transcriptoma , RatonesRESUMEN
Interleukin-6 (IL-6)-class inflammatory cytokines signal through the Janus tyrosine kinase (JAK)/signal transducer and activator of transcription (STAT) pathway and promote the development of pancreatic ductal adenocarcinoma (PDAC); however, the functions of specific intracellular signaling mediators in this process are less well defined. Using a ligand-controlled and pancreas-specific knockout in adult mice, we demonstrate in this study that JAK1 deficiency prevents the formation of KRASG12D-induced pancreatic tumors, and we establish that JAK1 is essential for the constitutive activation of STAT3, whose activation is a prominent characteristic of PDAC. We identify CCAAT/enhancer binding protein δ (C/EBPδ) as a biologically relevant downstream target of JAK1 signaling, which is upregulated in human PDAC. Reinstating the expression of C/EBPδ was sufficient to restore the growth of JAK1-deficient cancer cells as tumorspheres and in xenografted mice. Collectively, the findings of this study suggest that JAK1 executes important functions of inflammatory cytokines through C/EBPδ and may serve as a molecular target for PDAC prevention and treatment.
Asunto(s)
Carcinoma Ductal Pancreático , Janus Quinasa 1 , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Janus Quinasa 1/metabolismo , Janus Quinasa 1/genética , Ratones Noqueados , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismoRESUMEN
The role of programmed death ligand 1 (PD-L1) has been extensively investigated in adaptive immune system. However, increasing data show that innate immune responses are also affected by the immune checkpoint molecule. It has been demonstrated that regulation of PD-L1 signaling in macrophages may be a potential therapeutic method for acute respiratory distress syndrome (ARDS). However, the PD-L1 expression pattern in local macrophages and whole lung tissues remains mysterious, hindering optimization of the potential treatment program. Therefore, we aim to determine the PD-L1 expression pattern during ARDS. Our findings show that PD-L1 levels are markedly increased in lipopolysaccharide (LPS)-stimulated lung tissues, which might be attributable to an increase in the gene expression by immune cells, including macrophages and neutrophils. In vitro experiments are performed to explore the mechanism involved in LPS-induced PD-L1 production. We find that PD-L1 generation is controlled by transcription factors early growth response 1 (Egr-1) and CCAAT/enhancer binding protein delta (C/EBPδ). Strikingly, PD-L1 production is enhanced by phosphoinositide-3 kinase (PI3K)-protein kinase B (AKT) signaling pathway via up-regulation of Egr-1 and C/EBPδ expressions. Additionally, we observe that expressions of Egr-1 and C/EBPδ mutually reinforce each other. Moreover, we observe that PD-L1 is protective for ARDS due to its regulatory role in macrophage-associated inflammatory response. In summary, during LPS-induced ARDS, PD-L1 expression, which is beneficial for the disease, is increased via the PI3K-AKT1-Egr-1/C/EBPδ signaling pathway, providing theoretical basis for application of methods controlling PD-L1 signaling in macrophages for ARDS treatment in clinic.
Asunto(s)
Antígeno B7-H1 , Proteína 1 de la Respuesta de Crecimiento Precoz , Lipopolisacáridos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Síndrome de Dificultad Respiratoria , Transducción de Señal , Lipopolisacáridos/toxicidad , Antígeno B7-H1/metabolismo , Antígeno B7-H1/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Ratones , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/biosíntesis , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Macrófagos/metabolismo , Humanos , MasculinoRESUMEN
There is an intrinsic relationship between psychiatric disorders and neuroinflammation, including bipolar disorder. Ouabain, an inhibitor of Na+/K+-ATPase, has been implicated in the mouse model with manic-like behavior. However, the molecular mechanisms linking neuroinflammation and manic-like behavior require further investigation. CCAAT/Enhancer-Binding Protein Delta (CEBPD) is an inflammatory transcription factor that contributes to neurological disease progression. In this study, we demonstrated that the expression of CEBPD in astrocytes was increased in ouabain-treated mice. Furthermore, we observed an increase in the expression and transcript levels of CEBPD in human primary astrocytes following ouabain treatment. Transcriptome analysis revealed high MMP8 expression in human primary astrocytes following CEBPD overexpression and ouabain treatment. We confirmed that MMP8 is a CEBPD-regulated gene that mediates ouabain-induced neuroinflammation. In our animal model, treatment of ouabain-injected mice with M8I (an inhibitor of MMP8) resulted in the inhibition of manic-like behavior compared to ouabain-injected mice that were not treated with M8I. Additionally, the reduction in the activation of astrocytes and microglia was observed, particularly in the hippocampal CA1 region. Excessive reactive oxygen species formation was observed in ouabain-injected mice, and treating these mice with M8I resulted in the reduction of oxidative stress, as indicated by nitrotyrosine staining. These findings suggest that MMP8 inhibitors may serve as therapeutic agents in mitigating manic symptoms in bipolar disorder.
Asunto(s)
Enfermedades Neuroinflamatorias , Ouabaína , Animales , Humanos , Ratones , Astrocitos/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Ouabaína/toxicidadRESUMEN
ABSTRACT: Hypertension seems to inevitably cause cardiac remodeling, increasing the mortality of patients. This study aimed to explore the molecular mechanism of CCAAT/enhancer-binding protein delta (CEBPD)-mediated oxidative stress and inflammation in hypertensive cardiac remodeling. The hypertensive murine model was established through angiotensin-II injection, and hypertensive mice underwent overexpressed CEBPD vector injection, cardiac function evaluation, and observation of histological changes. The cell model was established by angiotensin-II treatment and transfected with overexpressed CEBPD vector. Cell viability and surface area and oxidative stress (reactive oxygen species/superoxide dismutase/lactate dehydrogenase/malondialdehyde) were assessed, and inflammatory factors (TNF-α/IL-1ß/IL-6/IL-10) were determined both in vivo and in vitro . The levels of CEBPD, miR-96-5p, inositol 1,4,5-trisphosphate receptor 1 (IP3R), natriuretic peptide B, and natriuretic peptide A, collagen I, and collagen III in tissues and cells were determined. The binding relationships of CEBPD/miR-96-5p/IP3R 3' untranslated region were validated. CEBPD was reduced in cardiac tissue of hypertensive mice, and CEBPD upregulation improved cardiac function and attenuated fibrosis and hypertrophy, along with reductions of reactive oxygen species/lactate dehydrogenase/malondialdehyde/TNF-α/IL-1ß/IL-6 and increases in superoxide dismutase/IL-10. CEBPD enriched on the miR-96-5p promoter to promote miR-96-5p expression, whereas CEBPD and miR-96-5p negatively regulated IP3R. miR-96-5p silencing/IP3R overexpression reversed the alleviative role of CEBPD overexpression in hypertensive mice. In summary, CEBPD promoted miR-96-5p to negatively regulate IP3R expression to inhibit oxidative stress and inflammation, thereby alleviating hypertensive cardiac remodeling.
Asunto(s)
Hipertensión , MicroARNs , Humanos , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Interleucina-10/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Remodelación Ventricular/genética , Interleucina-6/metabolismo , Estrés Oxidativo , Inflamación/metabolismo , Hipertensión/genética , Péptidos Natriuréticos/metabolismo , Colágeno/metabolismo , Superóxido Dismutasa/metabolismo , Malondialdehído , Lactato Deshidrogenasas/metabolismo , Angiotensinas/metabolismo , ApoptosisRESUMEN
CCAAT/Enhancer-Binding Protein delta (C/EBPδ) is a transcription factor involved in differentiation and inflammation. While sparsely expressed in adult tissues, aberrant expression of C/EBPδ has been associated with different cancers. Initially, re-expression of C/EBPδ in cell cultures limited tumor cell proliferation, assigning it a tumor suppressor role. However, opposing observations were made in pre-clinical models and patients, suggesting that C/EBPδ not only mediates cell proliferation but dictates a broader spectrum of tumorigenesis-related effects. It is now widely accepted that C/EBPδ contributes to an inflammatory, tumor-promoting microenvironment, aids hypoxia adaption and contributes to the recruitment of blood vessels for improved nutrient supply to tumor cells and facilitated extravasation. This review summarizes the work published on this transcription factor in the field of cancer over the past decade. It points out areas in which a consensus on C/EBPδ's role appears to emerge and seek to explain seemingly contradictory results.
Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Regulación de la Expresión Génica , Neoplasias/genética , Factores de Transcripción , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Microambiente Tumoral/genéticaRESUMEN
Hypoxia contributes to the initiation and progression of glioblastoma by regulating a cohort of genes called hypoxia-regulated genes (HRGs) which form a complex molecular interacting network (HRG-MINW). Transcription factors (TFs) often play central roles for MINW. The key TFs for hypoxia induced reactions were explored using proteomic analysis to identify a set of hypoxia-regulated proteins (HRPs) in GBM cells. Next, systematic TF analysis identified CEBPD as a top TF that regulates the greatest number of HRPs and HRGs. Clinical sample and public database analysis revealed that CEBPD is significantly up-regulated in GBM, high levels of CEBPD predict poor prognosis. In addition, CEBPD is highly expressed in hypoxic condition both in GBM tissue and cell lines. For molecular mechanisms, HIF1α and HIF2α can activate the CEBPD promotor. In vitro and in vivo experiments demonstrated that CEBPD knockdown impaired the invasion and growth capacity of GBM cells, especially in hypoxia condition. Next, proteomic analysis identified that CEBPD target proteins are mainly involved in the EGFR/PI3K pathway and extracellular matrix (ECM) functions. WB assays revealed that CEBPD significantly positively regulated EGFR/PI3K pathway. Chromatin immunoprecipitation (ChIP) qPCR/Seq analysis and Luciferase reporter assay demonstrated that CEBPD binds and activates the promotor of a key ECM protein FN1 (fibronectin). In addition, the interactions of FN1 and its integrin receptors are necessary for CEBPD-induced EGFR/PI3K activation by promoting EGFR phosphorylation. Furthermore, GBM sample analysis in the database corroborated that CEBPD is positively correlated with the pathway activities of EGFR/PI3K and HIF1α, especially in highly hypoxic samples. At last, HRPs are also enriched in ECM proteins, indicating that ECM activities are important components of hypoxia induced responses in GBM. In conclusion, CEPBD plays important regulatory roles in the GBM HRG-MINW as a key TF, which activates the EGFR/PI3K pathway through ECM, especially FN1, mediated EGFR phosphorylation.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Factores de Transcripción , Proteómica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Hipoxia/genética , Hipoxia/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a poor clinical prognosis and unsatisfactory treatment options. We previously found that the transcription factor CCAAT/Enhancer-Binding Protein Delta (C/EBPδ) is lowly expressed in PDAC compared to healthy pancreas duct cells, and that patient survival and lymph node involvement in PDAC is correlated with the expression of C/EBPδ in primary tumor cells. C/EBPδ shares a homologous DNA-binding sequence with other C/EBP-proteins, leading to the presumption that other C/EBP-family members might act redundantly and compensate for the loss of C/EBPδ. This implies that patient stratification could be improved when expression levels of multiple C/EBP-family members are considered simultaneously. In this study, we assessed whether the quantification of C/EBPß or C/EBPγ in addition to that of C/EBPδ might improve the prediction of patient survival and lymph node involvement using a cohort of 68 resectable PDAC patients. Using Kaplan-Meier analyses of patient groups with different C/EBP-expression levels, we found that both C/EBPß and C/EBPγ can partially compensate for low C/EBPδ and improve patient survival. Further, we uncovered C/EBPß as a novel predictor of a decreased likelihood of lymph node involvement in PDAC, and found that C/EBPß and C/EBPδ can compensate for the lack of each other in order to reduce the risk of lymph node involvement. C/EBPγ, on the other hand, appears to promote lymph node involvement in the absence of C/EBPδ. Altogether, our results show that the redundancy of C/EBP-family members might have a profound influence on clinical prognoses and that the expression of both C/EPBß and C/EBPγ should be taken into account when dichotomizing patients according to C/EBPδ expression.
Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Carcinoma Ductal Pancreático , Regulación de la Expresión Génica , Neoplasias Pancreáticas , Humanos , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Metástasis Linfática/genética , Metástasis Linfática/patología , Metástasis Linfática/fisiopatología , PronósticoRESUMEN
Pancreatic Ductal Adenocarcinoma (PDAC) is among the most aggressive human cancers and occurs globally at an increasing incidence. Metastases are the primary cause of cancer-related death and, in the majority of cases, PDAC is accompanied by metastatic disease at the time of diagnosis, making it a particularly lethal cancer. Regrettably, to date, no curative treatment has been developed for patients with metastatic disease, resulting in a 5-year survival rate of only 11%. We previously found that the protein expression of the transcription factor CCAAT/Enhancer-Binding Protein Delta (C/EBPδ) negatively correlates with lymph node involvement in PDAC patients. To better comprehend the etiology of metastatic PDAC, we explored the role of C/EBPδ at different steps of the metastatic cascade, using established in vitro models. We found that C/EBPδ has a major impact on cell motility, an important prerequisite for tumor cells to leave the primary tumor and to reach distant sites. Our data suggest that C/EBPδ induces downstream pathways that modulate actin cytoskeleton dynamics to reduce cell migration and to induce a more epithelial-like cellular phenotype. Understanding the mechanisms dictating epithelial and mesenchymal features holds great promise for improving the treatment of PDAC.
Asunto(s)
Proteína delta de Unión al Potenciador CCAAT , Carcinoma Ductal Pancreático , Movimiento Celular , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Movimiento Celular/genética , Neoplasias Pancreáticas/genética , Factores de Transcripción/metabolismo , Neoplasias PancreáticasRESUMEN
Fetal membrane activation is seen as being one of the crucial triggering components of human parturition. Increased prostaglandin E2 (PGE2) production, a common mediator of labor onset in virtually all species, is recognized as one of the landmark events of membrane activation. Fetal membranes are also equipped with a high capacity of cortisol regeneration by 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1), and the cortisol regenerated potently induces PGE2 synthesis, an effect normally suppressed by progesterone during gestation. There is no precipitous decline of progesterone synthesis in human parturition. It is intriguing how this suppression is lifted in parturition. Here, we investigated this issue by using human amnion tissue and primary amnion fibroblasts which synthesize the most PGE2 in the fetal membranes. Results showed that the expression of 11ß-HSD1 and aldo-keto reductase family 1 member C1 (AKR1C1), a progesterone-inactivating enzyme, increased in parallel in human amnion tissue with gestational age toward the end of gestation and at parturition. Cortisol induced AKR1C1 expression via the transcription factor CCAAT enhancer binding protein δ (C/EBPδ) in amnion fibroblasts. Inhibition of AKR1C1 not only blocked progesterone catabolism induced by cortisol, but also enhanced the suppression of cortisol-induced cyclooxygenase-2 (COX-2) expression by progesterone in amnion fibroblasts. In conclusion, our results indicate that cortisol regenerated in the fetal membranes triggers local progesterone withdrawal through enhancement of AKR1C1-mediated progesterone catabolism in amnion fibroblasts, so that the suppression of progesterone on the induction of COX-2 expression and PGE2 synthesis by cortisol can be lifted for parturition.
Asunto(s)
Amnios , Hidrocortisona , Femenino , Humanos , Embarazo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Aldo-Ceto Reductasas/metabolismo , Amnios/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/farmacología , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Hidrocortisona/metabolismo , Parto/metabolismo , Progesterona/metabolismoRESUMEN
BACKGROUND: CCAAT/Enhancer Binding Protein D (CEBPD), a pleiotropic glucocorticoid-responsive transcription factor, modulates inflammatory responses. Of relevance to asthma, expression of CEBPD in airway smooth muscle (ASM) increases with glucocorticoid exposure. We sought to characterize CEBPD-mediated transcriptomic responses to glucocorticoid exposure in ASM by measuring changes observed after knockdown of CEBPD and its impact on asthma-related ASM function. METHODS: Primary ASM cells derived from four donors were transfected with CEBPD or non-targeting (NT) siRNA and exposed to vehicle control, budesonide (100 nM, 18 h), TNFα (10 ng/ml, 18 h), or both budesonide and TNFα. Subsequently, RNA-Seq was used to measure gene expression levels, and pairwise differential expression results were obtained for exposures versus vehicle and knockdown versus control conditions. Weighted gene co-expression analysis was performed to identify groups of genes with similar expression patterns across the various experimental conditions (i.e., CEBPD knockdown status, exposures). RESULTS: CEBPD knockdown altered expression of 3037 genes under at least one exposure (q-value < 0.05). Co-expression analysis identified sets of 197, 152 and 290 genes that were correlated with CEBPD knockdown status, TNFα exposure status, and both, respectively. JAK-STAT signaling pathway genes, including IL6R and SOCS3, were among those influenced by both TNFα and CEBPD knockdown. Immunoblot assays revealed that budesonide-induced IL-6R protein expression and augmented IL-6-induced STAT3 phosphorylation levels were attenuated by CEBPD knockdown in ASM. CONCLUSIONS: CEBPD modulates glucocorticoid responses in ASM, in part via modulation of IL-6 receptor signaling.
Asunto(s)
Asma , Glucocorticoides , Budesonida/metabolismo , Budesonida/farmacología , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Glucocorticoides/farmacología , Humanos , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Transcriptoma , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
Catabolic conditions, such as starvation, inactivity, and cancer cachexia, induce Forkhead box O (FOXO) transcription factor(s) expression and severe muscle atrophy via the induction of ubiquitin-proteasome system-mediated muscle proteolysis, resulting in frailty and poor quality of life. Although FOXOs are clearly essential for the induction of muscle atrophy, it is unclear whether there are other factors involved in the FOXO-mediated transcriptional regulation. As such, we identified FOXO-CCAAT/enhancer-binding protein δ (C/EBPδ) signaling pathway as a novel proteolytic pathway. By comparing the gene expression profiles of FOXO1-transgenic (gain-of-function model) and FOXO1,3a,4-/- (loss-of-function model) mice, we identified several novel FOXO1-target genes in skeletal muscle including Redd1, Sestrin1, Castor2, Chac1, Depp1, Lat3, as well as C/EBPδ. During starvation, C/EBPδ abundance was increased in a FOXOs-dependent manner. Notably, knockdown of C/EBPδ prevented the induction of the ubiquitin-proteasome system and decrease of myofibers in FOXO1-activated myotubes. Conversely, C/EBPδ overexpression in primary myotubes induced myotube atrophy. Furthermore, we demonstrated that FOXO1 enhances the promoter activity of target genes in cooperation with C/EBPδ and ATF4. This research comprehensively identifies novel FOXO1 target genes in skeletal muscle and clarifies the pathophysiological role of FOXO1, a master regulator of skeletal muscle atrophy.
Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Ayuno/metabolismo , Proteína Forkhead Box O1/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transcripción Genética/fisiología , Animales , Línea Celular , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal/fisiología , Ubiquitina/metabolismoRESUMEN
Given the increasing incidence of pulmonary aspergillosis, it is important to understand the natural defense mechanisms by which the body can kill Aspergillus fumigatus conidia. Pentraxin 3 (PTX3) plays a nonredundant role in resistance to A. fumigatus. Here, we found that the key predicted PTX3 transcription factor, CCAAT/enhancer-binding protein δ (CEBPD), was up-regulated during A. fumigatus conidia infection. Functionally, CEBPD significantly promoted the expression of PTX3 and the phagocytic ability of macrophages. Mechanistically, CEBPD activated the PTX3 by directly binding to the promoter region of the PTX3 gene. We also showed that the RNA-binding protein human antigen R promoted CEBPD expression. These findings provide new insights into the crucial role of CEBPD in the phagocytosis of A. fumigatus conidia by macrophages and highlight this protein as a potential therapeutic target for invasive pulmonary aspergillosis.
Asunto(s)
Aspergilosis , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Aspergillus fumigatus , Proteína C-Reactiva , Proteína delta de Unión al Potenciador CCAAT/genética , Humanos , Macrófagos/metabolismo , Fagocitosis , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismoRESUMEN
Cancer cells experience endoplasmic reticulum (ER) stress due to activated oncogenes and conditions of nutrient deprivation and hypoxia. The ensuing unfolded protein response (UPR) is executed by ATF6, IRE1 and PERK pathways. Adaptation to mild ER stress promotes tumor cell survival and aggressiveness. Unmitigated ER stress, however, will result in cell death and is a potential avenue for cancer therapies. Because of this yin-yang nature of ER stress, it is imperative that we fully understand the mechanisms and dynamics of the UPR and its contribution to the complexity of tumor biology. The PERK pathway inhibits global protein synthesis while allowing translation of specific mRNAs, such as the ATF4 transcription factor. Using thapsigargin and tunicamycin to induce acute ER stress, we identified the transcription factor C/EBPδ (CEBPD) as a mediator of PERK signaling to secretion of tumor promoting chemokines. In melanoma and breast cancer cell lines, PERK mediated early induction of C/EBPδ through ATF4-independent pathways that involved at least in part Janus kinases and the STAT3 transcription factor. Transcriptional profiling revealed that C/EBPδ contributed to 20% of thapsigargin response genes including chaperones, components of ER-associated degradation, and apoptosis inhibitors. In addition, C/EBPδ supported the expression of the chemokines CXCL8 (IL-8) and CCL20, which are known for their tumor promoting and immunosuppressive properties. With a paradigm of short-term exposure to thapsigargin, which was sufficient to trigger prolonged activation of the UPR in cancer cells, we found that conditioned media from such cells induced cytokine expression in myeloid cells. In addition, activation of the CXCL8 receptor CXCR1 during thapsigargin exposure supported subsequent sphere formation by cancer cells. Taken together, these investigations elucidated a novel mechanism of ER stress-induced transmissible signals in tumor cells that may be particularly relevant in the context of pharmacological interventions.