Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.288
Filtrar
1.
J Biotechnol ; 390: 50-61, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38789049

RESUMEN

To reduce food spoilage and deterioration caused by microbial contamination, antimicrobial peptides (AMPs) have gradually gained attention as a biological preservative. Odorranain-C1 is an α-helical cationic antimicrobial peptide extracted from the skin of frogs with broad-spectrum antimicrobial activity. In this study, we achieved the expression of Odorranain-C1 in Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) by employing DNA recombination technology. The recombinant Odorranain-C1 showed broad-spectrum antibacterial activity and displayed a minimum inhibitory concentration within the range of 8-12 µg.mL-1. Meanwhile, Odorranain-C1 exhibited superior stability and lower hemolytic activity. Mechanistically, Odorranain-C1 disrupted the bacterial membrane's integrity, ultimately causing membrane rupture and subsequent cell death. In tilapia fillets preservation, Odorranain-C1 inhibited the total colony growth and pH variations, while also reducing the production of total volatile basic nitrogen (TVB-N) and thiobarbituric acid (TBA). In conclusion, these studies demonstrated the efficient recombinant expression of Odorranain-C1 in P. pastoris, highlighting its promising utilization in food preservation.


Asunto(s)
Conservación de Alimentos , Saccharomycetales , Animales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Conservación de Alimentos/métodos , Pruebas de Sensibilidad Microbiana , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/metabolismo , Antibacterianos/farmacología , Hemólisis/efectos de los fármacos , Pichia/genética , Pichia/metabolismo , Proteínas Anfibias/genética , Proteínas Anfibias/farmacología , Proteínas Anfibias/metabolismo , Anuros/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38714098

RESUMEN

As amphibians undergo thyroid hormone (TH)-dependent metamorphosis from an aquatic tadpole to the terrestrial frog, their innate immune system must adapt to the new environment. Skin is a primary line of defense, yet this organ undergoes extensive remodelling during metamorphosis and how it responds to TH is poorly understood. Temperature modulation, which regulates metamorphic timing, is a unique way to uncover early TH-induced transcriptomic events. Metamorphosis of premetamorphic tadpoles is induced by exogenous TH administration at 24 °C but is paused at 5 °C. However, at 5 °C a "molecular memory" of TH exposure is retained that results in an accelerated metamorphosis upon shifting to 24 °C. We used RNA-sequencing to identify changes in Rana (Lithobates) catesbeiana back skin gene expression during natural and TH-induced metamorphosis. During natural metamorphosis, significant differential expression (DE) was observed in >6500 transcripts including classic TH-responsive transcripts (thrb and thibz), heat shock proteins, and innate immune system components: keratins, mucins, and antimicrobial peptides (AMPs). Premetamorphic tadpoles maintained at 5 °C showed 83 DE transcripts within 48 h after TH administration, including thibz which has previously been identified as a molecular memory component in other tissues. Over 3600 DE transcripts were detected in TH-treated tadpoles at 24 °C or when tadpoles held at 5 °C were shifted to 24 °C. Gene ontology (GO) terms related to transcription, RNA metabolic processes, and translation were enriched in both datasets and immune related GO terms were observed in the temperature-modulated experiment. Our findings have implications on survival as climate change affects amphibia worldwide.


Asunto(s)
Perfilación de la Expresión Génica , Inmunidad Innata , Metamorfosis Biológica , Piel , Temperatura , Hormonas Tiroideas , Transcriptoma , Animales , Metamorfosis Biológica/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Hormonas Tiroideas/metabolismo , Transcriptoma/efectos de los fármacos , Rana catesbeiana/genética , Rana catesbeiana/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/genética , Larva/efectos de los fármacos , Proteínas Anfibias/genética
3.
Med Oncol ; 41(6): 162, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767753

RESUMEN

Dermaseptin B2 (DrsB2) is an antimicrobial peptide with anticancer and angiostatic properties. We aimed to assess the in vitro inhibitory effect of pDNA/DrsB2 on the growth of breast cancer cells and its impact on the expression of genes involved in the BAX/BBC3/AKT pathway. The nucleic acid sequence of DrsB2 was artificially synthesized and inserted into the pcDNA3.1( +) Mammalian Expression Plasmid. PCR testing and enzyme digesting procedures evaluated the accuracy of cloning. The vectors were introduced into cells using LipofectamineTM2000 transfection reagent. The breast cancer cells were assessed by flow cytometry, MTT assessment, soft agar colony method, and wound healing investigation. The gene's transcription was evaluated using real-time PCR with a significance level of P < 0.05. The recombinant plasmid harboring the pDNA/DrsB2 vector was effectively produced, and the gene sequence showed absolute homogeneity (100% similarity) with the DrsB2 gene. The transfection effectiveness of MCF-7 and MCF-10A cells was 79% and 68%, respectively. The findings are measured using the growth inhibition 50% (GI50) metric, which indicates the concentration of pDNA/DrsB2 that stops 50% of cell growth. The proportions of early apoptosis, late apoptosis, necrosis, and viable MCF-7 cells in the pDNA/DrsB2 group were 40.50%, 2.31%, 1.69%, and 55.50%, respectively. The results showed a 100% increase in gene expression in programmed cell death following treatment with pDNA/DrsB2 (**P < 0.01). To summarize, the results described in this work offer new possibilities for treating cancer by targeting malignancies via pDNA/DrsB2 and activating the BAX/BBC3/AKT signaling pathways.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Proteína X Asociada a bcl-2 , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Apoptosis , Células MCF-7 , Proteínas Anfibias/genética , Proteínas Anfibias/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Transfección
4.
Artículo en Inglés | MEDLINE | ID: mdl-38688407

RESUMEN

This study investigated the morphology of Rhinella crucifer cutaneous glands, as well as the protein/peptide profiles and bioactivities of body gland secretions (BGS) and parotoid macrogland secretions (PS). The parotoid as well as dorsal and ventral skin fragments of male and female individuals were processed for histological analysis. The protein and peptide profiles of male and female gland secretions were evaluated. Male secretions were also assessed for proteolytic, trypsin inhibiting, hemagglutinating, hemolytic, antimicrobial, and anticoagulant activities. The R. crucifer skin structure presented protuberances that are clearly visible and formed by the integument, which has cutaneous glands throughout the body. An average of 438 and 333 glands were identified in males in females, respectively. No significant differences were observed in the distribution of glands across the body as well as for area and perimeter of glands. Differences were observed in protein composition between the PS and BGS from males and females, and secretions from animals collected from undisturbed and anthropogenically disturbed areas. Proteins with similarities to catalase and elongation factor 1-alpha were detected in the PS. Zymography revealed proteolytic activity in both male BGS and PS. Male BGS showed antibacterial activity against Enterococcus faecalis and Escherichia coli and anticoagulant activity, being able to prolong prothrombin time by 6.34-fold and activated partial thromboplastin time by 2.17-fold. Finally, male PS and BGS caused a maximum hemolysis degree of 1.4%. The data showed that the cutaneous secretions of R. crucifer are potentially promising for biotechnological prospecting.


Asunto(s)
Bufonidae , Piel , Animales , Masculino , Femenino , Bufonidae/metabolismo , Piel/metabolismo , Piel/química , Glándulas Exocrinas/metabolismo , Secreciones Corporales/química , Proteínas Anfibias/metabolismo , Proteínas Anfibias/farmacología
5.
BMC Vet Res ; 20(1): 164, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678277

RESUMEN

BACKGROUND: Esculentin-1, initially discovered in the skin secretions of pool frogs (Pelophylax lessonae), has demonstrated broad-spectrum antimicrobial activity; however, its immunomodulatory properties have received little attention. RESULTS: In the present study, esculentin-1 cDNA was identified by analysing the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus). Esculentin-1 from this species (esculentin-1PN) encompasses a signal peptide, an acidic spacer peptide, and a mature peptide. Sequence alignments with other amphibian esculentins-1 demonstrated conservation of the peptide, and phylogenetic tree analysis revealed its closest genetic affinity to esculentin-1P, derived from the Fukien gold-striped pond frog (Pelophylax fukienensis). Esculentin-1PN transcripts were observed in various tissues, with the skin exhibiting the highest mRNA levels. Synthetic esculentin-1PN demonstrated antibacterial activity against various pathogens, and esculentin-1PN exhibited bactericidal activity by disrupting cell membrane integrity and hydrolyzing genomic DNA. Esculentin-1PN did not stimulate chemotaxis in RAW264.7, a murine leukemic monocyte/macrophage cell line. However, it amplified the respiratory burst and augmented the pro-inflammatory cytokine gene (TNF-α and IL-1ß) expression in RAW264.7 cells. CONCLUSIONS: This novel finding highlights the immunomodulatory activity of esculentin-1PN on immune cells.


Asunto(s)
Proteínas Anfibias , Antibacterianos , Filogenia , Ranidae , Animales , Proteínas Anfibias/farmacología , Proteínas Anfibias/química , Proteínas Anfibias/genética , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Secuencia de Aminoácidos , Piel/metabolismo , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Células RAW 264.7 , Alineación de Secuencia
6.
Bioorg Med Chem Lett ; 96: 129499, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37804993

RESUMEN

A4K14-Citropin 1.1 (GLFAVIKKVASVIKGL-NH2) is a derived antimicrobial peptide (AMP) with a more stable α-helical structure at the C-terminal compared to prototype Citropin 1.1 which was obtained from glandular skin secretions of Australian freetail lizards. In a previous report, A4K14-Citropin 1.1 has been considered as an anti-cancer lead compound. However, linear peptides are difficult to maintain stable secondary structure, resulted in poor pharmacokinetic properties. In this study, we designed and synthesized a series of benzyl-stapled derivatives of A4K14-Citropin 1.1. And their physical and chemical properties, as well as biological activity, were both explored. The result showed that AC-CCSP-2-o and AC-CCSP-3-o exhibited a higher degree of helicity and greater anti-cancer activity compared with the prototype peptide. Besides, there was no significant difference in the hemolytic effect between the stapled peptides and the prototype peptide. AC-CCSP-2-o and AC-CCSP-3-o could serve as promising anti-cancer lead compounds for the novel anti-cancer drug development.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Proteínas Anfibias/química , Estructura Secundaria de Proteína , Conformación Proteica en Hélice alfa
7.
Amino Acids ; 55(10): 1349-1359, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37548712

RESUMEN

The amphibian family Leptodactylidae is divided into three sub-families: Leiuperinae, Leptodactylinae, and Paratelmatobiinae. Host-defense peptides (HDPs) present in the skins of frogs belonging to the Leptodactylinae have been studied extensively, but information is limited  regarding peptides from Leiuperinae species. Peptidomic analysis of norepinephrine-stimulated skin secretions from the Tungara frog Engystomops pustulosus (Leiuperinae) collected in Trinidad led to the isolation and structural characterization of previously undescribed pustulosin-1 (FWKADVKEIG KKLAAKLAEELAKKLGEQ), [Q28E] pustulosin-1 (pustulosin-2), and pustulosin-3 (DWKETAKELLKKIGAKVAQVISDKLNPAPQ). The primary structures of these peptides do not resemble those of previously described frog skin HDPs. In addition, the secretions contained tigerinin-1EP (GCKTYLIEPPVCT) with structural similarity to the tigerinins previously identified in skin secretions from frogs from the family Dicroglossidae. Pustulosin-1 and -3 adopted extended α-helical conformations in 25% trifluoroethanol-water and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine micelles). Pustulosin-1 and -3 displayed cytotoxic activity against a range of human tumor-derived cell lines (A549, MDA-MB-231, and HT29), but their therapeutic potential for development into anti-cancer agents is limited by their comparable cytotoxic activity against non-neoplastic human umbilical vein endothelial cells. The peptides also displayed weak antimicrobial activity against Escherichia coli (MIC = 125 µM) but were inactive against Staphylococcus aureus. Tigerinin-1EP was inactive against both the tumor-derived cells and bacteria.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Humanos , Péptidos Catiónicos Antimicrobianos/química , Células Endoteliales/metabolismo , Proteínas Anfibias/química , Anuros/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Neoplasias/metabolismo , Piel/metabolismo , Pruebas de Sensibilidad Microbiana
8.
IET Nanobiotechnol ; 17(4): 352-359, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37042087

RESUMEN

OBJECTIVE: Dermaseptin-PP is a newly discovered anticancer peptide with a unique antitumour mechanism and remarkable effect. However, this α-helix anticancer peptide risks haemolysis when used at high doses, which limits its further application. This study aims to prepare a pH-responsive liposome, Der-loaded-pHSL, using nanotechnology to avoid the haemolysis risk of Dermaseptin-PP and increase its accumulation in tumour sites to enhance efficacy and reduce toxicity. METHODS: The characterisation of Der-loaded-pHSL was carried out employing preparation. The effect of haemolysis and tumour inhibition were investigated by in vitro haemolysis assay and cytotoxicity assay. The cell uptake under different pH conditions was investigated by flow cytometry, and the effect of pH on tumour cell selectivity was evaluated. In order to evaluate the in vivo targeting and antitumour effect of Der-loaded-pHSL, the in vivo distribution experiment and the pharmacodynamic experiment were performed using the nude mouse tumour model. RESULTS: The preparation method of the Der-loaded-pHSL is simple, and the liposome has good nanoparticle characteristics. When Dermaseptin-PP was prepared as liposome, haemolysis was significantly decreased, and tumour cell inhibition was significantly enhanced. Compared with ordinary liposomes, this change was more significant in Der-loaded-pHSL. The uptake of pH-sensitive liposomes was higher in the simulated acidic tumour microenvironment, and the uptake showed a specific acid dependence. In vivo experiments showed that Der-loaded-pHSL had a significant tumour-targeting effect and could significantly enhance the antitumour effect of Dermaseptin-PP. CONCLUSION: Der-loaded-pHSL designed in this study is a liposome with a quick, simple, effective preparation method, which can significantly reduce the haemolytic toxicity of Dermaseptin-PP and enhance its antitumour effect by increasing the tumour accumulation and cell intake. It provides a new idea for applying Dermaseptin-PP and other anticancer peptides with α-helical structure.


Asunto(s)
Liposomas , Neoplasias , Ratones , Animales , Liposomas/química , Hemólisis , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Anfibias/química , Proteínas Anfibias/farmacología , Línea Celular Tumoral , Microambiente Tumoral
9.
Artículo en Inglés | MEDLINE | ID: mdl-36868141

RESUMEN

Skin secretions of certain frog species represent a source of host-defense peptides (HDPs) with therapeutic potential and their primary structures provide insight into taxonomic and phylogenetic relationships. Peptidomic analysis was used to characterize the HDPs in norepinephrine-stimulated skin secretions from the Amazon River frog Lithobates palmipes (Ranidae) collected in Trinidad. A total of ten peptides were purified and identified on the basis of amino acid similarity as belonging to the ranatuerin-2 family (ranatuerin-2PMa, -2PMb, -2PMc, and-2PMd), the brevinin-1 family (brevinin-1PMa, -1PMb, -1PMc and des(8-14)brevinin-1PMa) and the temporin family (temporin-PMa in C-terminally amidated and non-amidated forms). Deletion of the sequence VAAKVLP from brevinin-1PMa (FLPLIAGVAAKVLPKIFCAISKKC) in des[(8-14)brevinin-1PMa resulted in a 10-fold decrease in potency against Staphylococcus aureus (MIC = 31 µM compared with 3 µM) and a > 50-fold decrease in hemolytic activity but potency against Echerichia coli was maintained (MIC = 62.5 µM compared with 50 µM). Temporin-PMa (FLPFLGKLLSGIF.NH2) inhibited growth of S. aureus (MIC = 16 µM) but the non-amidated form of the peptide lacked antimicrobial activity. Cladistic analysis based upon the primary structures of ranaturerin-2 peptides supports the division of New World frogs of the family Ranidae into the genera Lithobates and Rana. A sister-group relationship between L. palmipes and Warszewitsch's frog Lithobates warszewitschii is indicated within a clade that includes the Tarahumara frog Lithobates tarahumarae. The study has provided further evidence that peptidomic analysis of HDPs in frog skin secretions is a valuable approach to elucidation of the evolutionary history of species within a particular genus.


Asunto(s)
Ranidae , Staphylococcus aureus , Animales , Secuencia de Aminoácidos , Filogenia , Staphylococcus aureus/metabolismo , Ranidae/metabolismo , Proteínas Anfibias/metabolismo , Piel/metabolismo
10.
Toxins (Basel) ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36977082

RESUMEN

Toxin-like proteins and peptides of skin secretions from amphibians play important physiological and pathological roles in amphibians. ßγ-CAT is a Chinese red-belly toad-derived pore-forming toxin-like protein complex that consists of aerolysin domain, crystalline domain, and trefoil factor domain and induces various toxic effects via its membrane perforation process, including membrane binding, oligomerization, and endocytosis. Here, we observed the death of mouse hippocampal neuronal cells induced by ßγ-CAT at a concentration of 5 nM. Subsequent studies showed that the death of hippocampal neuronal cells was accompanied by the activation of Gasdermin E and caspase-1, suggesting that ßγ-CAT induces the pyroptosis of hippocampal neuronal cells. Further molecular mechanism studies revealed that the pyroptosis induced by ßγ-CAT is dependent on the oligomerization and endocytosis of ßγ-CAT. It is well known that the damage of hippocampal neuronal cells leads to the cognitive attenuation of animals. The impaired cognitive ability of mice was observed after intraperitoneal injection with 10 µg/kg ßγ-CAT in a water maze assay. Taken together, these findings reveal a previously unknown toxicological function of a vertebrate-derived pore-forming toxin-like protein in the nerve system, which triggers the pyroptosis of hippocampal neuronal cells, ultimately leading to hippocampal cognitive attenuation.


Asunto(s)
Proteínas Anfibias , Anuros , Neuronas , Piroptosis , Animales , Ratones , Anuros/metabolismo , Cognición , Péptidos/química , Proteínas Anfibias/toxicidad , Hipocampo/citología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos
11.
Biochem Pharmacol ; 210: 115471, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36893813

RESUMEN

Septic shock caused by Gram-positive bacteria continues to be a major cause of morbidity and mortality in intensive care units globally. Most Temporins are excellent growth inhibitors of gram-positive bacteria and candidates for developing antimicrobial treatments due to their biological action and small molecular weight. In this study, a novel Temporin peptide from the skin of Fejervarya limnocharis frog, named as Temporin-FL, was characterized. Temporin-FL was found to adopt typical α-helical conformation in SDS solution and to exhibit selective antibacterial activity against Gram-positive bacteria through a membrane destruction mechanism. Accordingly, Temporin-FL showed protective effects against Staphylococcus aureus-induced sepsis in mice. Finally, Temporin-FL was demonstrated to exert anti-inflammatory effects by neutralizing the action of LPS/LTA and by inhibiting MAPK pathway activation. Therefore, Temporin-FL represents a novel candidate for moleculartherapy of Gram-positive bacterial sepsis.


Asunto(s)
Antiinfecciosos , Choque Séptico , Animales , Ratones , Lipopolisacáridos/toxicidad , Secuencia de Aminoácidos , Proteínas Anfibias/farmacología , Proteínas Anfibias/uso terapéutico , Proteínas Anfibias/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/metabolismo , Ranidae/metabolismo , Piel , Bacterias Grampositivas , Choque Séptico/metabolismo , Pruebas de Sensibilidad Microbiana
12.
Toxins (Basel) ; 15(1)2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36668862

RESUMEN

In recent years, antimicrobial peptides isolated from amphibian toxins have gained attention as new multifunctional drugs interacting with different molecular targets. We aimed to rationally design a new peptide from temporin-PTa. Hp-MAP3 (NH2-LLKKVLALLKKVL-COOH), net charge (+4), hydrophobicity (0.69), the content of hydrophobic residues (69%), and hydrophobic moment (0.73). For the construction of the analog peptide, the physicochemical characteristics were reorganized into hydrophilic and hydrophobic residues with the addition of lysines and leucines. The minimum inhibitory concentration was 2.7 to 43 µM against the growth of Gram-negative and positive bacteria, and the potential for biofilm eradication was 173.2 µM. Within 20 min, the peptide Hp-MAP3 (10.8 µM) prompted 100% of the damage to E. coli cells. At 43.3 µM, eliminated 100% of S. aureus within 5 min. The effects against yeast species of the Candida genus ranged from 5.4 to 86.6 µM. Hp-MAP3 presents cytotoxic activity against tumor HeLa at a concentration of 21.6 µM with an IC50 of 10.4 µM. Furthermore, the peptide showed hemolytic activity against murine erythrocytes. Structural studies carried out by circular dichroism showed that Hp-MAP3, while in the presence of 50% trifluoroethanol or SDS, an α-helix secondary structure. Finally, Amphipathic Hp-MAP3 building an important model for the design of new multifunctional molecules.


Asunto(s)
Proteínas Anfibias , Péptidos Catiónicos Antimicrobianos , Animales , Humanos , Ratones , Secuencia de Aminoácidos , Proteínas Anfibias/química , Proteínas Anfibias/farmacología , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Dicroismo Circular , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Ranidae , Staphylococcus aureus/efectos de los fármacos
13.
J Pept Sci ; 29(4): e3463, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36426386

RESUMEN

The host-defense peptide ocellatin-3N (GIFDVLKNLAKGVITSLAS.NH2 ), first isolated from the Caribbean frog Leptodactylus nesiotus, inhibited growth of clinically relevant Gram-positive and Gram-negative bacteria as well as a strain of the major emerging yeast pathogen Candida parapsilosis. Increasing cationicity while maintaining amphipathicity by the substitution Asp4 →Lys increased potency against the microorganisms by between 4- and 16-fold (MIC ≤3 µM) compared with the naturally occurring peptide. The substitution Ala18 →Lys and the double substitution Asp4 →Lys and Ala18 →Lys had less effects on potency. The [D4K] analog also showed 2.5- to 4-fold greater cytotoxic potency against non-small-cell lung adenocarcinoma A549 cells, breast adenocarcinoma MDA-MB-231 cells, and colorectal adenocarcinoma HT-29 cells (LC50 values in the range of 12-20 µM) compared with ocellatin-3N but was less hemolytic to mouse erythrocytes. However, the peptide showed no selectivity for tumor-derived cells [LC50 = 20 µM for human umbilical vein endothelial cells (HUVECs)]. Ocellatin-3N and [D4K]ocellatin-3N stimulated the release of insulin from BRIN-BD11 clonal ß-cells at concentrations ≥1 nM, and [A18K]ocellatin-3N, at concentrations ≥0.1 nM. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 µM, indicating that plasma membrane integrity had been preserved. The three peptides produced an increase in intracellular [Ca2+ ] in BRIN-BD11 cells when incubated at a concentration of 1 µM. In view of its high insulinotropic potency and relatively low hemolytic activity, the [A18K] ocellatin analog may represent a template for the design of agents with therapeutic potential for the treatment of patients with type 2 diabetes.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Ratones , Animales , Humanos , Péptidos Catiónicos Antimicrobianos/química , Lisina , Antibacterianos/química , Diabetes Mellitus Tipo 2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células Endoteliales/metabolismo , Proteínas Anfibias/farmacología , Bacterias Grampositivas , Bacterias Gramnegativas , Neoplasias Pulmonares/metabolismo , Insulina/metabolismo , Antineoplásicos/farmacología , Anuros/metabolismo , Piel/metabolismo
14.
Toxins (Basel) ; 14(10)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36287990

RESUMEN

The skin of amphibians is a tissue with biological functions, such as defense, respiration, and excretion. In recent years, researchers have discovered a large number of peptides in the skin secretions of amphibians, including antimicrobial peptides, antioxidant peptides, bradykinins, insulin-releasing peptides, and other peptides. This review focuses on the origin, primary structure, secondary structure, length, and functions of peptides secreted from amphibians' skin. We hope that this review will provide further information and promote the further study of amphibian skin secretions, in order to provide reference for expanding the research and application of amphibian bioactive peptides.


Asunto(s)
Péptidos Antimicrobianos , Insulinas , Animales , Antioxidantes/química , Secuencia de Aminoácidos , Anfibios , Péptidos/química , Piel/química , Insulinas/análisis , Proteínas Anfibias/farmacología
15.
Oxid Med Cell Longev ; 2022: 2615178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105482

RESUMEN

Amphibian skin is acknowledged to contain an antioxidant system composed of various gene-encoded antioxidant peptides, which exert significant effects on host defense. Nevertheless, recognition of such peptides is in its infancy so far. Here, we reported the antioxidant properties and underlying mechanism of a new antioxidant peptide, brevinin-1FL, identified from Fejervarya limnocharis frog skin. The cDNA sequence encoding brevinin-1FL was successfully cloned from the total cDNA of F. limnocharis and showed to contain 222 bp. The deduced mature peptide sequence of brevinin-1FL was FWERCSRWLLN. Functional analysis revealed that brevinin-1FL could concentration-dependently scavenge ABTS+, DPPH, NO, and hydroxyl radicals and alleviate iron oxidation. Besides, brevinin-1FL was found to show neuroprotective activity by reducing contents of MDA and ROS plus mitochondrial membrane potential, increasing endogenous antioxidant enzyme activity, and suppressing H2O2-induced death, apoptosis, and cycle arrest in PC12 cells which were associated with its regulation of AKT/MAPK/NF-κB signal pathways. Moreover, brevinin-1FL relieved paw edema, decreased the levels of TNF-α, IL-1ß, IL-6, MPO, and malondialdehyde (MDA), and restored catalase (CAT) and superoxide dismutase (SOD) activity plus glutathione (GSH) contents in the mouse injected by carrageenan. Together, these findings indicate that brevinin-1FL as an antioxidant has potent therapeutic potential for the diseases induced by oxidative damage. Meanwhile, this study will help us further comprehend the biological functions of amphibian skin and the mechanism by which antioxidants protect cells from oxidative stress.


Asunto(s)
Proteínas Anfibias , Antioxidantes , Proteínas Anfibias/química , Proteínas Anfibias/farmacología , Proteínas Anfibias/uso terapéutico , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Carragenina , ADN Complementario , Peróxido de Hidrógeno/metabolismo , Ratones , Estrés Oxidativo , Ranidae , Ratas
16.
Dev Comp Immunol ; 137: 104519, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36041640

RESUMEN

Brevinins exhibit a wide range of structural features and strong biological activities. Brevinin-2, derived from several amphibians, has shown antimicrobial activities. However, little is known about the wound-healing activity of brevinin-2. In this study, brevinin-2 cDNA was identified from the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus) and it comprises a signal peptide, a propeptide, and a mature peptide. Sequence alignment with brevinin-2 derived from other amphibians showed variability of the mature peptide, and the presence of a C-terminal cyclic heptapeptide domain (Cys-Lys-Xaa4-Cys) in the mature peptide. Dark-spotted frog brevinin-2 belonged to the brevinin-2 cluster and was closely related to brevinin-2HB1 from Pelophylax hubeiensis. Synthetic dark-spotted frog brevinin-2 mature peptide (brevinin-2PN) exhibited antibacterial activity against several pathogens by destroying cell membrane integrity and hydrolysis of genomic DNA. Brevinin-2PN exhibited significant wound-healing activity by accelerating the healing of human skin fibroblast cell scratches, influencing cell migration, and stimulating gene expression of growth factors.


Asunto(s)
Proteínas Anfibias , Péptidos Antimicrobianos , Secuencia de Aminoácidos , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Anuros/genética , ADN Complementario/metabolismo , Humanos , Señales de Clasificación de Proteína , Ranidae/genética , Piel/metabolismo
17.
Amino Acids ; 54(9): 1327-1336, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35852614

RESUMEN

Naturally occurring frog skin peptides are one of largest sources of antimicrobial peptides that have many advantages including high potency, broad spectrum of targets and low susceptibility to multiple drug-resistance bacteria. However, they also have disadvantages such as hemolytic activity, low stability and high production costs. For these reasons, various strategies have been applied to overcome these drawbacks restricting their use in clinical trials. Previously reported brevinin-1GHa (BR-1GHa) is a 24 amino acid long antimicrobial peptide isolated from Hylarana guentheri with hemolytic activity. To enhance the antimicrobial activity of this peptide and to reduce its hemolytic activity, we designed five new temporin like analogues and examined their bioactivities. Temporins are another class of frog skin peptides without hemolytic activity and shorter than brevinins. When the antimicrobial activities of new analogues were examined against a panel of microorganisms, BR-1GHa-3, in which two alanine residues in the truncated version of BR-1GHa were replaced with leucine, exhibited significantly improved antimicrobial activity against Gram-positive bacterial strains (e.g., S. aureus ATCC 29213 and E. casseliflavus ATCC 700327) with lower hemolytic activity compared to the BR-1GHa peptide. Furthermore, BR-1GHa-4 analogue, in which Gly3 was replaced with Pro, did not show any hemolytic activity except for highest (128 µM) concentration tested and have a strong antimicrobial effect on Gram-positive bacteria (e.g., E. faecalis ATCC 51299 and B. cereus ATCC 13061).


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Secuencia de Aminoácidos , Proteínas Anfibias/química , Animales , Antibacterianos/farmacología , Antiinfecciosos/química , Bacterias Grampositivas , Hemólisis , Pruebas de Sensibilidad Microbiana , Ranidae , Piel/metabolismo
18.
Biomolecules ; 12(6)2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35740884

RESUMEN

Bacterial resistance against antibiotics has led to increasing numbers of treatment failures, and AMPs are widely accepted as becoming potential alternatives due to their advantages. Temporin-PKE is a novel peptide extracted from the skin secretion of Pelophylax kl. esculentus and it displays a strong activity against Gram-positive bacteria, with an extreme cytotoxicity. Incorporating positively charged residues and introducing D-amino acids were the two main strategies adopted for the modifications. The transformation of the chirality of Ile could reduce haemolytic activity, and an analogue with appropriate D-isoforms could maintain antimicrobial activity and stability. The substitution of hydrophobic residues could bring about more potent and broad-spectrum antimicrobial activities. The analogues with Lys were less harmful to the normal cells and their stabilities remained at similarly high levels compared to temporin-PKE. The optimal number of charges was three, and the replacement on the polar face was a better choice. Temporin-PKE-3K exerted dually efficient functions includingstrong antimicrobial and anticancer activity. This analogue showed a reduced possibility for inducing resistance in MRSA and Klebsiella pneumoniae, a rather strong antimicrobial activity in vivo, and it exhibited the highest therapeutic index such that temporin-PKE-3K has the potential to be developed as a clinical drug.


Asunto(s)
Proteínas Anfibias , Antiinfecciosos , Secuencia de Aminoácidos , Proteínas Anfibias/química , Proteínas Anfibias/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Pruebas de Sensibilidad Microbiana , Rana esculenta , Ranidae , Piel , Relación Estructura-Actividad
19.
Biomed Res Int ; 2022: 7841219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35445137

RESUMEN

Antibiotic resistance-related bacterial infections and cancers become huge challenges in human health in the 21st century. A number of naturally derived antimicrobial peptides possess multiple functions in host defense, including anti-infective and anticancer activities. One of which is known as the caerin 1 family peptides. The microbicidal properties of these peptides have been long discussed. The recent studies also established the usage of two members in this family, caerin 1.1 and caerin 1.9, in antimultiple antibiotic-resistant bacteria species. It is increasingly evident that caerin 1.1 and caerin 1.9 also contain additional activities in the suppression of tumor. In this review, we briefly outline the therapeutic potentials and possible mechanism of action of caerin 1.1 and 1.9 in the treatment of multiple antibiotic-resistant bacterial infection and cancer immunotherapy.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Neoplasias , Proteínas Anfibias/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico
20.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35216177

RESUMEN

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Asunto(s)
Proteínas Anfibias/farmacología , Anfibios/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/química , Virus ADN/efectos de los fármacos , Virus ARN/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Anfibias/química , Proteínas Anfibias/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Antivirales/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Lípidos/química , SARS-CoV-2/efectos de los fármacos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA